数学黑洞
- 格式:ppt
- 大小:297.50 KB
- 文档页数:9
数学黑洞黑洞有两个特征:一是它里面的东西出不来;二是外面的东西一旦进入它的圈子,就被拉进去。
第二个特征将你吸引进去,第一个特征则使你陷入洞中无法逃脱。
在数学中,也存在着很多各式各样的黑洞。
1、在数学中同样的事情也可能发生开始时任意取一个数字串,中华人民共和国成立于1949年10月1日,我们就取1949101吧,数出这个数字串中的偶数个数、奇数个数及这个数的所有位数的总数。
1949101中有2个偶数,5个奇数,是7位数,用这3个数字组成下一个数字串257。
对257重复进行上面的程序,得到123。
对123再重复这个程序,得到的还是123。
这时,你会意识到,反复使用这个程序,一旦得到123就再也出不来了。
对于这个程序以及数字“宇宙”来说,数123就是一个数学黑洞。
每一个数最后都得到123吗?我们用一个比较大的数试试看。
例如31415926535897932384626433832795028841,这是圆周率π序列中的前38个数字,它是一个质数。
这个数中的偶数、奇数、及数位个数分别为18、20和38,将这三个数合起来得到182038。
对182038重复这个程序得到426,再重复这个程序得到303,最后一次重复程序得到123。
你看,又跌进了123这个黑洞!这个西西弗斯串是怎样起作用的呢?数学家解释是很大的输入得到较小的输出,这样便使一个无限的宇宙缩小为一个可控制的有限的宇宙。
2、6174和395前苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。
不过,近年来,由于数学爱好者的努力,已经开始拨开浓雾,逐步见天日了。
6174有什么奇妙之处?请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但不准这四个数完全相同,例如3333、7777等都应该排除。
写出四位数后,要把它整理一下,其办法是:把这个数中的各位数字按大到小的顺序和从小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数(如果数位不足,就在前面添0补足四位)。
了解数学黑洞教学设计教案一、教学内容本节课选自高中数学教材《数学探究》中的第三章“数学黑洞——奇妙的无底洞”,详细内容包括:数学黑洞的定义、性质及其在数学中的应用。
重点学习数学黑洞的原理及其在解决实际问题中的应用。
二、教学目标1. 理解数学黑洞的概念,掌握数学黑洞的基本性质。
2. 能够运用数学黑洞的知识解决实际问题,提高数学思维能力。
3. 培养学生的探究精神,激发学习数学的兴趣。
三、教学难点与重点教学难点:数学黑洞的性质及其应用。
教学重点:数学黑洞的定义、性质以及在数学问题中的运用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、练习本、笔。
五、教学过程1. 导入:通过讲述数学黑洞的故事,引发学生对数学黑洞的好奇心,为新课的学习营造氛围。
(1)展示数学黑洞的图片,让学生直观感受数学黑洞的奇妙。
(2)提问:“你们听说过数学黑洞吗?它有什么特别之处?”2. 新课导入(1)讲解数学黑洞的定义,让学生理解数学黑洞的概念。
(2)介绍数学黑洞的性质,通过实例让学生感受数学黑洞的神奇。
3. 例题讲解(1)讲解数学黑洞在数学问题中的应用,让学生掌握解题方法。
(2)分析例题,引导学生运用数学黑洞的性质解决问题。
4. 随堂练习(1)设计具有代表性的练习题,巩固所学知识。
(2)让学生独立完成练习题,及时反馈,解答疑问。
5. 小结(2)强调数学黑洞在解决实际问题中的重要性。
六、板书设计1. 了解数学黑洞2. 内容:(1)数学黑洞的定义(2)数学黑洞的性质(3)数学黑洞的应用七、作业设计1. 作业题目:(1)简述数学黑洞的定义和性质。
A. 证明:对于任意正整数n,n^3n是3的倍数。
B. 求解:已知一个正整数x,满足x^2x1=0,求x的值。
(3)谈谈你对数学黑洞的认识,以及在生活中的应用。
2. 答案:(1)见教材第三章内容。
(2)A. 证明:n^3n=n(n^21)=n(n+1)(n1),由于n、n+1、n1中必有一个是3的倍数,所以n^3n是3的倍数。
数学黑洞简介
数学黑洞是指引力场中不能逃逸的物理状态,因此任何光线和其他物质都无法逃离该状态,它通常表示绝对空间、无限时间以及未知的物理法则。
数学黑洞是由前列纳斯特理论所提出,结合相对论而成形,以描述物理状态的尺度。
数学黑洞的存在不仅影响着物理学的尺度,它还可能影响到宇宙的尺度,发生时能在极短的时间内生成极大的能量。
虽然真正的数学黑洞不会在宇宙中发现,但是它们还是会影响着宇宙的形态以及微观层面。
这是我们银河系的近邻:半人马座A星系,其中心存在一个巨大的黑洞,它正在吞噬和半人马A发生碰撞的另一个较小的星系.何谓黑洞:在宇宙空间中存在的一种质量相当大的天体,它的质量是如此之大,它产生的引力场是如此之强,以至于任何物质和辐射都无法逃逸,就连光也逃逸不出来.由于类似热力学上完全不反射光线的黑体,故名为黑洞.处理法则有:简单的四则运算、立方运算等等在古希腊神话中,科林斯国王西西弗斯被罚将一块巨石推到一座山上,但是无论他怎么努力,这块巨石总是在到达山顶之前不可避免地滚下来,于是他只好重新再推,永无休止.著名的西西弗斯串就是根据这个故事而得名的.西西弗斯串也被称作123黑洞,意思是说对于任意一数字串按一定规则重复进行下去,所得的结果都是“123”,而且一旦转变成“123”后,无论再按以上规则进行多少次,每次所转变的结果都会永无休止地重复着“123”.设定一个任意数字串,数出其中的偶数个数、奇数个数及其中所包含的数字的总个数.将答案按“偶-奇-总”的位序排出而得到新数,再将新数按照以上规则重复,最终的结果都将是123.例如:5681245721,该数字串中的偶数个数为5,奇数个数为5,数字的总个数为10.将答案按“偶-奇-总”的位序排出而得到新数为:5510.将新数5510按以上规则重复进行,可得到新数:134.将新数134按以上规则重复进行,可得到新数:123.取任意一个4位数(4个数字均为同一个数的除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞值,至达这个黑洞最多需要7个步骤.例如:大数:取这4个数字能构成的最大数,本例为:4321;小数:取这4个数字能构成的最小数,本例为:1234;差:求出大数与小数之差,本例为:4321-1234=重复:对新数3087按以上算法求得新数为:8730-0378=重复:对新数8352按以上算法求得新数为:8532-2358=3087;8352;6174;我们能不能找到像6174这样三位数呢?数学黑洞三——如来佛手掌(漩涡黑洞)《西游记》里的孙悟空是一个神通广大、本领高超的人物,他能七十二变,还会腾云驾雾,一个筋斗可翻出十万八千里外.但不管他怎样变幻,一蹦有多远,总还是落在如来佛的掌心里,难以逃脱.这当然只是一个神话故事.但是,数学家发现,这样的现象竟然也会在数学的变幻中出现.我们随便选一个数,比如选人们认为很吉利的数168吧.如果把这个数的每一位数字都平方,然后相加,即168→1+36+64=101这样一来,原来的数就变为101;接下来将101这个数的每一位数字都平方,并相加,即101→1+0+1=2,……按照这种变换不断重复,就能得到:4→16→37→58→89→145→…….结果是:168→101→2→4→16 →37 →58↑ →4 89↑ →20←42←145数学黑洞四——考拉兹猜想事情始于上个世纪的三十年代,德国汉堡的一名学生洛萨赫·考拉兹发现了一个奇怪的现象:任意写下一个自然数,如果是奇数,则将它乘以3并加1;如果是偶数,则将它除以2.对结果反复施行这样的变换之后,会出现一个有趣的现象,似乎数字掉进了一个“无底洞”,最后总是出现:一个自然数,经过K步变换跌入1,那么这个K是否有最大值呢?没有!最直接的说明是2K需要经过K次变换才能变为1,而对这个K 没有限制.同理,因为27需要111步变为1,所以54就需要112步,108需要113步,2K×27需要(K+111)步.考拉兹猜想的魅力就在于数字飘忽不定.比如27,它初看上去貌不惊人,但在变换过程中,上下变化异常剧烈,到77步时升达峰顶9232,又经过34步跌入谷底1,全程竟达111步之多.再比如703,到82步时竟然达到250504,最终经过170步跌入谷底1.。
数学黑洞例子
1. 嘿,你知道不,卡布列克常数就是个超有趣的数学黑洞例子呀!就像495 这个数,把它随意拆分,比如拆成 4 和 95,或者 49 和 5,然后大数
减小数,再反复这样操作,最后总会得到 495 呢!神奇吧!
2. 哇塞,还有 123 数字黑洞啊!比如随便一个三位数,像 321,把它的数
字按从大到小排是 321,从小到大排是 123,用大的减小的,一直这样下去,最后就会陷进去,总是得到 495 这个结果呢,你说奇妙不奇妙!
3. 嘿呀,153 也是个特别的数学黑洞例子哟!像它不管怎么折腾,最后都能回到它本身呢,这多有意思呀,就像一个怎么也逃不出去的小圈圈!
4. 哎呀,回文数也是呢!比如 121,正反都一样,这就像一个调皮的小精灵,在数学世界里蹦来蹦去的,真好玩!
5. 你想想,6174 这个数呀,也是个数学黑洞!把它弄来弄去,最后还是会
被它吸进去,这难道不比魔术还神奇吗?
6. 还有还有,3 这个数字,在很多地方都很特别哦,就好像一个小小的主角在数学舞台上表演呢,这算不算一种特殊的数学黑洞例子呢?
7. 哇哦,圆周率也是相当神奇的呀!那无穷无尽的数字,就像一个巨大的宝藏库,里面说不定也藏着数学黑洞呢,是不是很让人期待呀!
8. 嘿嘿,其实生活中到处都有数学黑洞的影子呢,只要我们细心去发现!它们就像一个个神秘的小盒子,等待我们去打开,去探索其中的奇妙!我觉得数学黑洞真的是太神奇啦,让人忍不住一直去研究呢!。
关于数学黑洞的资料数学黑洞(Math Black Hole),也称为“概念认知障碍”,是一种普遍存在的数学学习障碍。
与普通的黑洞不同,数学黑洞不包括让知识无声消失,但它暗示被数学理解困难所形成的认知和行为障碍。
例如,学生在许多情况下无法理解特定的课程,或者在易错的数学概念上重复干错事。
表现有不少可能变化,如拒绝参加数学活动,害怕探究,发生着急或挫败感,放弃,反复讨论展示等,但最终都有一个明显的共性,即学生无法处理数学问题表达,斗争技能和理解。
此外,当学生正忙于处理数学过程和解题时,也可能会出现着急的表现,对情绪的强烈反应和对完成任务的失去信心或失望。
数学黑洞的根源可能是用来理解数学的基础概念工具不足,考虑到在数学思维的过程中会用到复杂的文化和认知编程,如解决问题,分析技巧,知识结构和分类,应用技术等,若对此了解不够更容易遇到这样的困惑。
除此之外,身体上的疾病和社会笔记或外在生活因素也可能导致这种困难。
针对数学黑洞,教育家们建议可以为学生制定有目标的个性化计划,从而有针对性地给予他们必要的帮助。
一方面,可以包括在数学课程中引入更多有趣及具有挑战性的活动,以激发学生的积极性。
另一方面,在教室里,以及在研习大纲及重复练习的过程中,还可以通过弹出式的技术逐渐指导学生克服自身的认知障碍,促进学习。
此外,有意识运用团体讨论、问答等小组活动也能为学生提供有益的情境学习机会,协助其加深对数学概念的理解。
除此之外,家长也可以积极参与孩子的学习,因为孩子在家里会有更多沟通机会,也可以利用有效推进其学习驱动力的方式改善父母与子女的关系,以便帮助孩子解决数学黑洞以及学习上的困难。
特别是可以从轻松的话题转向更具挑战的问题,吸引孩子的兴趣;有时候,也可以利用孩子喜欢的游戏,如将跳跃游戏用来模仿加减乘除的运算,以便帮孩子对其学习进行更有趣的思维加工,同时增强他们的学习动力,促进其更好的学习收获。
了解数学黑洞教学设计教案一、教学内容本节课选自人教版数学八年级上册第十五章《数学欣赏》中的“数学黑洞”。
具体内容包括数学黑洞的定义、特点以及简单的数学黑洞问题。
二、教学目标1. 知识与技能:使学生了解数学黑洞的概念,掌握解决数学黑洞问题的基本方法。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生勇于探索、积极进取的精神。
三、教学难点与重点教学难点:理解数学黑洞的定义,掌握解决数学黑洞问题的方法。
教学重点:运用数学知识解决数学黑洞问题。
四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔、挂图等。
2. 学具:练习本、铅笔、直尺等。
五、教学过程1. 实践情景引入利用多媒体展示数学黑洞的图片,引导学生观察并提出问题:“你们听说过数学黑洞吗?它有什么特点?”2. 知识讲解(1)讲解数学黑洞的定义及特点。
(2)通过例题讲解,让学生理解数学黑洞问题。
3. 随堂练习(1)让学生独立完成教材中的例题。
(2)对学生的解答进行点评,指出错误及不足之处。
5. 课堂小结对本节课所学内容进行回顾,强调数学黑洞的定义及解决方法。
六、板书设计1. 数学黑洞2. 内容:(1)定义与特点(2)例题讲解七、作业设计1. 作业题目:(1)教材第15.3节课后练习题1、2、3。
(2)思考题:如何利用数学黑洞的性质解决实际问题?2. 答案:(1)教材课后练习题答案。
(2)思考题答案:利用数学黑洞的属性,可以设计出一些有趣的数学游戏,提高学生对数学的兴趣。
八、课后反思及拓展延伸1. 课后反思:(1)学生对数学黑洞的定义及特点是否掌握?(2)学生能否独立解决数学黑洞问题?(3)教学方法是否合适,课堂氛围是否活跃?2. 拓展延伸:(1)让学生课后搜集关于数学黑洞的资料,了解更多的数学黑洞问题。
(2)鼓励学生将数学黑洞知识运用到实际生活中,发现生活中的数学黑洞现象。
实际上, 有人认为,3x+1 猜想将是费尔马大定理证明之后的下一个数学上的伟大成就. 123数字黑洞任取一个数,相继依次写下它所含的偶数的个数,奇数的个数与这两个数字的和,将得到一个正整数。
对这个新的数再把它的偶数个数和奇数个数与其和拼成另外一个正整数,如此进行,最后必然停留在数123。
例:所给数字14741029第一次计算结果448第二次计算结果303第三次计算结果123这是最有名气的数字黑洞。
它的计算非常简单,从任何一个正整数开始,按照一个简单的运算模式:偶数除以2 ,奇数乘以3 再加1 ,如此最终必然跌进 4 ,2 ,1 的循环。
13x+1猜想编辑比如说我们先取5,首先我们得到3*5+1=16,然后是16/2=8,接下去是4,2和1,由1我们又得到4,于是我们就陷在4→2→1这个循环中了。
再举个例子,最开始的数取7,我们得到下面的序列:7→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1这次复杂了一点,但是最终还是陷在4→2→1这个循环中。
随便取一个其他的自然数,对它进行这一系列的变换,或迟或早,你总会掉到4→2→1这个循环中,或者说,你总会得到1。
已经有人对所有小于100*2^50=112589990684262400的自然数进行验算,无一例外。
数学里还有吓人的"小题"。
这样的"小题"理解起来非常容易,却让无数数学家大跌眼镜,怎么冥思苦想也不得其解。
3x+1问题大概就是其中最著名而又最简单的一个。
它简单到大概任何一个会除2和会乘3的人(比如说,没文化但是经常买菜的老奶奶)都能理解它的意思,但是困难得让数学家至今也没有找到好好对付它的方法。
2问题由来编辑这个问题大约是在二十世纪五十年代被提出来的。
在西方它常被称为西拉古斯(Syracuse)猜想,因为据说这个问题首先是在美国的西拉古斯大学被研究的;而在东方,这个问题由将它带到日本的日本数学家角谷静夫的名字命名,被称作角谷猜想。