第三章 人体的有氧代谢供能系统
- 格式:ppt
- 大小:2.82 MB
- 文档页数:42
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑8 0 未见增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1) A TP 在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2) 之后的能量供应就要依靠ATP 的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP ,生成ATP 。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3) 这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。
无氧酵解约能维持2~3分钟时间。
(4) 由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP 。
综上所述,短时间大强度的运动,如100米短跑,主要依靠A TP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP 的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
精心整理精心整理(一)人体内的三大供能系统在人体内有三大供能系统,它们是:磷酸原供能系统、糖酵解供能系统和有氧氧化供能系统。
ATP 在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
之后的能量供应就要依靠ATP 的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP ,生成ATP(C ATP CP ADP +−−−→−+磷酸激酶)。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-CP 供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。
无氧酵解约能维持2~3分钟时间。
由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以综上所述,短时间大强度的运动,如100主要靠有完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
(二)三大供能系统的供能特点运动时,代谢供能的输出功率取决于能源物质合成(2)最大功率输出的顺序,>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
(36—83分钟以上主要依赖有氧代谢途径。
运动时间脂肪酸是长时间运动的基本燃料。
(4)由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。
安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特点表现如下。
(1)安静时:安静时,骨骼肌内能量消耗少,ATP 保持高水平;氧的供应充足,肌细胞内以游离脂肪酸和葡萄糖的有氧代谢供能。
(2)长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP 的消耗逐渐增多,ADP 水平逐渐增高,但仍以有氧代谢供能为主。
血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。
同时,肌糖原分解速度加快,加快的原因有两点:①能量代谢加强。
人体内的三大供能系统 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600589略有增加400米跑162显着增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
人体内三大供能系统在人体内有三大供能系统,它们就是:1、A TP-磷酸肌酸供能系统。
2、无氧呼吸供能系统3、有氧呼吸供能系统。
(1) ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2) 之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先就是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3) 这两项之后的供能,主要依靠葡萄糖与糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4) 由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
4.由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能就是运动后机能恢复的基本代谢方式。
二、不同活动状态下供能系统的相互关系安静时,不同强度与持续时间的运动时,骨骼肌内无氧代谢与有氧代谢供能的一般特点表现如下。
(一)安静时:安静时,骨骼肌内能量消耗少,ATP保持高水平;氧的供应充足,肌细胞内以游离脂肪酸与葡萄糖的有氧代谢供能。
线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。
在静息状态下,呼吸商为0.7,表明骨骼肌基本燃料就是脂肪酸。
(二) 长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP的消耗逐渐增多,ADP水平逐渐增高,NAD+还原速度加快,但仍以有氧代谢供能为主。
血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。
人体内三大供能系统在人体内有三大供能系统,它们是:1、A TP—磷酸肌酸供能系统。
2、无氧呼吸供能系统3、有氧呼吸供能系统。
(1) ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP.磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP—磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间.(3) 这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间.(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP.综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP—磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
二、不同活动状态下供能系统的相互关系安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特点表现如下。
(一)安静时:安静时,骨骼肌内能量消耗少,ATP保持高水平;氧的供应充足,肌细胞内以游离脂肪酸和葡萄糖的有氧代谢供能。
线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。
在静息状态下,呼吸商为0.7,表明骨骼肌基本燃料是脂肪酸.(二) 长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP的消耗逐渐增多,ADP水平逐渐增高,NAD+还原速度加快,但仍以有氧代谢供能为主.血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生.同时,肌糖原分解速度加快,加快的原因有两点:(1)能量代谢加强.(2)脂肪酸完全氧化需要糖分解的中间产物草酰乙酸协助才能实现.在低强度运动的最初数分钟内,血乳酸浓度稍有上升,但随着运动的继续,逐渐恢复到安静时水平.(三)大强度运动:随着运动强度的提高,整体对能量的要求进一步提高,但在血流量调整后,机体对能量的需求仍可由有氧代谢得到满足,即有氧代谢产能与总功率输出之间保持平衡。
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑8 0 未见增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
有氧代谢功能系统是人体在进行长时间低至中等强度的持续运动时所依赖的能量供应系统。
它的供能特点如下:
1.持久性供能:有氧代谢功能系统能够提供较长时间的持久能量供应,适合进行长时间的有氧运动,如长跑、游泳等。
这是由于有氧代谢以氧气为媒介,通过氧化代谢完全分解葡萄糖、脂肪和蛋白质等能源物质,产生大量的三磷酸腺苷(ATP)供给肌肉运动。
2.高效性供能:由于有氧代谢经过完全氧化分解能源物质,每分解一摩尔葡萄糖可以产生38个摩尔ATP(三磷酸腺苷)。
相比之下,无氧代谢只能产生2个摩尔ATP。
因此,有氧代谢功能系统具有更高的能量转化效率,能够更有效地利用有限的能源物质。
3.高容量供能:有氧代谢功能系统的供能容量较大,能够满足较长时间低至中等强度运动的能量需求。
当运动强度逐渐升高时,身体会通过增加氧气和血液供应,提高有氧代谢速率,从而进一步增加能量的供应。
4.主要依赖脂肪代谢:在低至中等强度的有氧运动中,有氧代谢主要依赖脂肪作为主要能源。
脂肪是一种高能量密度的物质,分解后可以提供丰富的能量,因此有氧代谢可以帮助减少脂肪储存,促进体脂的减少。
总之,有氧代谢功能系统具有持久性供能、高效性供能、高容量供能和主要依赖脂肪代谢等特点。
通过有氧运动,我们可以提高有氧代谢功能系统的供能能力,增强身体的耐力和健康水平。