有关转子动平衡的知识
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
转子动平衡技术的原理及常用方法宝子,今天咱们来唠唠转子动平衡技术这个超有趣的东西哦。
一、原理。
你想啊,转子在转动的时候,如果它不平衡,那就像一个人走路一条腿长一条腿短似的,肯定会晃悠。
转子动平衡的原理呢,简单说就是要让转子在转动的时候,各个方向上的力都能相互抵消,达到一种和谐的状态。
从科学角度讲,转子不平衡会产生离心力,这个离心力会让整个系统振动、噪声增大,还可能让设备磨损得特别快呢。
而动平衡就是要找到转子上不平衡的质量分布点,然后通过在合适的位置添加或者去掉一些质量,让离心力相互平衡,就像给走路不稳的人穿上合适的鞋子或者调整脚步一样。
二、常用方法。
1. 现场平衡法。
这就像是在设备的“老家”给它治病。
在转子正常工作的地方,直接测量振动的情况,然后算出不平衡量和位置。
这种方法特别实用,不用把转子拆下来搬到专门的地方去平衡。
就好比医生到病人家里看病,直接根据病人在家的状态开药一样方便。
不过呢,现场的干扰因素可能比较多,就像家里可能比较杂乱影响医生判断一样。
2. 平衡机平衡法。
这是把转子拆下来,放到专门的平衡机上去检测和调整。
平衡机就像是一个超级精密的体检中心。
它能很准确地测量出转子的不平衡情况。
就像把人带到医院做全面检查一样,能得到很精确的数据。
然后根据这些数据,在转子上合适的地方加或者减重量。
这种方法精度高,但是需要把转子拆下来,有时候就像给人做手术,有点小麻烦呢。
总之呢,转子动平衡技术对很多设备的正常运行都超级重要哦。
不管是大的发电机转子,还是小的风扇转子,都离不开它。
这就像不管是大人还是小孩,都得保持身体平衡才能稳稳地走路呀。
转子动平衡标准转子动平衡是指旋转机械在运转过程中,通过对转子进行动平衡处理,使得旋转机械在高速旋转时减少振动,提高设备的稳定性和安全性。
转子动平衡标准是指对转子动平衡的要求和规定,是保证转子动平衡质量的重要依据。
首先,转子动平衡标准应包括转子动平衡的基本原理和方法。
在进行转子动平衡时,需要根据转子的结构特点和工作条件,选择合适的动平衡方法,如静平衡和动平衡。
静平衡是指在转子静止状态下,通过在转子上加质量或去除质量的方法,使得转子在旋转时不产生振动。
动平衡是指在转子旋转状态下,通过在转子上加质量或去除质量的方法,使得转子在高速旋转时减少振动。
了解这些基本原理和方法,对于制定转子动平衡标准具有重要意义。
其次,转子动平衡标准应包括转子动平衡的要求和指标。
转子动平衡的要求和指标是衡量转子动平衡质量的重要标准,包括平衡质量等级、振动限值、平衡精度等指标。
平衡质量等级是指根据转子的工作条件和使用要求,确定转子动平衡的质量等级,如精度等级和平衡质量等级。
振动限值是指在转子工作时,允许的最大振动值,超过振动限值将影响设备的安全性和稳定性。
平衡精度是指在进行转子动平衡时,实现的平衡质量和振动限值之间的关系,是衡量转子动平衡质量的重要指标。
最后,转子动平衡标准应包括转子动平衡的检测和评定方法。
转子动平衡的检测和评定方法是保证转子动平衡质量的重要手段,包括平衡试验、振动测试和平衡精度评定等方法。
平衡试验是指在进行转子动平衡后,对转子进行试验,验证转子的平衡质量和振动限值是否符合要求。
振动测试是指对转子进行振动测试,获取转子的振动数据,分析转子的振动特性和振动分布。
平衡精度评定是指根据平衡试验和振动测试的结果,对转子的平衡质量和振动限值进行评定,判断转子动平衡的质量是否符合标准要求。
总之,转子动平衡标准是保证转子动平衡质量的重要依据,包括转子动平衡的基本原理和方法、转子动平衡的要求和指标、转子动平衡的检测和评定方法等内容。
转子动平衡标准转子动平衡是指在旋转机械设备中,通过调整转子的质量分布,使得转子在高速旋转时减小振动,提高设备的运行稳定性和安全性。
转子动平衡标准是对转子动平衡工艺和质量要求的规范,对于保证设备正常运行和延长设备寿命具有重要意义。
一、转子动平衡的重要性。
转子动平衡是旋转机械设备运行过程中必须要解决的问题,因为转子在高速旋转时会产生不平衡力,导致设备振动加剧,甚至引发设备故障和事故。
而转子动平衡可以有效减小振动,降低设备的损耗,提高设备的可靠性和安全性,因此具有非常重要的意义。
二、转子动平衡的标准要求。
1. 质量分布均匀,转子的质量分布应该均匀,避免出现过重或过轻的部分,以减小不平衡力的产生。
2. 振动限制,转子在动平衡后的振动应该符合国家标准或设备制造商的要求,以保证设备在运行时振动不超出允许范围。
3. 动平衡精度,动平衡的精度应该符合设备制造商的要求,通常要求在动平衡后能够达到设备的设计要求。
4. 动平衡工艺,动平衡应该采用科学的工艺方法,包括动平衡设备的选择、试重计算、平衡质量计算等,以保证动平衡的有效性和可靠性。
5. 动平衡记录,对于动平衡的过程和结果应该进行记录,以便后续的跟踪和分析。
三、转子动平衡的方法。
1. 静平衡,通过在转子上加装试重块,使得转子在静止状态下达到平衡,通常适用于小型转子。
2. 动平衡,通过在动平衡机上进行动平衡试重,使得转子在高速旋转状态下达到平衡,适用于大型转子和高速转子。
3. 精密动平衡,采用精密的动平衡设备和工艺,以达到更高的动平衡精度要求。
四、转子动平衡的影响因素。
1. 转子结构,转子的结构形式和材料会影响动平衡的难易程度和效果。
2. 质量分布,转子的质量分布不均匀会导致不平衡力的产生,影响设备的运行稳定性。
3. 转子转速,转子的转速越高,不平衡力产生的影响越大,对动平衡的要求也越高。
4. 动平衡工艺,动平衡工艺的科学性和可靠性会直接影响动平衡的效果。
五、转子动平衡的应用领域。
转子动平衡标准国标转子动平衡是指转子在运转过程中,转子的质量分布和转动惯量分布使得转子的转动轴线与转子的质心轴线不重合,从而引起转子在高速旋转时产生的振动。
为了保证转子的正常运转,减少振动对设备的影响,提高设备的运行可靠性和安全性,必须对转子进行动平衡处理。
而国标对于转子动平衡的要求和标准进行了明确的规定,以确保转子动平衡的质量和效果。
国标对于转子动平衡的要求主要包括以下几个方面:1. 转子动平衡的分类,国标根据转子的质量和转动惯量的分布情况,将转子动平衡分为静平衡和动平衡两种类型。
静平衡是指转子的质量分布使得转子的质心轴线与转动轴线重合,而动平衡则是指转子的质量和转动惯量的分布使得转子的质心轴线与转动轴线不重合。
根据国标的规定,静平衡适用于低速转子,而动平衡适用于高速转子。
2. 转子动平衡的质量等级,国标对于转子动平衡的质量等级进行了具体的划分,分为G等级、F等级、E等级和D等级。
其中,G等级是指对于一般要求的转子动平衡,F等级是指对于较高要求的转子动平衡,E等级是指对于更高要求的转子动平衡,而D等级则是指对于最高要求的转子动平衡。
不同的质量等级对应着不同的转子动平衡质量要求和标准。
3. 转子动平衡的检验方法,国标对于转子动平衡的检验方法进行了详细的规定,包括使用平衡机进行动平衡处理、采用动平衡仪进行现场动平衡、使用动平衡校正仪进行动平衡调整等。
这些检验方法的规定,旨在确保转子动平衡的质量和效果。
4. 转子动平衡的质量评定标准,国标规定了转子动平衡的质量评定标准,包括动平衡质量的评定方法、动平衡质量的评定标准和动平衡质量的评定结果等。
这些评定标准的规定,对于评定转子动平衡的质量和效果具有重要的指导意义。
总之,国标对于转子动平衡的要求和标准进行了明确的规定,包括转子动平衡的分类、质量等级、检验方法和质量评定标准等方面。
遵循国标的规定,对转子进行动平衡处理,不仅可以保证转子的正常运转,减少振动对设备的影响,提高设备的运行可靠性和安全性,还可以提高设备的使用寿命,降低设备的维护成本,提高设备的经济效益。
现场动平衡原理§-1基本概念1、单面平衡一般来说,当转子直径比其长度大7〜10倍时,通常将其当作单面转子对待。
在这种情况下,为使偏离轴心的转子质心恢复到轴心位置,只需在质心所处直径的反向任意位置上安放一个同等力矩的校正质量即可。
这个过程称之为“单面平衡”。
2、双面平衡对于直径小于长度7〜10倍的转子,通常将其当作双面转子对待。
在双面转子上,若有两块相等的质量配置在轴线两端且轴心对称的位置上,此时转子不存在质心偏离转轴问题,即静态平衡。
然而,一旦转动起来,这两块质量各自产生的离心力构成一个力偶,惯性轴与转动轴不再重合,导致轴承受到猛烈振动;或者惯性轴与转动轴相倾斜,并且两块质量也不对称,造成质心偏离轴线,这是双面转子实际中存在的最为普遍的不平衡。
这种不平衡必须通过转动时的振动测量并且至少在两个平面上安放校正质量才能消除。
这个过程称为“双面平衡”。
§-2平衡校正原理为了确定待平衡转子校正质量的大小和位置,现场动平衡情况下,利用安放试探质量的方法,临时性地改变转子的质量分布,测量由此引起的振动幅值和相位的变化,由试探质量的影响效果确定出真正需要的校正质量的大小和安放位置。
轴承上任意一点都以与转速相同的频率,周期性地经历转子不平衡产生的离心力。
所以,在振动信号频谱上,不平衡表现在转动频率处振动信号增大。
一般在转子轴承外壳上安置一个振动传感器,测量不平衡引起的振动。
转频处的振动信号正比于不平衡质量产生的作用力。
为了测量相位及转频,还要使用转速传感器。
本仪器使用激光光电转速传感器,以反光条位置作为振动信号相位参考点,从而确定出转子的不平衡角度。
综上所述,利用不平衡振动的幅值和相位可分别确定平衡校正力矩和相对于试重质心位置的校正角度。
校正半径选定后,即可依校正力矩和角度计算出校正质量的大小和安置位置。
§-3平衡步骤1、平衡前提(1)确定转子为刚性转子(2)确定转子存在不平衡故障不平衡属于低频故障,当5Hz〜1KHz的通频振动(位移峰峰值或速度有效值)较正常值有明显增大时,说明设备有低频类故障在发展。
转子动平衡
转子动平衡是指通过调整转子的质量分布和几何形状,使转子在高速旋转时不会产生振动、共振或不平衡力,从而确保转子系统的稳定运行。
转子动平衡常用的方法有静平衡和动平衡。
静平衡是指在转子静止时进行的平衡调整,通过添加或去除转子上的质量来达到平衡。
在进行静平衡时,转子的质量中心需位于转子轴线上,同时转子的惯性对称轴要与转子轴线重合。
动平衡是指在转子旋转时进行的平衡调整,通过添加或去除转子上的质量,并调整其位置来达到平衡。
在进行动平衡时,需要通过测量转子在不同转速下的振动,然后根据振动情况调整质量分布和位置,使得转子在旋转时不产生振动。
转子动平衡可以通过多种方法实现,包括使用专门的平衡机进行平衡调整,或者使用称重和质量校正的方法进行手工平衡调整。
转子动平衡对于确保旋转机械的正常运行非常重要,可以提高机械的运转平稳性、减少振动和噪音,并延长机械的使用寿命。
转子平衡的原理和方法转子平衡是在旋转机械中重要的工程问题之一,它的目的是使转子在高速运转时减小或消除因不平衡引起的振动和噪声,提高机械的运转稳定性和可靠性。
本文将介绍转子平衡的原理和常用的方法。
不平衡是指转子质量分布不均匀,导致转子在旋转过程中产生的力矩与重力不平衡,使得转子发生振动,甚至损坏机械设备。
转子平衡的原理是通过调整转子上的质量分布,使得转子的重力与离心力平衡,达到减小振动的目的。
1.静平衡:静平衡是指只考虑转子在整体上的重心位置,不考虑转子在旋转运动中受到的离心力。
静平衡的方法有:(1)质量平移法:通过向转子上添加或去除质量来调整平衡。
可以通过冲撞法测量不平衡力和相位,然后向相位相反方向添加或去除质量来达到平衡。
(2)角度添加法:在转子上通过关键角度的添加或去除质量来达到平衡。
通常是通过在转子上固定一个调整质量,然后根据试验和计算确定关键角度来进行调整。
2.动平衡:动平衡是指考虑转子在旋转运动中产生的离心力,通过在转子上调整质量分布来达到平衡。
动平衡的方法有:(1)加重方法:在转子的不平衡位置上添加补偿质量,使得转子的重心与轴线重合。
可以通过在试验台上对转子进行试验,根据不平衡力的大小和相位确定补偿质量的位置和大小。
(2)移动方法:通过移动转子上的质量来达到平衡。
可以通过试验台上的试验来测量不平衡力和相位,然后根据试验结果进行调整。
动平衡方法的选择主要取决于转子的形状和结构,以及不平衡力和相位的测量精度要求。
总结:转子平衡是保证旋转机械运转稳定性和可靠性的关键问题。
静平衡和动平衡是常用的转子平衡方法,静平衡主要通过质量平移和角度添加来实现,动平衡主要通过加重和移动来实现。
选择合适的平衡方法需要考虑转子的形状和结构,以及不平衡力和相位的测量精度要求。
通过转子平衡可以减小或消除不平衡引起的振动和噪声,提高机械设备的运转稳定性和可靠性。
转子的动平衡的原理与应用1. 简介转子的动平衡是指通过采取一定措施,使转子在运行时不产生任何不平衡力和振动。
它是现代机械制造与运动控制领域中非常重要的一项技术。
本文将介绍转子动平衡的原理和应用。
2. 转子动平衡的原理转子的动平衡原理基于质量平衡的原理,即通过在转子上增加或减少质量,使其质心与转轴的旋转中心重合,从而达到平衡的目的。
其主要包括静平衡和动平衡。
2.1 静平衡静平衡是指转子在静止状态下达到平衡。
其原理是通过增加或减少质量来调整转子的质心位置,使转子的质心与转轴的旋转中心重合。
常用的静平衡方法有针对性地在转子上添加配重块或移动现有配重块的位置来实现。
2.2 动平衡动平衡是指转子在运行状态下达到平衡。
动平衡的原理是除了要考虑质心位置的平衡外,还需要考虑转子在运动过程中的离心力。
通常通过在转子上添加配重块,并根据转子的振动状态进行不断调整,使得转子在不同转速下均保持平衡。
3. 转子动平衡的应用转子动平衡技术广泛应用于各种旋转设备,例如发动机、涡轮机、风力发电机等。
其应用主要体现在以下几个方面:3.1 提高设备运行效率通过对转子进行动平衡调整,可以消除转子的不平衡力和振动,提高设备的运行效率。
减少振动还能延长设备的使用寿命,降低故障率,提高设备的可靠性和稳定性。
3.2 减少设备的噪音和振动转子不平衡会导致设备产生较大的噪音和振动,影响设备的正常运行和工作环境。
通过动平衡技术的应用,可以有效降低设备的噪音和振动水平,提升工作环境的舒适度。
3.3 保障人员和设备的安全转子不平衡会导致设备的部分或全部失衡,严重时可能引起设备的错位、破裂等安全事故。
动平衡技术的应用可以保障设备的安全运行,降低安全事故的发生概率,保护人员和设备的安全。
3.4 提高产品质量对于涉及高精度要求的产品,如精密仪器和高速旋转机械,过大的不平衡将导致产品质量下降。
通过精确的动平衡技术,可以使转子达到高精度平衡要求,提高产品的质量和工作效能。
转子动平衡原理方法和标准一、转子动平衡原理方法转子动平衡是指通过调整转子的质量分布,使转子在高速旋转时减小振动,提高转子的平衡性能。
转子动平衡原理方法主要包括静平衡法和动平衡法。
1. 静平衡法静平衡法是通过在转子上加质量来实现平衡,常用的方法有单面加质法和双面加质法。
单面加质法是在转子的一个平面上加质量,通过调整质量的位置和大小,使得转子在该平面上平衡;双面加质法是在转子的两个平面上分别加质量,通过调整两个质量的位置和大小,使得转子在两个平面上平衡。
2. 动平衡法动平衡法是通过在转子上进行试验,测量振动信号,然后根据振动信号的特征和数学模型,计算出需要调整的质量和位置,实现转子的平衡。
常用的方法有单面试重法、双面试重法和切除法。
单面试重法是在转子的一个平面上试重,通过试重的位置和大小,调整质量的分布,使得转子在该平面上平衡;双面试重法是在转子的两个平面上分别进行试重,通过试重的位置和大小,调整两个质量的分布,使得转子在两个平面上平衡;切除法是根据振动信号的特征,确定需要切除的质量位置,然后进行切除,实现转子的平衡。
二、转子动平衡标准转子动平衡的标准主要包括国际标准和国内标准。
国际标准主要有ISO1940《机械振动-旋转机械的平衡要求》和ISO2953《机械振动-旋转机械的平衡试验方法》。
ISO1940主要规定了旋转机械的平衡质量和平衡级别的要求,根据转子的质量和转速确定平衡质量的上限和平衡级别的要求;ISO2953主要规定了旋转机械的平衡试验的方法和要求,包括试重法和试切法的试验步骤和计算方法。
国内标准主要有GB/T 25709-2010《转子的平衡质量和平衡级别》和GB/T 3323-2005《旋转机械平衡试验方法》。
GB/T 25709-2010与ISO1940类似,主要规定了旋转机械的平衡质量和平衡级别的要求;GB/T 3323-2005与ISO2953类似,主要规定了旋转机械的平衡试验的方法和要求。
转子动平衡知识及故障诊断1, 什么是动平衡?定义解读1)理想状态下,旋转设备转子动平衡绝对好,在不受外力干扰的情况下,其振动可为零。
但实际生产中,由于材质不均、工艺误差、转子叶片不均匀变形、不均匀磨损或局部掉块,安装问题及运行中多种因素的影响,导致其物理质量中心和旋转中心线之间存在一定量的偏心距e,导致存在不平衡离心力,使转子的平衡性被破坏。
2)转子不平衡是旋转设备振动主要的激振源。
举个简单例子,我们生活中使用的风扇,在使用过程中叶片均匀分布,所受离心力叶片间相互抵消,但如果其中一片叶片缺失,那么就会引其风扇离心力变大,导致噪音和振动的增加,离心力F离=meω2(m质量,e偏心距,ω旋转角速度) 随着转速的增加,不平衡质量的增加而增加。
图1 风扇不平衡示例3)转子不平衡的几种形式:-a)静不平衡:-转子的质量轴线和旋转轴线不重合,有一定偏心距,但在转子长度L其质量轴线与旋转轴线是平行的,因此不平衡将发生在单平面上,所产生的离心力作用域两端轴承上是相等同向的,可通过单平面来进行平衡矫正。
b)偶不平衡:-转子的质量轴线与旋转轴线不重合,但相交于转子重心,所产生的离心力作用于两端轴承相等且180度反向。
c)实际不平衡:-转子的质量轴线和旋转轴线不相交,不平行不重合,不平衡产生的离心力作用于两个平面上,可以认为动不平衡是静力不平衡和偶不平衡的组合,生产运行中多为此种动不平衡。
图2 转子不平衡种类4)不平衡引起转子振动,加速轴承、轴封等部件的磨损,降低机器的使用寿命和效率,严重时会导致机毁人亡,数据研究显示,40%-50%的旋转设备故障是由于动不平衡导致的,因此为了减小动不平衡的影响,需要对转子进行动平衡。
动平衡是通过在转子上去重或加配重的方法来改变转子的质量分布,使质心偏心离心力引起的转子振动或作用在轴承上的动载荷减小到允许范围之内,以达到旋转设备平稳运行的目的。
2,如何看懂动平衡报告?检查旋转部件是否平衡,有静平衡测试和动平衡测试两种方法:-1)静平衡检查:使用高精度飞轮检查转子的平衡性(图3);使用高精度旋转平台测试圆盘D的平衡性(图4)。
转子动平衡原理引言:在机械工程中,转子动平衡是一项重要的技术,用于解决转子在高速运转过程中出现的不平衡问题。
转子的不平衡会导致机械振动、噪音增加,甚至可能造成设备损坏或人身伤害。
因此,了解和应用转子动平衡原理对于保证机械设备的正常运行至关重要。
一、转子动平衡的概念和意义转子动平衡是指在转子旋转时,通过调整转子上的质量分布,使得转子在旋转过程中不产生离心力和振动。
转子不平衡是指转子在重力作用下,由于质量不均匀分布而导致的不平衡现象。
转子动平衡的目的是消除不平衡,减少机械振动和噪音,提高设备的稳定性和寿命。
二、转子不平衡的原因转子不平衡的原因主要有以下几个方面:1. 材料不均匀:转子的材料本身存在不均匀性,导致质量分布不均匀。
2. 制造误差:在制造过程中,可能会出现加工误差或装配不当,使得转子的质量分布不均匀。
3. 磨损和损伤:转子在使用过程中,可能会出现磨损和损伤,导致质量分布不均匀。
三、转子动平衡的原理转子动平衡的原理基于质量守恒和动力学平衡的原理。
当转子旋转时,其每个质点都受到离心力的作用,离心力的大小与质点到旋转轴的距离和转速的平方成正比。
为了使得转子在旋转过程中不产生离心力和振动,需要使得转子上的质量分布均匀,即转子的质心与旋转轴重合。
转子动平衡的关键在于找到转子不平衡的位置和大小,然后通过加重或减重来实现平衡。
四、转子动平衡的方法转子动平衡的方法主要有静平衡和动平衡两种。
1. 静平衡:静平衡是指转子在静止状态下进行平衡调整。
通过在转子上加重或减重,使得转子的质心与旋转轴重合。
静平衡方法适用于转子质量不均匀的情况,但不能解决转子在旋转过程中的不平衡问题。
2. 动平衡:动平衡是指转子在旋转状态下进行平衡调整。
通过将转子安装在动平衡机上,测量转子在不同位置上的不平衡量,然后根据测量结果在转子上加重或减重,使得转子在旋转过程中不产生离心力和振动。
动平衡方法适用于转子在高速旋转时的平衡调整,可以有效消除转子的不平衡问题。
转子动平衡一、动平衡的定义:不平衡的转子经过测量其不平衡量和不平衡相位,并加以校正消除其不平衡量,使转子在旋转时,不致产生不平衡离心力的平衡工艺叫做动平衡。
二、校正面的选择:平衡校正面必须选择垂直于转子轴线的平面转子外径:D转子长度:L①对于薄盘状转子(L/D≤5),因偶不平面很小,一般只选择一个校正面,称为单面平衡或称静平衡②对于长轴类转子(L/D>5),必须选择两个或者两个以上校正面,称双面平衡或者多面平衡亦称动平衡③对于初始不平衡量很大,旋转时振动过大的转子,应先做单面静平衡,且校正面最好选择在重心所在的平面上,以防偶不平衡量增大;或者选择在重心两侧的两个校正面上校正,或根据要求,选择在靠近重心的平面上校正,然后再做动平衡。
三、校正方法:转子的不平衡是因其中心主惯性轴与旋转轴线不重合而产生的.平衡就是改变转子的质量分布,使其中心主惯性轴与旋转轴线重合而达到平衡的目的.当测量出转子不平衡的量值或相位后,校正的方法有:1、去重法—即在重的一方用钻孔,磨削,錾削,铣削和激光穿孔等方法去除一部分金属。
2、加重法--即在轻的一方用螺钉连接,铆接,焊接,喷镀金属等方法,加上一部分金属。
3、调整法—通过拧入或拧出螺钉以改变校正重量半径,或在槽内调整二个或二个以上配重块位置。
4、热补偿法—通过对转子局部加热来调整工件装配状态。
四、不同类型转子的动平衡注意事项:1.滚动轴承转子的平衡装有滚动轴承的转子,平衡时最好带着滚动轴承一起平衡,从而消除滚动轴承的内环偏心引起的不平衡,带轴承的转子一般在V型支承上进行2.无轴颈的转子的平衡无轴颈的转子必须在工艺轴上进行平衡.由于工艺轴本身的制造误差:径向和轴向跳动.工艺轴本身的不平衡以及转子配合时存在的径向间隙,使转子在平衡时会带来不可避免的误差五、转子不平衡量的计算方法:1、计算转子的允许不平衡度(率)Eper=(G*1000)/(n/10)式中:Eper——允许不平衡度单位μmG——不平衡精度等级一般取6.3n——工作转速单位r/min例如:某工件工作转速1400r/min平衡精度等级取6.3,则Eper=(GX1000)/(n/10)= (6.3X1000)/(1400/10)=45μm2、计算允许残余不平衡量m=(Eper*M)/(r*2)式中:m——允许残余不平衡度单位gM——工件旋转质量单位kgr——工件半径单位mm例如:工件质量20kg,半径60mm双面平衡,故计算每个平衡面的允许的剩余不平衡量为m=(Eper*M)/(r*2)=(45x20)/(60x2)=7.5g3、转子平衡品质——衡量转子平衡优劣程度的指标G=Eper*ω/1000式中:G——转子平衡品质mm/s 从G0.4-G4000分11级;Eper——转子允许的不平衡度g.mm/k 或mm/s或转子质量偏心距μmω——相应于转子最高工作转速的角速度ω=2πn/60≈n/104、最小可达剩余不平衡量(umar)——单位g.m,平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡机最高平衡能力的性能指标,当该指标用不平衡度表示时,称为最小可达或剩余不平衡度(单位g.mm/kg)5、不平衡量减少率(URR)——经过一次平衡校正所减少的不平衡量与初始不平衡量之比值,他是衡量平衡机效率的性能指标,以百分数表示:URR(%)=(U1-U2)/U1*100式中:U1为初始不平衡量;U2为一次平衡校正后的剩余不平衡量6、校验转子——为校验平衡机性能而设计的刚性转子,其质量、大小、尺寸均为有规定,分立式和卧式两种,立式转子质量为1.1、3.5、11、35、110kg,卧式转子质量为0.5、1.6、5、16、50、160、500kg7、不平衡国偶干扰比——单面平衡机抑制不平衡力偶影响的性能指标。
转子动平衡标准转子动平衡是指在运转时,转子的质量分布和转动轴线之间的关系达到一定的要求,使得转子在高速旋转时不会产生过大的振动和噪音,保证设备的安全稳定运行。
转子动平衡标准是对转子动平衡质量进行评定和检验的依据,是保证转子动平衡质量的重要技术文件。
转子动平衡标准主要包括以下几个方面的内容:1. 转子动平衡的基本原理和要求,转子动平衡是通过改变转子的质量分布,使得转子的质心与转动轴线重合,达到动平衡状态。
转子动平衡要求在设计、制造和安装过程中严格按照相关标准和规范进行,确保转子在运行时不会产生不必要的振动和噪音。
2. 转子动平衡的分类和标准,根据转子的结构和用途不同,转子动平衡可分为静平衡和动平衡。
静平衡是指转子在静止状态下的平衡,动平衡是指转子在运转状态下的平衡。
转子动平衡标准根据国家标准和行业标准进行制定,对于不同类型的转子有相应的平衡标准,确保转子动平衡质量的可靠性和稳定性。
3. 转子动平衡的检测方法和要求,转子动平衡的检测是保证转子动平衡质量的重要环节,主要包括静平衡和动平衡的检测方法和要求。
静平衡检测主要通过静平衡试验台进行,动平衡检测主要通过动平衡机进行,确保转子在制造和安装过程中达到设计要求的平衡质量。
4. 转子动平衡的标准化管理,转子动平衡标准化管理是指对转子动平衡过程中的各项技术要求和管理措施进行规范化和标准化,确保转子动平衡质量的稳定性和可靠性。
标准化管理涉及到转子动平衡的设计、制造、安装和维护等全过程,对转子动平衡质量进行全面管理和控制。
5. 转子动平衡的应用和推广,转子动平衡标准的制定和实施,对于提高设备的运行效率和安全性具有重要意义。
通过转子动平衡标准的应用和推广,可以有效减少设备的振动和噪音,延长设备的使用寿命,提高设备的生产效率和品质。
综上所述,转子动平衡标准是对转子动平衡质量进行评定和检验的依据,是保证设备安全稳定运行的重要技术文件。
通过严格执行转子动平衡标准,可以有效提高设备的运行效率和安全性,促进设备制造和维护技术的进步和发展。
转子动平衡
转子动平衡是机械设备中平衡装置的一种。
为了达到机械设备在运行时不产生振动和噪声,机械设备特别是旋转机械设备,尤其是较大转速的旋转机械设备,需要安装动平衡装置,以减小振动。
转子动平衡是指将合理的动平衡重量添加到旋转机械设备的动态转子,使其转动惯量的中心线与机械设备的轴心重合,从而达到平衡的目的。
转子动平衡的安装技术要求十分严格,并受到数量,大小和布置位置等各种参数的限制,安装时需要根据具体机械设备的转动惯量和转速计算出正确的动平衡重量。
转子动平衡安装后可以显著改善机械设备运行稳定性,减小维护成本,提高机械设备整体性能。
转子动平衡在汽车皮带、风机风扇、压缩机、空调等特种设备上的应用非常广泛,特别是工程机械的转子,更是要求更加严格。
对于水泵、风机等数量较多的机械设备,转子动平衡可以有效减小贮存空间,缩短调节和拆装时间,降低设备使用成本。
总之,转子动平衡是机械设备平衡装置中不可缺少的一部分,如果机械设备在运行时不想出现振动、噪声等问题,就必须安装动平衡装置,以此来达到设备的最佳运行状态。
浅析电机转子的动平衡摘要:平衡是一种改善转子质量分布,以使转子在旋转时不致产生过量的不平衡离心力的工序。
而转子就是带轴颈的旋转体,通过平衡能够降低旋转产生的振动。
转子的平衡是针对刚性而言的,刚性转子是可以在任意选定的两个校正平面上进行平衡校正,且校正之后在最高转速和接近实际工作的支撑条件下,其不平衡量均不明显超过许用不平衡量的转子,许用不平衡量是为了保证旋转机械正常工作所允许的转子剩余不平衡量,所以为了减少机器的振动,延长轴承使用寿命提高产品质量确保人身安全,平衡工艺是必不可少的。
关键词:不平衡量重径积偏心距校正平面不平衡度平衡精度不平衡量对电机的影响电机转子的动平衡精度直接影响电机的使用性能,其中电机的振动与转子平衡精度密切相关,尤其是高转速、低振动的电机,转子动平衡显的尤为重要。
如我车间生产的主轴电机、027高转速电机要求动平衡精度达到1G,才能符合性能指标要求。
下面是我车间生产的IPH6135主轴电机在重径积为11.7mg.mm和23.4mg.mm时的振动曲线转速一、下面我就对转子动平衡作一简要分析。
(1).电机转子的动平衡原理电机转子一般都存在静不平衡和偶不平衡,这种组合称为动不平衡。
所以任何一个不平衡的转子经过动平衡后,不仅消除了偶不平衡,同时也消除了静不平衡,这时转子的中心惯性主轴和转动轴线也就趋于一致了。
(2).不平衡的离心力向效正面的简化由理论力学可知,两个平行力可以合成为一个与之平行的力。
反之,一个力也可以分解为与之平行的两个力,如图1所示。
如作用于O 点的力F 可以分解为作用于A 、B 两点的同向平行力F '与F '',而且A 、B 两点的位置是任意指定的,各力间关系是F F F ''+'=,F b a b F ⨯⎪⎭⎫ ⎝⎛+=', F b a a F ⨯⎪⎭⎫ ⎝⎛+=''设有不平衡的刚性转子M 绕定轴Z 作匀速转动,如图二所示由于转子是不平衡的,可将其理解为由若干个偏心薄圆盘组成,各圆盘的重心都不在转动轴线上,当转子匀速旋转时,各圆盘均产生一个惯性力即1F ,2F ,…,n F 等组成一个空间惯性力系,这些惯性力虽然大小、方向和位置都不相同,但它们都通过转动轴线,都和转动轴线垂直。
什么是转子不平衡?常用机械中包含着大量的做旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为回转体。
理想情况下,回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体称为平衡的回转体。
但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。
为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。
表1 相关术语解释为什么要做动平衡?动不平衡是最普遍的不平衡现象,它是静不平衡和偶不平衡的组合。
不平衡的转子经过动平衡校正后,不仅消除了偶不平衡,同时也消除了静不平衡,这时转子的中心惯性主轴和转动轴线也就完全一致,使转子达到平衡。
但理想是丰满的现实是骨感的,想要把一个不平衡的转子平衡到不平衡量为零,是不可能的。
因为受到动平衡设备的精度和转子局限性的影响。
因此,就有了平衡精度的概念,即在现有的条件下,我们能达到的最合理的一个数值量级,这样即满足了生产生活的要求,又满足了经济性的要求。
考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO) 于1940 年制定了世界公认的ISO 1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5倍为增量,从要求最高的G0.4到要求最低的G4000,单位mm/s。
具体见下表:表2 ISO 1940平衡精度等级计算转子的允许不平衡度:其中,Eper——允用不平衡度,单位μ;G——平衡精度等级,一般取6.3;n——工作转速,单位r/min。
例如,某工件工作转速1400r/min平衡精度等级取6.3,则计算允许残余不平衡量:其中,m——允许残余不平衡量,单位g;M——工件旋转质量,单位kg;r——工件半径,单位mm。
转子的静平衡和动平衡
1、定义
1)静平衡
在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
2)动平衡
在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定
如何选择转子的平衡方式,是一个关键问题。
其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。
原因很简单,静平衡要比动平衡容易做,动平衡要比静动平衡容易做,省功、省力、省费用。
那么如何进行转子平衡型式的确定呢?需要从以下几个因素和依据来确定:
1)转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2)转子的工作转速。
3)有关转子平衡技术要求的技术标准,如GB3215、API610第八版、GB9239和ISO1940等。
3、转子做静平衡的条件
在GB9239-88平衡标准中,对刚性转子做静平衡的条件定义为:"如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。
在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。
如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了?quot;从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:一个是转子几何形状为盘状;一个是转子在平衡机上做平衡时的支撑间距要大;再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:
1)何谓盘状转子
主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。
在API610第八版标准中规定D/b<6时,转子只做单面平衡就可以了;D/b≥6时可以作为转子是否为盘状转子的条件规定,但不能绝对化,因为转子做何种平衡还要考虑转子的工作转速。
2)支撑间距要大
无具体的参数规定,但与转子校正面间距b之比值≥5以上均视为支撑间距足够大。
3)转子的轴向跳动
主要指转子旋转时校正面的端面跳动,因为任何转子做平衡试都是经过精加工的,加工后已保证了转子的孔与校正面之间的行为公差,端面跳动很小。
根据上述转子做单面(静)平衡的条件,再结合有关泵方面的技术标准(如GB3215和API610第八版),只做静平衡的转子条件如下:
1)对单级泵、两级泵的转子,凡工作转速<1800转/分时,不论D/b<6或D/b≥6只做静平衡即可。
但是如果要求做动平衡时,必须要保证D/b<6,否则只能做静平衡。
2)对单级泵、两级泵的转子,凡工作转速≥1800转/分时,如果D/b≥6只做静平衡即可。
但
平衡后的剩余不平衡量要等于或小于许用不平衡量的1/2。
如果要求做动平衡,要看两个校正面的平衡是否能在平衡机上分离开,如果分离不开,则只能做静平衡。
3)对一些开式叶轮等转子,如果不能实现两端支撑,只做静平衡即可。
因为两端不能支撑,势必进行悬臂,这样在平衡机上做动平衡很危险,只能在平衡架上进行单面(静)平衡。
4、转子做动平衡的条件
在GB9239标准中规定:"凡刚性转子如果不能满足做静平衡的盘状转子的条件,则需要进行两个平面来平衡,即动平衡。
"只做静平衡的转子条件如下(平衡静度G0.4级为最高精度,一般情况下泵叶轮的动平衡静度选择G6.3级或G2.5):
1)对单级泵、两级泵的转子,凡工作转速≥1800转/分时,只要D/b<6时,应做动平衡。
2)对多级泵和组合转子(3级或3级以上),不论工作转速多少,应做组合转子的动平衡。
如有侵权请联系告知删除,感谢你们的配合!。