通用版2012高考数学复习专题突破名师精品课件-概率与统计汇总
- 格式:ppt
- 大小:1.59 MB
- 文档页数:74
Unit7 Topic3 Section D 一、话题导学:(学习目标) 1. Learn some new words and some phrases: regularly, diet, conclusion, in short, not only…but (also)…, 2. Review comparative and superlative degrees of adverbs: (1) Maria cooked very successfully. (2) Jane cooked more successfully. (3) I cooked most successfully. 二、预习导纲: 1、单词互译与记忆 1) regularly 2) diet 2、短语互译与记忆 1) in short 2) not only…but (also)… 3) 对某人重要 4) 不多也不少 5) 不同种类的食物 6) 使我们更健康 7) 据说 8) 对…有害处 3、句子理解与熟读 1) Let’s wish them success! 2) Enjoy yourselves! 3) Thanks for your order. 4) May I have the bill, please? 5) Here’s your change. 6) Just a little, please. 7) Healthy eating is important for us. 8) We need to have enough food, never too much or too little. 9) It’s important for us to have different kinds of foods. 10) It’s bad for their health. 11) In short, we should not only eat enough good, healthy food but also eat it regularly. 三、课堂导练: 完成句子 1、水果和蔬菜使我们更健康。
2012 届高考数学第一轮基础知识点复习教学设计 : 概率与统计第十二编概率与统计§12.1 随机事件的概率1.以下说法不正确的有 .①某事件发生的频次为P(A) =1.1②不行能事件的概率为0,必定事件的概率为 1③小概率事件就是不行能发生的事件,大体率事件就是必定发生的事件④某事件发生的概率是跟着试验次数的变化而变化的答案①③④2. 给出以下三个命题,此中正确命题有个.①有一大量产品,已知次品率为10%,从中任取 100 件,必有 10 件是次品;②做7 次抛硬币的试验,结果 3 次出现正面,所以正面出现的概率是;③随机事件发生的频次就是这个随机事件发生的概率.答案03.已知某台纺纱机在 1 小时内发生0 次、1 次、2 次断头的概率分别是0.8 ,0.12 , 0.05 ,则这台纺纱机在 1 小时内断头不超出两次的概率和断头超出两次的概率分别为,.答案4.甲、乙两人下棋,两人和棋的概率是, 乙获胜的概率是,则乙不输的概率是.答案5.投掷一粒骰子,察看掷出的点数,设事件A 为出现奇数点,事件B 为出现2 点,已知P(A)=,P(B)=,则出现奇数点或 2 点的概率之和为 .答事例 1 盒中仅有 4 只白球 5 只黑球,从中随意拿出一只球 .( 1)“拿出的球是黄球”是什么事件?它的概率是多少?( 2)“拿出的球是白球”是什么事件?它的概率是多少?(3)“拿出的球是白球或黑球”是什么事件?它的概率是多少?解( 1)“拿出的球是黄球”在题设条件下根本不行能发生,所以它是不行能事件,其概率为0.(2)“拿出的球是白球”是随机事件,它的概率是.(3)“拿出的球是白球或黑球”在题设条件下必定要发生,所以它是必定事件,它的概率是1.例 2 某射击运动员在同一条件下进行练习,结果以下表所示:射击次数击中 10 环次数击中 10 环频次( 1)计算表中击中10 环的各个频次;( 2)这位射击运动员射击一次,击中10 环的概率为多少?0.89 解( 1)击中 10 环的频次挨次为0.8 ,0.95 ,0.88 ,0.93, 0.906.( 2)这位射击运动员射击一次,击中10 环的概率约是,0.9.例 3( 14 分)国家射击队的某队员射击一次,命中10 环的概率以下表所示:7~命中环数 10环 9环 8环 7环概率求该射击队员射击一次(1)射中 9 环或 10 环的概率;(2)起码命中 8 环的概率;(3)命中不足 8 环的概率 .解记事件“射击一次,命中环”为 A(∈ N,≤ 10),则事件 A 相互互斥 .2 分( 1)记“射击一次,射中9 环或 10 环”为事件A,那么当 A9,A10 之一发生时,事件 A 发生,由互斥事件的加法公式得P(A) =P( A9) +P( A10) =0.32+0.28=0.60.5 分(2)设“射击一次,起码命中 8 环”的事件为 B,那么当 A8, A9, A10 之一发生时,事件 B 发生 . 由互斥事件概率的加法公式得P (B) =P( A8) +P( A9) +P( A10)分( 3)因为事件“射击一次,命中不足8 环”是事件B:“射击一次,起码命中 8 环”的对峙事件:即表示事件“射击一次,命中不足 8 环”,依据对峙事件的概率公式得P () =1-P (B)分1.在 12 件瓷器中,有 10 件一级品, 2 件二级品,从中任取 3件.(1)“ 3 件都是二级品”是什么事件?(2)“ 3 件都是一级品”是什么事件?(3)“起码有一件是一级品”是什么事件?解( 1)因为 12 件瓷器中,只有 2 件二级品,拿出 3 件都是二级品是不行能发生的,故是不行能事件.(2)“ 3 件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件 .★精选文档★( 3)“起码有一件是一级品”是必定事件,因为12 件瓷器中只有 2 件二级品,取三件必有一级品 .2.某公司生产的乒乓球被 08 年北京奥委会指定为乒乓球竞赛专用球 . 日前相关部门对某批产品进行了抽样检测,检查结果以下表所示:抽取球数优等品数优等品频次(1)计算表中乒乓球优等品的频次;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保存到小数点后三位)解( 1)依照公式 p=,能够计算出表中乒乓球优等品的频次挨次是0.900 , 0.920 , 0.970 , 0.940 , 0.954 ,0.951.( 2)由( 1)知,抽取的球数n 不一样,计算获得的频次值固然不一样,但跟着抽取球数的增加,却都在常数0.950 的邻近摇动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950.3. 玻璃球盒中装有各色球12 只,此中 5 红、4 黑、2 白、1 绿,从中取 1 球,求:( 1)红或黑的概率;( 2)红或黑或白的概率.★精选文档★解方法一记事件 A1:从12 只球中任取 1 球得红球;A2 :从 12 只球中任取 1 球得黑球;A3 :从 12 只球中任取 1 球得白球;A4 :从 12 只球中任取 1 球得绿球,则P (A1) =, P( A2) =,P( A3) =, P( A4)=.依据题意, A1、 A2、 A3、 A4 相互互斥,由互斥事件概率加法公式得( 1)拿出红球或黑球的概率为P (A1+A2) =P( A1) +P( A2) =+=.( 2)拿出红或黑或白球的概率为P (A1+A2+A3)=P( A1) +P( A2)+P( A3)=++=.方法二( 1)拿出红球或黑球的对峙事件为拿出白球或绿球,即A1+A2的对峙事件为A3+A4,∴拿出红球或黑球的概率为P (A1+A2) =1-P( A3+A4) =1-P (A3) -P (A4)=1--==.(2) A1+A2+A3的对峙事件为 A4.P (A1+A2+A3)=1-P (A4) =1-=.一、填空题1. 在一个袋子中装有分别标明数字1, 2,3,4,5 的五个小球,这些小球除标明的数字外完整同样. 现从中随机取出 2 个小球,则拿出的小球标明的数字之和为 3 或 6 的概率是 .答案2.某参军新兵的打靶练习中,连续射击 2 次,则事件“至罕有 1 次中靶”的互斥事件是(写出一个即可).答案 2 次都不中靶3.甲:A1 、 A2 是互斥事件;乙: A1、A2 是对峙事件,那么甲是乙的条件 .答案必需不充足4.将一颗质地平均的骰子(它是一种各面上分别标有点数 1,2, 3, 4, 5, 6 的正方体玩具)先后投掷 3 次,起码出现一次 6 点向上的概率是.答案5.一个口袋内装有一些大小和形状都同样的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3 ,摸出白球的概率是0.5 ,则摸出黑球的概率是.答案0.26.在第 3、 6、 16 路公共汽车的一个停靠站(假设这个车站只好停靠一辆公共汽车),有一位乘客需在 5 分钟以内乘上公共汽车赶到厂里,他可乘 3 路或 6 路公共汽车到厂里,已知 3 路车、6 路车在 5 分钟以内到此车站的概率分别为0.20和 0.60 ,则该乘客在 5 分钟内能乘上所需要的车的概率为.答案 0.807.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打竞赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为.答案8. 甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是 90%,则甲、乙二人下成和棋的概率为.答案 50%二、解答题9. 某射手在一次射击训练中,射中10 环、 9 环、 8 环、7 环的概率分别为0.21 、0.23 、0.25 、0.28 ,计算这个射手在一次射击中:(1)射中 10 环或 9 环的概率;(2)不够 7 环的概率 .解( 1)设“射中10 环”为事件A,“射中 9 环”为事件B,因为 A, B 互斥,则P(A+B) =P(A) +P(B) =0.21+0.23=0.44.(2)设“少于 7 环”为事件 c,则P (c) =1-P ()=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率以下:医生人数 012345 人及以上概率求:( 1)派出医生至多 2 人的概率;( 2)派出医生起码 2 人的概率 .解记事件 A:“不派出医生” ,事件 B:“派出 1 名医生”,事件 c:“派出 2 名医生”,事件 D:“派出 3 名医生”,事件 E:“派出 4 名医生”,事件 F:“派出许多于 5 名医生” . ∵事件 A, B, c ,D, E, F 相互互斥,且 P( A)=0.1 , P( B) =0.16 , P( c) =0.3 ,P(D) =0.2 ,P( E) =0.2 , P( F) =0.04.(1)“派出医生至多 2 人”的概率为P (A+B+c) =P( A) +P( B) +P(c)=0.1+0.16+0.3=0.56.( 2)“派出医生起码 2 人”的概率为P (c+D+E+F)=P( c)+P( D) +P( E) +P( F)=0.3+0.2+0.2+0.04=0.74.或 1-P (A+B) =1-0.1-0.16=0.74.11.投掷一个平均的正方体玩具(各面分别标有数字1、2、 3、 4、 5、 6),事件 A 表示“向上一面的数是奇数”,事件 B 表示“向上一面的数不超出 3”,求 P( A+B) .解方法一因为 A+B的意义是事件 A 发生或事件 B 发生,所以一次试验中只需出现 1、2、3、5 四个可能结果之一时,A+B就发生,而一次试验的全部可能结果为 6 个,所以(P A+B)==.方法二记事件 c 为“向上一面的数为2”,则 A+B=A+c,且 A 与 c 互斥 .又因为 P( c) =,P( A) =,所以 P(A+B) =P(A+c) =P( A) +P(c)=+=.方法三记事件 D 为“向上一面的数为 4 或 6”,则事件 D 发生时,事件A 和事件B 都不发生,即事件A+B不发生 . 又事件A+B发生即事件 A 发生或事件 B 发生时,事件 D不发生,所以事件 A+B与事件 D 为对峙事件 .因为 P(D) ==,所以 P(A+B) =1-P( D) =1-=.12.袋中有 12 个小球,分别为红球、黑球、黄球、绿球,从中任取一球,获得红球的概率为,获得黑球或黄球的概率是,获得黄球或绿球的概率是,试求获得黑球、黄球、绿球的概率各是多少?★精选文档★解分别记获得红球、黑球、黄球、绿球为事件A、B、c、D. 因为 A、 B、c、 D 为互斥事件,依据已知获得解得 .∴获得黑球、黄球、绿球的概率各是,, .2016 崭新精选资料 - 崭新公函范文 -全程指导写作–独家原创11/11。