重力作用下的液体平衡
- 格式:ppt
- 大小:696.00 KB
- 文档页数:36
第一章 水静力学水静力学的任务是研究液体的平衡规律及其工程应用。
液体的平衡状态有两种:一种是静止状态,即液体相对与地球没有运动,处于静止状态。
另一种是相对平衡,即所研究的整个液体相对于地球在运动,但液体相对于容器或液体质点之间没有相对运动,即处于相对平衡状态。
例如,等速直线行驶或等加速直线行驶小车中所盛的液体,等角速度旋转容器中所盛的液体。
本章的核心问题是根据平衡条件来求解静水压强的分布规律,并根据静水压强的分布规律来确定各种情况下的静水总压力。
即先从点、再到面,最后对整个物体确定静水总压力的大小、方向、作用点。
水静力学是解决水利工程中水力荷载问题的基础,同时也是今后学习水动力学的必要知识。
从后面章节的学习中可以知道,即使水流处于运动状态,在有些情况下,动水压强的分布规律也可认为与静水压强的分布规律相同。
第一节 静止压强及其特性一.静水压强的概念.在静水中有一受压面,其面积为ΔA ,作用其上的压力为ΔP ,则该微小面积上的平均静水压强为A P p ∆∆=,当ΔA →0时,平均压强的极限就是点压强,),,(0lim z y x A P A p p ==∆∆→∆,这也说明了静水压强是关于空间位置坐标的函数。
静水压强的单位有三种表示方法:(1)用应力的单位表示,即N/m 2或kN/m 2;(2)用大气压强的倍数表示;(3)用液柱高度表示。
静水压力并非集中作用于某一点,而是连续地分布在整个受压面上,它是静水压强这一分布荷载的合力。
静水压强反映的是荷载集度。
今后的学习中将重点掌握如何根据静水压强的分布规律推求静水总压力。
由于水利工程中有时习惯将压强称为压力,故水力学中就将静水压力称为静水总压力,以示区别。
游泳胸闷,木桶箍都说明静水压力的存在。
二.静水压强的特性1>方向 垂直指向受压面,用反证法说明。
2>大小 静水中任何一点各个方向的静水压强大小都相等。
n z y x p p p p === 而),,(z y x p p =三.绝对压强 相对压强1> 绝对压强以设想的没有大气压存在的绝对真空状态为零点计量得到的压强称为绝对压强,以p ab 或p '来表示。
《水力学》考试题+参考答案一、单选题(共50题,每题1分,共50分)1、明渠水流由急流向缓流过渡,产生()|临界坡除外()。
A、水跃B、水击波C、跌水D、水跌正确答案:A2、水泵的安装高度要受到()的限制。
A、扬程B、流量C、地形条件D、允许吸上真空高度正确答案:D3、紊流过渡粗糙区的沿程阻力系数λ与()有关,与相对光滑度有关。
A、雷诺数B、相对光滑度C、相对粗糙度D、谢才系数正确答案:A4、绝大多数明渠水流()都为()渗流除外|A、层流B、缓流C、急流D、紊流正确答案:D5、均匀流条件下,任一微小流束的水力坡度()总流的水力坡度。
A、等于B、大于C、小于D、不确定正确答案:A6、临界流时,矩形断面的断面比能等于临界水深的()倍。
A、1B、1.5C、0.5D、2正确答案:B7、明渠的过水断面水深大于临界水深,据此可判定水流为()。
A、临界流B、急流C、缓流D、紊流正确答案:C8、水跃函数曲线的上支为(),水流为缓流。
A、增函数B、抛物线C、双曲线D、减函数正确答案:A9、闸底坎为平顶堰,闸门相对开度()0.65, 水流为堰流。
A、大于B、大于等于C、小于等于D、小于正确答案:A10、能量方程应用过程中,基准面可以任意选,但一定要是().。
A、平面B、水平面C、垂直于管轴线的平面D、平行于管轴线的平面正确答案:B11、紊流中,某一瞬时液体质点的流速可称之为()。
A、瞬时流速B、时均流速C、脉动流速D、紊动强度正确答案:A12、紊流光滑区的沿程阻力系数λ仅与()有关,与相对光滑度无关。
A、谢才系数B、雷诺数C、相对光滑度D、相对粗糙度正确答案:B13、水流按流线是否为平行的直线或按流速是否沿程变化分为()和非均匀流。
A、一元流B、二元流C、均匀流D、非均匀流正确答案:C14、在初生弹性波继续发生时,由上游反射回来的减压波已经到达阀门断面,并可能在阀门断面发生正反射,从而部分抵消了水击增压值,使阀门断面的水击压强值有所减小。
§2-8液体的相对平衡流体整体对地球有相对运动,但流体质点本身各自之间没有相对运动,这种状态为液体的相对平衡状态.流体平衡微分方程适用于绝对静止,流体所受外力为零,而相对平衡流体所受外力F=maF-ma=0,将-ma作为惯性力F′=0就可以采用平衡微分方程一、容器等加速直线运动液体的相对平衡 设有一盛装液体的容器,以等加速度a向右作直线运动。
坐标系0xyz固定在容器上,原点0取在自由面中心,容器中液体相对非惯性坐标oxyz处于相对平衡。
作用在单位质量液体上的质量力为:X=-a Y=O Z=-g()()dp Xdx Ydy Zdz adx gdz ρρ=++=--Cgz ax p +--=)(ρ平衡微分方程积分结果分析:1)自由液面p=p o (或p=p a )Z s ——自由面上点的Z坐标 上述方程是容器等加速直线运动液体自由面方程。
从方程可以看出自由面是一通过坐标原点的倾斜平面。
ga tg =βx g a Z s -= 它与水平方向夹角β:C z x ga =+2)等压面p=constax+gz=c 或 等压面是一族平行的与水平面夹角为β的倾斜平面。
根据等压面性质,等压面与质量正交,可得出同样的结果。
3)压强分布该式说明等加速直线运动容器,液体静压强分布规律与重力作用下静止液体静压强分布规律相同即某点的静压强等于液面压强加上液体容重与该点在液面下深度的乘积。
z x ga z Z h s --=-=A 点在液面下深度h p z x g a p p γγ+=--+=00)(A 点压强二、容器等角速旋转液体的平衡 盛有液体的容器绕垂直轴z以等角速度旋转,原点o在液体自由表面的中心处。
液体对非惯性系oxyz处于相对平衡, 作用在液体质点上的质量力除重力外,还要虚加一个大小等于液体质点的质量乘以向心加速度。
结果分析:等压面是一族绕z轴旋转的抛物面。
4)分界面→等压面本章思考题练习题1、设质量力场,f x =zy,f y =μxz,f z =νxy,试问流体在该力场作用能否平衡?2、已知p 为常数,总体积为V ,单位质量流体所受引力为。
流体力学基础一、 液体静力学液体静力学主要是讨论液体静止时的平衡规律以及这些规律的应用。
所谓“液体静止”指的是液体内部质点间没有相对运动,不呈现粘性而言,至于盛装液体的容器,不论它是静止的还是匀速、匀加速运动都没有关系。
1、液体静压力及其特性当液体静止时,液体质点间没有相对运动,不存在摩擦力,所以静止液体的表面力只有法向力。
液体内某点处单位面积△A 上所受到的法向力△F 之比,称为压力p (静压力),即由于液体质点间的凝聚力很小,不能受拉,只能受压,所以液体的静压力具有两个重要特性:液体静压力的方向总是作用在内法线方向上;静止液体内任一点的液体静压力在各个方向上都相等。
2、液体静压力基本方程1)基本方程式有一垂直小液柱,如图所示。
平衡状态下,有p △A =p 0这里的FG 即为F G =ρ所以有式中 g上式即为液体静压力的基本方程。
·重力作用下的静止液体由液体静压力基本方程可知:A、静止液体内任一点处的压力由两部分组成,一部分是液面上的压力p0,另一部分是ρg与该点离液面深度h的乘积。
当液面上只受大气压力p a作用时,点A处的静压力则为p=p a+ρgh。
B、同一容器中同一液体内的静压力随液体深度h的增加而线性地增加。
C、连通器内同一液体中深度h相同的各点压力都相等。
由压力相等的组成的面称为等压面。
在重力作用下静止液体中的等压面是一个水平面。
2)静压力基本方程的物理意义静止液体中单位质量液体的压力能和位能可以互相转换,但各点的总能量却保持不变,即能量守衡。
3)帕斯卡原理根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压力p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压力均将发生同样大小的变化。
这就是说,在密闭容器内,施加于静止液体上的压力将以等值同时传到各点。
这就是静压传递原理或称帕斯卡原理。
即:压力的传递关系3、压力的表示方法及单位1)压力的表示法有两种:绝对压力和相对压力。
低处的水往高处流实验原理水是一种普遍存在的物质,我们日常生活中经常会遇到水流的现象。
水总是从高处流向低处,这是我们日常经验的一部分。
但是,如果我们进行一个实验,将水从低处流向高处,会发生什么呢?这个实验涉及到一些科学原理,本文将详细介绍以低处的水往高处流的实验原理。
我们需要了解液体的性质。
液体在受到重力作用时,会向低处流动。
这是因为液体分子之间存在着一定的相互吸引力,称为分子间力。
这种分子间力使得液体分子倾向于聚集在一起,形成一个相对稳定的状态。
当液体受到重力作用,比如说将液体置于一个容器中,液体分子将会受到重力的作用,向下流动,直到达到一个平衡状态。
然而,低处的水往高处流的实验破坏了这个平衡状态,挑战了我们日常经验的认识。
在这个实验中,我们需要借助一些工具,比如说一根细管或者一根毛细管。
我们将这根细管或者毛细管的一端插入低处的水中,然后将另一端抬高。
实验的关键在于毛细现象的存在。
毛细现象是指当液体进入细小管道时,由于管道表面的吸附作用,液体会上升到比液体自由表面更高的位置。
这是因为管道表面的吸附力可以克服液体受到的重力,使液体分子能够上升到更高的位置。
在实验中,当我们将细管或者毛细管的一端插入低处的水中时,水会被细管或者毛细管的表面吸附,液体分子会上升到比自由液面更高的位置。
这样,我们就实现了低处的水往高处流动的效果。
当然,这种现象只会在一定条件下发生,比如说细管或者毛细管的直径要足够小,液体的粘度要适中,管道表面的吸附力要足够大等。
这个实验原理可以解释一些我们日常生活中的现象。
比如说,当我们用吸管吸水时,我们需要用嘴吸气,造成一定的负压,这样水才会被吸起。
这是因为吸管的直径较小,液体受到吸管表面的吸附力,可以克服重力,上升到更高的位置。
除了实际应用,低处的水往高处流的实验原理还与一些重要的科学原理相关。
比如说,这个实验涉及到液体的表面张力和毛细现象。
表面张力是指液体分子之间由于相互吸引而产生的一种力,这种力使液体表面呈现出一定的膜状结构。
学习单元二、静压强分布规律 一、 流体静力学平衡微分方程 在静止流体中任取一边长为 d x ,d y 和d z 的微元平行六面体的流体微团,如下图所示。
现在来分析作用在这流体微团上外力的平衡条件。
由上节所述流体静压强的特性知,作用在微元平行六面体的表面力只有静压强。
设微元平行六面体中心点处的静压强为p ,则作用在六个平面中心点上的静压强可按泰勒(G.I.Taylor )级数展开,例如:在垂直于X 轴的左、右两个平面中心点上的静压强分别为:⋅⋅⋅+⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂-3332222d 612d 212d x x p x x p x x p p ⋅⋅⋅+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+3332222d 612d 212d x x p x x p x x p p 略去二阶以上无穷小量后,分别等于x x p p d 21∂∂-和x x p p d 21∂∂+由于平行六面体是微元的,所以可以把各微元面上中心点的压强视为平均压强。
因此,垂直于x 轴的左、右两微元面上的总压力分别为:z y x x p p d d d 21⎪⎭⎫ ⎝⎛∂∂-与z y x x p p d d d 21⎪⎭⎫ ⎝⎛∂∂+同理,可得到垂直于y 轴的下、上两个微元面上的总压力分别为z x y p p d d dy 21⎪⎪⎭⎫ ⎝⎛∂∂-以及z x y y p p d d d 21⎪⎪⎭⎫ ⎝⎛∂∂+垂直于z 轴的后、前两个微元面上的总压力分别为y x z p p d d dz 21⎪⎭⎫ ⎝⎛∂∂-,y x z z p p d d d 21⎪⎭⎫ ⎝⎛∂∂+流体微团上的外力除静压强外,还有质量力。
若流体微团的平均密度为ρ,则质量力沿三个坐标轴的分量分别是:z y x f x d d d ρz y x f y d d d ρz y x f z d d d ρ静止状态下的微元平行六面体的流体微团的平衡条件是:作用在其上的外力在三个坐标轴上的分力之和都等与零。