复变函数 留数和留数定理讲解
- 格式:ppt
- 大小:854.50 KB
- 文档页数:26
第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):∫f(z)dz=2πi∑Res(f(z),a k)nk=1C2.(定理6.2):设a为f(z)的m阶极点,f(z)=φ(z) (z−a)n,其中φ(z)在点a解析,φ(a)≠0,则Res(f(z),a)=φ(n−1)(a) (n−1)!3.(推论6.3):设a为f(z)的一阶极点,φ(z)=(z−a)f(z),则Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点φ(z)=(z−a)2f(z)则Res(f(z),a)=φ′(a)5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:Res(f(z),∞)=12πi∫f(z)dzΓ−=−c−1即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1z这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。
8.计算留数的另一公式:Res (f (z ),∞)=−Res (f (1t )1t 2,0)§2.用留数定理计算实积分一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ注:注意偶函数二.∫P(x)Q(x)dx +∞−∞型积分1.(引理6.1 大弧引理):S R 上lim R→+∞zf (z )=λ则lim R→+∞∫f(z)dz S R=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)为互质多项式,且符合条件:(1)n-m ≥2;(2)Q(z)没有实零点于是有∫f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0+∞−∞注:lim R→R+∞∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且lim R→+∞g (z )=0在ΓR 上一致成立。
留数定理与复变函数的积分留数定理与复变函数的积分留数定理与复变函数的积分是高等数学中关于函数积分的一种重要内容,它在应用数学、物理学和工程学等领域有着很大的用途。
下文介绍一下留数定理与复变函数的积分:一、留数定理1. 概念留数定理(ResidueTheorem)是18世纪荷兰数学家弗兰克·泰勒提出的理论,是用以解决复变函数的积分的一种方法,它可以将某一复变函数的积分问题转化为该函数的根的积分来解决,而这些根可以通过特殊的方法求出。
2.应用由于留数定理,可以把复变函数的积分问题,包括复杂的褶积列、无穷级数等,转换成一系列的极限,利用极限的简单特性,可以将复杂的积分准确合理地解决掉。
这样可以大大缩短计算时间,提高准确度,因此,在工程中有很多应用。
二、复变函数的积分1. 概念复变函数(Complex Function)积分,是指把复变函数分解为可导函数的积分,而复变函数同时又包括实函数积分和虚函数积分,是一种特殊的积分。
2. 公式复变函数积分公式为:$$\int_{\gamma}f(z)dz=\int_a^b(u(z)dx+v(z)dy)$$其中,$\gamma$表示所讨论的积分的边界,$u(z)$与$v(z)$分别是复变函数$f(z)$在$z$处取得实函数与虚函数值。
3. 应用复变函数积分的应用泛泛,在日常生活中有很多使用,比如物理学中单晶极化、多晶变形、电学等、数学与统计学中多元函数的积分及拉格朗日插值等等,复变函数积分在很多领域的应用都显得十分重要。
三、结论留数定理与复变函数的积分是一个关于高等数学中函数积分的重要内容,它在工程学、物理学等领域得以深入的应用,简化了一些复杂的积分问题带来的计算时间,提高了精度,从而起到事半功倍的效果。
复变函数中的留数定理及其推导复变函数中的留数定理是一种非常重要的数学工具,它可以帮助我们求解一些非常复杂的积分问题。
在本文中,我们将深入探讨留数定理的本质及其具体推导方法。
一、留数定理的基本概念留数定理是由法国数学家留数(Cauchy)于19世纪初发现的。
它是一种重要的数学工具用于计算复平面上的奇异积分。
在这里,我们先来了解一下什么是“奇异点”。
奇异点是指函数在该点没有定义或不连续的点,如可以取无穷大的点、极点和孤立奇点等。
我们以一个简单的例子来说明:$I=\int_{C}\frac{1}{z-1}dz$其中,C为包围点z=1的任意一条简单闭合曲线。
当C逆时针绕点z=1一周时,积分的值趋近于无穷大,而当C顺时针绕点z=1一周时,积分的值趋近于负无穷大。
由此可见,积分$I$的值与曲线C的方向有关,这意味着函数$\frac{1}{z-1}$在点z=1处存在奇异性。
点z=1称为函数$\frac{1}{z-1}$的极点。
对于复系数函数$f(z)$,其在点z0处的留数(Residue)可表示为:$Res[f(z),z0]=\frac{1}{2\pi i}\int_{C}\frac{f(z)}{z-z0}dz$其中,C为包围点z0的任意一条简单闭合曲线,而留数的定义正是以上积分的结果。
二、留数定理的述现在我们来到了本文的重点:留数定理。
若$\Omega$是以平面上一条简单闭曲线为界的区域,则对于任意在$\Omega$上除点z1,z2,... ,zk外解析的函数$f(z)$,有:$\int_{C}f(z)dz=2\pi i\sum_{k=1}^{n}Res[f(z),zk]$其中,C是一条位于$\Omega$内的任意简单闭曲线,zk是$\Omega$内的孤立奇点(即除极点、可去奇点外的奇异点)。
这就是留数定理的本质。
简单来说,留数定理告诉我们:如果一个复变函数在某些点处存在奇异性,则通过沿着包围这些点的任意简单闭曲线进行积分,积分结果正比于这些奇点处的留数之和。