相似三角形之常用辅助线
- 格式:docx
- 大小:153.41 KB
- 文档页数:6
相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线 段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。
主要的辅助线有以下 几种: 一、添加平行线构造“ A “ X 型例1:如图,D 是厶ABC 的 BC 边上的点,BD DC=2 1,E 是AD 的中 BE EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P,贝U ••• PE=EF BP=2PF=4E 所以 BE=5EF : BE: EF=5 1.解法二:过点 D 作BF 的平行线交AC 于点Q, ••• BE EF=5: 1. E 作BC 的平行线交AC 于点S , E 作AC 的平行线交BC 于点T ,BCC 边上的点',,BD DC=2 1, E 是 AD 的中点,求AF: CF 的值.D 作CA 的平行线交 D 作BF 的平行线交E 作BC 的平行线交 E 作AC 的平行线交 ABC 的 AB 边和AC 边上各取一点D 和 使 AD= AE, DE 延长线与BC 延长线相交于F ,求证: (证明:过点C 作CG//FD 交AB 于G ) 例 3:女口图,△ ABC 中, ABvAC 在 AB AC 上分别截取 BD=CE DE, BC 长线相交于点F ,证明:AB- DF=AC EF. 分析:证明等积式问题常常化为比例式,再通过相似三角形对 比例来证明。
不相似,因而要通过两组三角形相似,运用中间 得到,为构造相似三角形,需添加平行线。
• 方法一:过E 作EM//AB,交BC 于点M 则厶EM OAABC (两角等,两三角形相似)•方法二:过D 作DN//EC 交BC 于 N.解法三:过点 解法四:过点 BE _BT ; 点,求: 变式:T 如'图,D 是厶ABC 的F, 过点 过点 过点 过点 解法一 解法二 解法三 解法四 例2:如图,在△ 和厶EFB 相似, ••• BE EF=5 1. 连结BE 并延长交AC 于BF 于点 AC 于点 AC 于点BC 于点 P, Q s,T ,应边成比代换 例4:在厶ABC 中, D 为AC 为CB 延长线上的一点, AB 于 F 。
初中数学常见辅助线的做法
初中数学常见辅助线的做法
在初中数学中,辅助线是解题过程中常用的工具。
通过适当地引入辅助线,可以使问题更加清晰明了,从而更容易解决。
本文将介绍几种常见的辅助线做法。
1.平移法
平移法是一种常用的辅助线做法。
它的基本思想是将图形沿某个方向平移,使得问题更加清晰。
例如,在解决一个三角形的问题时,我们可以平移其中的一条边,使得三角形更加规则,从而更容易解决问题。
2.垂线法
垂线法也是一种常用的辅助线做法。
它的基本思想是引入垂线,将原问题转化为更简单的问题。
例如,在解决一个三角
形的问题时,我们可以引入垂线,将三角形分成两个直角三角形,从而更容易解决问题。
3.对称法
对称法是一种常用的辅助线做法。
它的基本思想是通过引入对称轴,将原问题转化为更简单的问题。
例如,在解决一个图形的问题时,我们可以引入对称轴,将图形分成对称的两部分,从而更容易解决问题。
4.相似法
相似法是一种常用的辅助线做法。
它的基本思想是通过找到相似的图形,将原问题转化为更简单的问题。
例如,在解决一个三角形的问题时,我们可以找到一个相似的三角形,从而更容易解决问题。
总之,辅助线是解决初中数学问题的常用工具。
通过灵活运用各种辅助线做法,我们可以更加轻松地解决各种数学问题。
相似三角形之常用辅助线在与相似有关得几何证明、计算得过程中,常常需要通过相似三角形,研究两条线段之间得比例关系,或者转移线段或角。
而有些时候,这样得相似三角形在问题中,并不就是十分明显、因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需得结论。
专题一、添加平行线构造“A"“X”型定理:平行于三角形一边得直线与其它两边(或两边延长线)相交,所构成得三角形与原三角形相似。
定理得基本图形:例1、平行四边形ABCD中,E为AB中点,AF:FD=1:2,求AG:GC变式练习:已知在△ABC中,AD就是∠BAC得平分线.求证:、(本题有多种解法,多想想)例2、如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若==2,求BE:EA得比值、变式练习:如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若错误!= 错误!=2,求BE:E A得比值。
例3、BE=AD,求证:EF·BC=AC·DF变式1、如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC得延长线相交于点F,证明:AB·DF=AC·EF。
例4、已知:如图,在△ABC中,AD为中线,E在AB上,AE=AC,CE交AD于F,EF∶FC=3∶5,EB=8cm,求AB、AC得长、变式:如图,,求。
(试用多种方法解)说明:此题充分展示了添加辅助线,构造相似形得方法与技巧.在解题中方法要灵活,思路要开阔.总结:(1)遇燕尾,作平行,构造字一般行。
(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段得比得前项或后项,在同一直线得线段得端点作为引平行线得EF EF EFEF点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形 一、基本图形例1、,,那么吗?试说明AC BD AC BC CA CD ⊥=⋅22理由?(用多种解法)v变式练习:平行四边形ABC D中,CE ⊥A E,CF ⊥AF,求证:A B·AE+AD ·AF=AC 2例2、如图,RtA BC 中,CD 为斜边AB 上得高,E 为CD 得中点,AE 得延长线交B C于F,FG AB 于G,求证:FG =CFBF【练习】1.如图,一直线与△ABC 得边AB,AC 及BC 得延长线分别交于D,E,F 。
原创不容易,【关注】店铺,不迷路!每年中考的“相似度”都是必修的,一篇文章就可以轻松搞定!相似三角形在初中数学中占有很大比重,难度较大,一直被很多同学所讨厌!偏偏这个大老虎还是中考必修内容~~那么,“相似三角形”有哪些知识点呢?常见的解题技巧有哪些类型?对应角相等、对应边成比例的三角形称为相似三角形。
相似性用符号“”表示,读作“类似于”。
相似三角形对应边的比值称为相似比(或相似系数)。
一条平行于三角形一边的直线与其他两边(或两边的延长线)相交,形成的三角形与原三角形相似。
1、三角形相似的判定方法定义方法:两个对应角相等、对应边成比例的三角形相似平行法:一条平行于三角形一边的直线与其他两边(或两边延长线)相交,形成的三角形与原三角形相似判断定理1:如果一个三角形的两个角等于另一个三角形的两个角,那么这两个三角形相似,可以简单描述为两个角相等,两个三角形相似。
判断定理2:如果一个三角形的两条边和另一个三角形的两条边相等且夹角相同,那么这两个三角形相似,可以简单描述为两条边成比例且夹角相等,两个三角形相似。
判断定理3:如果一个三角形的三条边与另一个三角形的三条边成正比,那么这两个三角形相似,可以简单描述为三条边成正比,两个三角形相似2、直角三角形相似的判定方法以上判断方法均适用定理:如果一个直角三角形的斜边和一个直角边与另一个直角三角形的斜边和一个直角边成正比,那么这两个直角三角形是相似的垂直法:两个直角三角形除以斜边上的高度,与原三角形相似。
1、A型或仿A型相似2、8型或仿8型相似3、K型相似4、子母型相似用DE//AB,DG/AF=GE/BF。
如果AD等于BAC,AB/AC=BD/CD。
Ae=effg如果四边形ABCD是平行四边形。
如果DAC=DBC,ADE~BCE,AEB~DEC可以推导出来,即上下相似可以导致左右相似。
同理,左右相似可以导致上下相似。
1、三角形叉叉图这类题目往往考察线段比例或线段长度的计算。
几何证明题辅助线经典方法
引言
几何证明题是数学中常见的题型,也是学生们认识几何图形、发现几何规律的重要手段。
辅助线是解决几何证明题时常用的方法之一,本文将介绍几种经典的辅助线方法。
方法一:画垂直平分线
对于某些几何图形中的线段,我们可以通过画垂直平分线来辅助证明。
垂直平分线将线段分成两等分,从而在几何证明过程中起到重要的辅助作用。
方法二:画过顶点的高
在证明三角形相等或等腰三角形时,辅助线中的高是常见的方法之一。
通过画一条从顶点到对边的垂线,我们可以将几何图形转化为更容易处理的形式,从而证明所需结论。
方法三:画过顶点的中位线
在证明平行四边形或矩形时,辅助线中的中位线是一种常见的
方法。
通过画一条从顶点到对边中点的线段,我们可以将问题简化,并且利用矩形或平行四边形的性质得到所需结论。
方法四:画三角形的内切圆
在证明三角形的某些性质时,画三角形的内切圆是一种常见的
辅助线方法。
内切圆与三角形的各边均相切,通过利用内切圆的性质,我们可以得到有关三角形的一些重要结论。
方法五:画过顶点的角平分线
在证明两角相等或证明某些三角形相似时,画过顶点的角平分
线是一种常见的辅助线方法。
通过将角细分为两等分,我们可以得
到有关角度的一些重要关系,从而得到所需结论。
结论
辅助线方法在解决几何证明题时起到了重要的作用。
以上介绍
的几种经典辅助线方法仅是其中的一部分,通过熟练掌握这些方法,并结合具体问题,我们可以更好地解决几何证明题,提高数学水平。
高中几何添加辅助线的常用技巧
高中几何学习中,添加辅助线是解决许多问题的有效方法。
以下是几种常用的几何辅助线技巧:
1、平移辅助线:通过将线段或图形平移,将其移动到更方便处理的位置来简化问题。
比如,对于一条直线外一点的角平分线,我们可以通过平移这条直线,使该点与角的顶点重合,然后再画出该点到角两边的垂线,这样就可以得到角平分线。
2、垂线辅助线:通过向一条直线引垂线来解决问题。
比如,对于一条直线上一点到另一条直线的垂线,我们可以通过在该点处引垂线使两条直线相交,然后再利用垂线的性质来解题。
3、相似三角形辅助线:利用相似三角形的性质来解决问题。
比如,对于一条直线外一点到两条平行线的距离,我们可以利用相似三角形的性质,构造出一个相似三角形,然后利用相似三角形的对应边比相等的性质来求出所需的距离。
4、角平分线辅助线:通过构造角平分线来解决问题。
比如,对于一个三角形的内角平分线,我们可以通过构造该角的外角平分线,然后利用外角和内角的性质来求出该角的内角平分线。
5、中垂线辅助线:通过构造线段中点的垂线来解决问题。
比如,对于一个三角形的垂心,我们可以通过构造三角形三边的中垂线,然后利用中垂线的性质来求出垂心的位置。
这些技巧可以帮助学生更好地理解几何概念和解题思路,提高几何水平。
相似三角形解题方法、技巧、步骤、辅助线解析一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件:① ;② ;③ . 三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似 找夹角相等 两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理1或判定定理4 找顶角对应相等 判定定理1a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
三角形画辅助线的技巧总结
1. 哎呀呀,碰到三角形一边的中点,那就要想到中位线呀!这不,在三角形 ABC 中,点 D 是 AB 的中点,那咱就赶紧把 CD 中位线给画上呀,那解决问题可就容易多啦,懂了不?
2. 嘿哟,如果有等腰三角形,那就在底边上画个高呀!比如在等腰三角形ABC 中,AB=AC,那就在底边 BC 上画个高 AD 呀,这一画,很多问题不就一目了然啦?
3. 哇塞,如果三角形里有角平分线,那就在角平分线上找点做垂线呀!就像在三角形 ABC 中,AD 是角平分线,咱就在上面找个点 E 作 BC 的垂线,这不就找到突破点啦?
4. 你看呀,当三角形里有直角的时候,可别忘记画斜边中线呀!像是在直角三角形 ABC 中,角 C 是直角,那赶紧把斜边 AB 的中线画出来呀,是不是很妙呀?
5. 嘿,要是有两个相似三角形在一起,那就连接对应点呀!比如三角形ABC 和三角形 A'B'C'相似,那把 AA',BB',CC'连接起来呀,会有新发现哦!
6. 哎呀呀,如果想证明线段相等,那就找全等三角形呀,然后把辅助线画上帮助证明呀!就好像知道 AB=CD,那就通过画辅助线找到对应的全等三角形呀,是不是很机智?
7. 哇哦,三角形里有特殊角度的时候,也可以通过画辅助线构造特殊图形呀!像三角形中有 30 度角,那是不是可以构造直角三角形呀,很神奇吧?
8. 嘿哟,如果需要把三角形拆分或组合,那就大胆地画辅助线呀!比如把一个大三角形分成几个小三角形来分析呀,多有趣呀!
9. 总之呢,画辅助线可是解决三角形问题的一把利器呀!要根据具体情况灵活运用呀,学会这些技巧,三角形问题都不怕啦!。
初中数学常用辅助线大全初中数学中,辅助线是解决几何问题的重要工具。
通过添加适当的辅助线,可以转化问题,使其更容易解决。
以下是初中数学中常用的辅助线做法:1. 中点连接线:如果一条线段被另一条线段平分,则可以作出中点连接线。
中点连接线将原图形分为面积相等、形状相同的两部分。
2. 平行线:通过作平行线,可以将复杂的几何图形转化为简单的、易于处理的图形。
平行线有助于证明角度相等、线段相等和全等三角形。
3. 延长线:在需要证明某一直线或线段等于另一条直线或线段时,可以通过延长线的方式将问题简化。
4. 垂线:在证明角相等、三角形全等或线段长度等问题时,经常需要作垂线。
垂足将线段分为两段相等的部分,有助于证明和计算。
5. 角平分线:角平分线将角分为两个相等的部分,有助于证明角度相等和线段长度相等。
6. 构造法:在某些情况下,需要通过构造新的图形来解决问题。
例如,构造一个与原图形相似的三角形或平行四边形。
7. 截长补短法:当需要证明某一直线或线段等于两条其他直线或线段的和时,可以通过截长或补短的方式来证明。
8. 辅助圆:在证明与圆相关的问题时,有时需要作辅助圆。
通过辅助圆,可以将问题转化为与圆相关的定理和性质。
除了以上常用方法外,还有一些特殊图形的辅助线做法。
例如,在等腰三角形中,可以通过作底边上的高或中线来证明性质;在直角三角形中,可以通过作斜边上的中线来证明性质。
为了更好地掌握辅助线的做法,学生需要多做练习题,积累经验并熟悉各种题型。
同时,要注意总结和归纳,发现不同问题之间的联系和规律,以便能够更快地找到解决问题的方法。
另外,值得注意的是,辅助线并不是随意添加的,需要遵循一定的逻辑和推理。
添加的辅助线必须与原图形有清晰的关系,不能凭空创造。
同时,要注意证明过程中每一步的逻辑严密性,确保证明过程是正确的。
综上所述,初中数学中的辅助线做法是解决几何问题的关键。
通过熟练掌握各种辅助线的做法,学生可以更好地解决复杂的几何问题,提高数学成绩。
相似三角形之常用辅助线
在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。
而有些时候,这样的相似三角形在问题中,并不是十分明显。
因此,我们需要
通过添加辅助线,构造相似三角形,进而证明所需的结论。
专题一、添加平行线构造“ A ”“X ”型
定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.
定理的基本图形:
例1、平行四边形ABCD中, E为AB中点,AF: FA 1 : 2,求AG GC
变式练习:
如图,直线交厶ABC的BC,AB两边于D,E,与CA延长线交于F,若—;;=2,求BE:EA的比
值.
例3、BE^ AD,求证:EF- BO AC- DF
变式练习:
已知在△ ABC中,AD是/ BAC的平分线.求证:
AB BD
AC CD
BD
例2、如图,直线交△ ABC的BC,AB两边于D,E,与CA延长线交于F,若 -
DC
FC
=2,求BE:EA的比值.
FA
(本题有多种解法,多想想)
变式1、如图,△ ABC中,AB<AC,在AB、
AC
上分别截取BD=CE , DE, BC的延长线相交于点F,证明:AB・DF=AC EF。
例4、已知:如图,在△ ABC中,AD为中线,E在AB上, AE=AQ CE交AD于F,EF: FC=3 : 5,EB=8cm,
求AB AC的长.
AE 1 AF
竺丄,求比。
(试用多种方法解)
DE 2 BF
A
说明:此题充分展示了添加辅助线,构造相似形的方法和技巧•在解题中方法要灵活,思路要开阔. 总结:(1)遇燕尾,作平行,构造.字一般行。
(2)引平行线应注意以下几点:
1)选点:一般选已知(或求证)中线段的比的前项或后项,在冋一直线的线段的端点作为引平行
线的点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形
基本图形
例1、如图, ABC 中,AB AC, BD AC,那么BC22CA CD吗?试说明理由?(用多种
变式练习:
平行四边形ABCD中, CEL AE, CF丄AF,求证:AB- A曰AD- AF= AC
于
G ,求证:FG 2 =CF ?BF
2.如图,在△ ABC中,AB=AC D在AB上, E在AC的延长线上,BD=3CE DE交BC于F, 求DF: FE的值。
例2、如图,Rt ABC 中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FG AB
F
【练
习】
1.如图,一直线与△
是AB的中点。
则D
3.已知:AM MD=4 1, BD DC=2 3,求AE EG
A
4、如图,ABC的AB边和AC边上各取一点D和E,且使AD = AE , DE延长线与BC
BF BD
延长线相交于F,求证:CF CE。