第三章 人体的有氧代谢供能系统
- 格式:ppt
- 大小:2.82 MB
- 文档页数:42
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑8 0 未见增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1) A TP 在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2) 之后的能量供应就要依靠ATP 的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP ,生成ATP 。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3) 这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。
无氧酵解约能维持2~3分钟时间。
(4) 由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP 。
综上所述,短时间大强度的运动,如100米短跑,主要依靠A TP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP 的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
精心整理精心整理(一)人体内的三大供能系统在人体内有三大供能系统,它们是:磷酸原供能系统、糖酵解供能系统和有氧氧化供能系统。
ATP 在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
之后的能量供应就要依靠ATP 的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP ,生成ATP(C ATP CP ADP +−−−→−+磷酸激酶)。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-CP 供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。
无氧酵解约能维持2~3分钟时间。
由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以综上所述,短时间大强度的运动,如100主要靠有完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
(二)三大供能系统的供能特点运动时,代谢供能的输出功率取决于能源物质合成(2)最大功率输出的顺序,>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
(36—83分钟以上主要依赖有氧代谢途径。
运动时间脂肪酸是长时间运动的基本燃料。
(4)由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。
安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特点表现如下。
(1)安静时:安静时,骨骼肌内能量消耗少,ATP 保持高水平;氧的供应充足,肌细胞内以游离脂肪酸和葡萄糖的有氧代谢供能。
(2)长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP 的消耗逐渐增多,ADP 水平逐渐增高,但仍以有氧代谢供能为主。
血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。
同时,肌糖原分解速度加快,加快的原因有两点:①能量代谢加强。
人体内的三大供能系统 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600589略有增加400米跑162显着增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
人体内三大供能系统在人体内有三大供能系统,它们就是:1、A TP-磷酸肌酸供能系统。
2、无氧呼吸供能系统3、有氧呼吸供能系统。
(1) ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2) 之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先就是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3) 这两项之后的供能,主要依靠葡萄糖与糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4) 由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
4.由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能就是运动后机能恢复的基本代谢方式。
二、不同活动状态下供能系统的相互关系安静时,不同强度与持续时间的运动时,骨骼肌内无氧代谢与有氧代谢供能的一般特点表现如下。
(一)安静时:安静时,骨骼肌内能量消耗少,ATP保持高水平;氧的供应充足,肌细胞内以游离脂肪酸与葡萄糖的有氧代谢供能。
线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。
在静息状态下,呼吸商为0.7,表明骨骼肌基本燃料就是脂肪酸。
(二) 长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP的消耗逐渐增多,ADP水平逐渐增高,NAD+还原速度加快,但仍以有氧代谢供能为主。
血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。
人体内三大供能系统在人体内有三大供能系统,它们是:1、A TP—磷酸肌酸供能系统。
2、无氧呼吸供能系统3、有氧呼吸供能系统。
(1) ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP.磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP—磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间.(3) 这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间.(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP.综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP—磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
二、不同活动状态下供能系统的相互关系安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特点表现如下。
(一)安静时:安静时,骨骼肌内能量消耗少,ATP保持高水平;氧的供应充足,肌细胞内以游离脂肪酸和葡萄糖的有氧代谢供能。
线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。
在静息状态下,呼吸商为0.7,表明骨骼肌基本燃料是脂肪酸.(二) 长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP的消耗逐渐增多,ADP水平逐渐增高,NAD+还原速度加快,但仍以有氧代谢供能为主.血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生.同时,肌糖原分解速度加快,加快的原因有两点:(1)能量代谢加强.(2)脂肪酸完全氧化需要糖分解的中间产物草酰乙酸协助才能实现.在低强度运动的最初数分钟内,血乳酸浓度稍有上升,但随着运动的继续,逐渐恢复到安静时水平.(三)大强度运动:随着运动强度的提高,整体对能量的要求进一步提高,但在血流量调整后,机体对能量的需求仍可由有氧代谢得到满足,即有氧代谢产能与总功率输出之间保持平衡。
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑8 0 未见增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
有氧代谢功能系统是人体在进行长时间低至中等强度的持续运动时所依赖的能量供应系统。
它的供能特点如下:
1.持久性供能:有氧代谢功能系统能够提供较长时间的持久能量供应,适合进行长时间的有氧运动,如长跑、游泳等。
这是由于有氧代谢以氧气为媒介,通过氧化代谢完全分解葡萄糖、脂肪和蛋白质等能源物质,产生大量的三磷酸腺苷(ATP)供给肌肉运动。
2.高效性供能:由于有氧代谢经过完全氧化分解能源物质,每分解一摩尔葡萄糖可以产生38个摩尔ATP(三磷酸腺苷)。
相比之下,无氧代谢只能产生2个摩尔ATP。
因此,有氧代谢功能系统具有更高的能量转化效率,能够更有效地利用有限的能源物质。
3.高容量供能:有氧代谢功能系统的供能容量较大,能够满足较长时间低至中等强度运动的能量需求。
当运动强度逐渐升高时,身体会通过增加氧气和血液供应,提高有氧代谢速率,从而进一步增加能量的供应。
4.主要依赖脂肪代谢:在低至中等强度的有氧运动中,有氧代谢主要依赖脂肪作为主要能源。
脂肪是一种高能量密度的物质,分解后可以提供丰富的能量,因此有氧代谢可以帮助减少脂肪储存,促进体脂的减少。
总之,有氧代谢功能系统具有持久性供能、高效性供能、高容量供能和主要依赖脂肪代谢等特点。
通过有氧运动,我们可以提高有氧代谢功能系统的供能能力,增强身体的耐力和健康水平。
人体的供能系统及原理1.概述在人体内部,存在着多个供能系统,以确保人体正常运转。
这些供能系统通过不同的机制和原理来为我们提供所需的能量,支持我们的日常生活和活动。
本文将详细介绍人体的供能系统及其工作原理。
2. AT PPC系统A T P-PC系统是人体最主要的短期供能系统。
AT P(三磷酸腺苷)是细胞内的能量货币,而P C(磷酸肌酸)是在肌肉中储存的高能磷酸化合物。
在高强度运动开始时,肌肉中的A TP会迅速耗尽,此时P C会迅速分解成磷酸和肌酸,以合成更多的A TP来供给肌肉使用。
这个过程是无需氧气参与的,因此被称为无氧供能系统。
3.糖酵解系统糖酵解系统是一种通过分解葡萄糖来产生能量的供能系统。
当我们进行中等强度的持久运动时,身体会消耗较多的氧气,这时糖酵解系统开始发挥作用。
葡萄糖会在细胞内经过一系列的反应,最终分解成乳酸和少量A T P。
尽管这个过程比较耗费葡萄糖,但它能快速产生能量,并能在缺氧的情况下进行。
4.有氧氧化系统有氧氧化系统是一种长期持续供能系统,主要通过有氧代谢产生能量。
它需要氧气和葡萄糖或脂肪作为能源。
当我们进行低强度的长时间运动时,如慢跑或骑自行车,有氧氧化系统开始发挥作用。
葡萄糖和脂肪在有氧条件下在细胞内经过一系列反应,最终产生大量的A TP和二氧化碳。
这个过程对氧气的需求较高,但能够持续地为身体提供能量。
5.脂肪氧化系统脂肪氧化系统主要通过分解脂肪来产生能量,它与有氧氧化系统密切相关。
当人体进行低强度、长时间的运动时,脂肪氧化系统开始发挥作用。
脂肪经过一系列的反应被分解成脂肪酸和甘油,然后进一步氧化生成AT P。
相比于糖酵解系统,脂肪氧化系统产生的能量更加持久,但释放能量的速度较慢。
6.蛋白质代谢蛋白质代谢在供能系统中起到了次要的作用。
当身体在运动过程中葡萄糖和脂肪储备不足时,蛋白质可以被分解为氨基酸,并在肝脏中转化为能量。
然而,我们的身体通常会优先选择糖和脂肪作为主要的能量来源,因此蛋白质代谢主要在长时间运动或饥饿状态下发挥作用。
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)(2)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(3)(4)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(5)(6)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成A TP。
无氧酵解约能维持2~3分钟时间。
(7)(8)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
薇运动项目莃总需氧量(升)羃实际摄入氧量(升)莀血液乳酸增加量莆马拉松跑蒃600 莄589 肁略有增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600589略有增加400米跑162显著增加100米跑80未见增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
人体内得三大供能系统在人体内有三大供能系统,它们就是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统与有氧呼吸供能系统。
(1)ATP在肌肉中得含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后得能量供应就要依靠ATP得再生.这时,细胞内得高能化合物磷酸肌酸得高能磷酸键水解将能量转移至ADP,生成ATP.磷酸肌酸在体内得含量也很少,只能维持几秒得能量供应。
人在剧烈运动时,首先就是ATP—磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右得时间。
(3)这两项之后得供能,主要依靠葡萄糖与糖元得无氧酵解所释放得能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生得乳酸易导致肌肉疲劳,所以长时间得耐力运动需要靠有氧呼吸释放得能量来合成ATP.综上所述,短时间大强度得运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度得运动,主要靠有氧呼吸提供能量;介于二者之间得较短时间得中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升) 实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑80 未见增加人在剧烈运动呼吸底物主要就是糖。
但在长时间剧烈运动时,如马拉松式得长跑运动,人体内贮存得糖就是不够用得,在消耗完贮存得糖类物质后,就动用体内贮存脂肪与脂肪酸。
一、运动时供能系统得动用特点(一)人体骨骼肌细胞得能量储备(二)供能系统得输出功率运动时代谢供能得输出功率取决于能源物质合成ATP得最大速率。
(三)供能系统得相互关系1。
运动中基本不存在一种能量物质单独供能得情况,肌肉可以利用所有能量物质,只就是时间、顺序与相对比率随运动状况而异,不就是同步利用。
2.最大功率输出得顺序,由大到小依次为:磷酸原系统>糖酵解系统〉糖有氧氧化>脂肪酸有氧氧化,且分别以近50%得速率依次递减。
3.当以最大输出功率运动时,各系统能维持得运动时间就是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
〔1〕ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
2〕之后的能量供给就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供给。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
3〕这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
4〕由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,那么主要由无氧呼吸提供能量。
运动工程总需氧量〔升〕实际摄入氧量〔升〕血液乳酸增加量马拉松跑600589略有增加400米跑162显著增加100米跑80未见增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储藏(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成(三)供能系统的相互关系ATP的最大速率。
1.运动中根本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相比照率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
有氧代谢功能系统的概念有氧代谢功能系统是指我们身体利用氧气产生能量的过程和与之相关的机体功能系统。
这个过程包括氧气在肺部的吸入、通过血液进入到细胞内,最终参与细胞呼吸产生能量。
有氧代谢功能系统是由多个器官和组织组成的复杂系统,包括呼吸系统、心血管系统、血液系统和肌肉系统等。
首先,呼吸系统是有氧代谢的起点。
当我们呼吸时,空气通过鼻子或嘴巴进入到肺部,然后通过肺泡与周围的血管相接触。
在这个过程中,氧气从肺泡经由气体交换进入到血液中,而二氧化碳则从血液中进入到肺泡最终被呼出体外。
其次,心血管系统对有氧代谢的进行起到了至关重要的作用。
心脏是心血管系统的核心器官,负责将含氧的血液输送到全身各个组织和器官。
在有氧代谢中,心脏通过收缩和舒张的运动将含氧血液推送到动脉中,并通过静脉将含有二氧化碳的血液送回到肺部。
心血管系统的健康状况直接影响了有氧代谢的效率和能量的供应。
血液系统也是有氧代谢功能系统中的重要组成部分。
血液中的红细胞携带着氧气,并将其输送到身体各个组织和器官中。
红细胞中的血红蛋白与氧气结合形成氧合血红蛋白,然后在周围的组织中释放出氧气。
同时,血液中的白细胞也起到了免疫和炎症调节的作用,保护身体免受有害物质的侵害,维护有氧代谢的正常进行。
最后,肌肉系统在有氧代谢中发挥了重要的作用。
肌肉是能量合成和消耗的主要地方。
有氧运动通过刺激肌肉的收缩,促进血液和氧气的流动,从而增加能量的产生和燃烧。
有氧运动能够提高肌肉线粒体的数量和功能,进一步增加有氧代谢的效率。
肌肉组织中的线粒体是细胞内的能量工厂,通过呼吸链产生了大部分的细胞能量供应。
总结一下,有氧代谢功能系统是一个复杂的机体系统,包括呼吸系统、心血管系统、血液系统和肌肉系统等。
这些系统密切合作,共同完成了有氧代谢和能量转化的过程。
有氧代谢的正常运作对于维持身体的正常功能,增强体力和耐力都至关重要。
因此,通过适度的有氧运动和良好的生活习惯,我们可以提高有氧代谢系统的效率,从而促进身体健康和提高生活质量。