地下水向河渠的运动共48页文档
- 格式:ppt
- 大小:4.62 MB
- 文档页数:24
地下水动力学习题2 地下水向河渠的运动要点:本章主要介绍河渠间地下水运动,包括无入渗情况下地下水向河渠的稳定运动和河渠间地下水的非稳定运动。
本章要求学生掌握各类公式的适用条件,能应用相关公式进行计算,在此基础上分析解决水库区地下水迴水、农田排灌渠的合理间距计算以及灌溉条件下地下水位动态预报等问题,并能利用动态资料确定水文地质参数。
2.1 河渠间地下水的稳定运动例题2-1-l :在两河间距l=2000m 的均质水平分布的潜水含水层中,自左河起l 1=1000m 范围内有均匀的灌溉入渗,已知左右河水位(自含水层底板算起)均为80m,在距左河l 1十l 2=1500m 处有一观测孔,孔中水位为46.37m,试求入渗强度与渗透系数的比值。
解:已知l =2000m ,l l =1000m ,l 2=500m ,在0—l 1段有均匀入渗(l 1=1000m ),l 1一l 段无入渗。
设l 1断面处的水头为h x ,左右河水位分别为h 1,h 2。
所以0—l 1渗流段内的单宽流量为:22)(22)(11221111221Wl l h h K Wl Wl l h h K q x x +-=+--= (2-1) 根据水流连续方程知,l 1一l 渗流段内的单宽流量为:)(2)(1222l l h h K q x --= (2-2) 将(2-1),(2—2)式联立得:)(2)(22)(122211221l l h h K Wl l h h K x x --=+- 整理得:2122111222)(l h h l l l h h K W x x ----= (2-3) 再利用观测孔水位(h )资料求h x 值:因为: )(2)(2)(21222222l l l h h K l h h K x ---=-将)(5005001000200021m l l l =--=--代入上式整理得:)(35.34003037.46222222222m h h h x =-⨯=-=将2x h 代入(2-3)式得:362221051035.250035.2500100035.3400301000)10002000(3035.3400-⨯=+=--⨯--=K W 答:入渗强度W 与含水层渗透系数K 之比值为5×10-3。
第二章 地下水向河渠的运动一、填空题1. 将_______________上的入渗补给量称为入渗强度.2. 有入渗补给的河渠间含水层中,只要存在分水岭,且两河水位不相等时,则分水岭总是偏向_________一侧。
如果入渗补给强度W >0时,则浸润曲线的形状为____________;当W <0时,则为__________;当W =0时,则为____________。
3. 双侧河渠引渗时,地下水的汇水点靠近河渠________一侧,汇水点处的地下水流速等于_______。
4. 在河渠单侧引渗时,同一时刻不同断面处的引渗渗流速度_______,在起始断面x=0处的引渗渗流速度______,随着远离河渠,则引渗渗流速度__________。
5. 在河渠单侧引渗中,同一断面上的引渗渗流速度随时间的增大_______,当时间趋向无穷大时,则引渗渗流速度_________。
6. 河渠单侧引渗时,同一断面上的引渗单宽流量随时间的变化规律与该断面上的引渗渗流速度的变化规律_______,而同一时刻的引渗单宽流量最大值在________,其单宽渗流量表达式为_______。
二、选择题1.当河渠间含水层无入渗补给,但有蒸发排泄(设其蒸发强度为ε)时,计算任一断面的单宽流量公式,只要将式W x W l l h h K q x +-=-2/)2/()(2121中的W用( )代替即可。
(1) ε; (2) 0; (3) -ε; (4) ε+W2.在有入渗补给,且存在分水岭的河渠间含水层中,已知左河水位标高为H 1,右河水位标高为H 2,两河间距为L ,当H 1>H 2时,分水岭( );当H 1<H 2时,分水岭( );当H 1= H 2时,分水岭( );(1) 位于L/2处; (2) 靠近右河; (3) 靠近左河; (4) 不存在;(5)位于L=0处; (6)位于L 处3.在底板水平,无入渗、无蒸发的河渠间潜水含水层中,当渗流为稳定流,两侧河水位相等时,浸润曲线的形状为( )。
地下水动力学习题2 地下水向河渠的运动要点:本章主要介绍河渠间地下水运动,包括无入渗情况下地下水向河渠的稳定运动和河渠间地下水的非稳定运动。
本章要求学生掌握各类公式的适用条件,能应用相关公式进行计算,在此基础上分析解决水库区地下水迴水、农田排灌渠的合理间距计算以及灌溉条件下地下水位动态预报等问题,并能利用动态资料确定水文地质参数。
2.1 河渠间地下水的稳定运动例题2-1-l :在两河间距l=2000m 的均质水平分布的潜水含水层中,自左河起l 1=1000m 范围内有均匀的灌溉入渗,已知左右河水位(自含水层底板算起)均为80m,在距左河l 1十l 2=1500m 处有一观测孔,孔中水位为46.37m,试求入渗强度与渗透系数的比值。
解:已知l =2000m ,l l =1000m ,l 2=500m ,在0—l 1段有均匀入渗(l 1=1000m ),l 1一l 段无入渗。
设l 1断面处的水头为h x ,左右河水位分别为h 1,h 2。
所以0—l 1渗流段内的单宽流量为:22)(22)(11221111221Wl l h h K Wl Wl l h h K q x x +-=+--= (2-1) 根据水流连续方程知,l 1一l 渗流段内的单宽流量为:)(2)(1222l l h h K q x --= (2-2) 将(2-1),(2—2)式联立得:)(2)(22)(122211221l l h h K Wl l h h K x x --=+- 整理得:2122111222)(l h h l l l h h K W x x ----= (2-3) 再利用观测孔水位(h )资料求h x 值:因为: )(2)(2)(21222222l l l h h K l h h K x ---=-将)(5005001000200021m l l l =--=--代入上式整理得:)(35.34003037.46222222222m h h h x =-⨯=-=将2x h 代入(2-3)式得:362221051035.250035.2500100035.3400301000)10002000(3035.3400-⨯=+=--⨯--=K W 答:入渗强度W 与含水层渗透系数K 之比值为5×10-3。
第二章 地下水向河渠的运动§2—1 河渠间地下水的稳定运动一、潜水的稳定运动1 假设条件① 含水层均质各向同性,底部隔水层水平,上部有均匀入渗;② 河渠基本上彼此平行,潜水流可视为一维流;③ 潜水流是渐变流并趋于稳定。
2 模型建立和求解在上假设的条件下,建立如图坐标系,则数学模型为:模型求解:将微分方程化为:两边积分:再化简:再积分,得:当x=0时,h=h 1,代入上式得:C 2=h 12当x=l 时,h=h 2,代入上式得:将C 1、C 2代入上式,得 此式为河渠有入渗或蒸发时的潜水流的浸润曲线方程。
河渠间任意断面的单宽流量: 2100h h h h KW dx dh h dx d l x x ===+⎪⎭⎫ ⎝⎛==dx K W dx dh h d -=⎪⎭⎫ ⎝⎛1C x KW dx dh h +-=dx C xdx K W hdh 1+-=2122C x C x KW h ++-=l KW l h h C +-=21221()22122212x lx K W x l h h h h -+-+=将上式对x 求导,化简得:由Darcy 定律可得断面的单宽流量为:将上式代入,得:此式为河渠间有入渗时,距左河x 处断面的单宽流量。
3 河渠间潜水运动的特点及其应用(1) 有入渗时河渠间分水岭的移动规律a 浸润曲线的形状当W >0时,为椭园形曲线;当W <0时,为双曲线;当W=0时,为抛物线。
b 分水岭位置的确定当W >0时,存在分水岭,设分水岭距左河的位置为a ,且在分水岭处单宽流量为0,即得: 此式为分水岭位置的计算公式。
讨论:a 与河水位h 1和h 2的关系。
当h 1=h 2时,a=L/2,分水岭在河渠中间;当h 1>h 2时,a <L/2,分水岭靠左河;当h 1<h 2时,a >L/2,分水岭靠右河。
所以,分水岭靠近高水位的河渠。
(2) 排水渠合理间距的确定土地改良时,为了防止土地盐滞化和沼泽化,需要控制地下水位的高度。