空间余弦定理的应用(1)
- 格式:pdf
- 大小:180.91 KB
- 文档页数:2
1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.知识点二适宜用余弦定理解决的两类基本的解三角形问题思考1观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC中,已知两边及夹角时,△ABC不一定唯一.(×)类型一余弦定理的证明例1已知△ABC,BC=a,AC=b和角C,求c的值.考点余弦定理及其变形应用题点余弦定理的理解→=a,CA→=b,AB→=c,解如图,设CB由AB→=CB→-CA→,知c=a-b,则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角,由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0. ∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题(1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A.14B.34C.24D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac =4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( )A.50 mB.45 mC.507 mD.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。
余弦定理在生活中的应用一、余弦定理内容回顾1. 对于三角形ABC,设a、b、c分别为角A、B、C所对的边,则余弦定理有以下三种形式:- a^2=b^2+c^2-2bccos A- b^2=a^2+c^2-2accos B- c^2=a^2+b^2-2abcos C2. 余弦定理的作用- 已知三角形的两边及其夹角,可以求出第三边。
- 已知三角形的三边,可以求出三角形的三个角。
二、在测量中的应用1. 测量不可到达两点间的距离- 例:A、B两点被一个池塘隔开,无法直接测量它们之间的距离。
我们可以在池塘外选一点C,测得AC = m米,BC=n米,∠ ACB=θ。
- 根据余弦定理AB^2=AC^2+BC^2-2AC· BC·cos∠ ACB,即AB=√(m^2)+n^{2-2mncosθ}。
这样就可以计算出A、B两点间的距离。
2. 测量建筑物的高度- 假设要测量一座大楼的高度h。
在大楼底部的水平地面上选一点A,在距离A 点d米的地方再选一点B,然后测量出∠ BAC=α,∠ ABC = β。
- 设大楼高度h对应的边为BC,根据三角形内角和为180^∘,可得∠ACB=180^∘-α-β。
- 在 ABC中,已知AB = d,根据正弦定理(AB)/(sin∠ ACB)=(BC)/(sin∠BAC),可求出BC的长度。
再根据h = BCsinβ求出大楼的高度。
这里正弦定理求出BC的过程中,若先求出sin∠ ACB=sin(α + β),在计算BC时可能会涉及到较为复杂的三角函数运算。
如果我们用余弦定理,先根据AC^2=AB^2+BC^2-2AB· BC·cos∠ABC,设AC = x,则x^2=d^2+BC^2-2d· BC·cosβ,再结合(h)/(x)=tanα,联立方程求解h,有时会更简便。
三、在导航中的应用1. 飞机航线规划- 飞机从机场A飞往机场B,由于风向等因素,飞机实际飞行的路线是一个三角形的路径。
余弦定理在立体几何中的妙用1.引言1.1 概述余弦定理是立体几何中一项非常重要且妙用广泛的定理,它是三角形中的一个关键定理。
通过利用余弦定理,我们可以解决各种与三角形有关的问题,如计算边长、角度,判断三角形的形状等。
此外,余弦定理还能够拓展到解决立体几何问题中,为我们提供了解决空间中的各种几何难题的有力工具。
在本文中,我们将分析余弦定理的定义和公式,并重点讨论它在解决立体几何问题中的应用。
通过具体的例子和推导过程,我们将展示余弦定理的实际运用,并探讨其背后的原理和逻辑。
在接下来的章节中,我们将首先介绍余弦定理的定义和公式,以便读者了解其基本概念和数学表达方式。
然后,我们将探讨余弦定理在三角形中的应用,并通过实际问题进行演示和解答。
最后,我们将详细讨论余弦定理在解决立体几何问题中的妙用,并总结其优势和适用范围。
通过本文的阅读,读者将能够深入了解余弦定理在立体几何中的妙用,掌握利用余弦定理解决各类几何问题的方法和技巧。
希望本文能够为读者提供灵感和启示,帮助读者更好地应用余弦定理解决实际问题,进一步提升他们在几何学领域的知识和能力。
1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构部分主要介绍了本文的整体结构,帮助读者了解文章的大致内容安排。
本文主要分为引言、正文和结论三个部分。
引言部分概述了本文的主题和目的。
本文通过讨论余弦定理在立体几何中的应用,旨在探讨余弦定理在解决立体几何问题中的妙用。
引言部分也简要介绍了本文的结构,包含了概述、文章结构和目的三个小节。
正文部分是本文的主要内容,主要分为两个小节进行阐述。
首先是2.1节,介绍了余弦定理的定义和公式。
该部分将详细介绍余弦定理的概念和公式表达,为后续的应用部分做好准备。
接着是2.2节,重点探讨了余弦定理在三角形中的应用。
通过具体的例子和推理,阐述了余弦定理在解决三角形内角、边长关系等问题中的作用。
结论部分总结了本文的主要观点和内容,给出了余弦定理在解决立体几何问题中的妙用。
余弦定理与正弦定理的应用在数学中,余弦定理和正弦定理是解决三角形的边长和角度关系的重要工具。
它们的应用范围广泛,不仅限于几何学,还可以在物理学、工程学以及实际生活中的各种测量和计算问题中使用。
本文将介绍余弦定理和正弦定理的基本原理,并通过一些实际应用例子来展示它们的实用性。
一、余弦定理余弦定理是指在任意三角形中,三条边和它们所对的角之间存在着一个关系,即:c^2 = a^2 + b^2 - 2abcosC其中,a、b、c为三角形的三条边,C为夹角。
该定理可以用于计算三角形的边长或夹角大小,特别适用于已知两边和夹角,求解第三边或第三个角的情况。
例如,我们有一个三角形,已知两条边分别为a=5cm,b=7cm,夹角C为60度。
我们可以利用余弦定理来计算第三条边c的长度:c^2 = 5^2 + 7^2 - 2×5×7×cos60°c^2 = 25 + 49 - 70×0.5c^2 = 24c = √24c ≈ 4.9cm通过余弦定理,我们可以得到这个三角形的第三边c约为4.9cm。
除了计算边长,余弦定理还可以用于计算三角形的角度。
例如,我们有一个三角形,已知三边分别为a=6cm,b=8cm,c=10cm。
我们可以利用余弦定理来计算各个角的大小:cosA = (b^2 + c^2 - a^2) / (2bc)cosB = (a^2 + c^2 - b^2) / (2ac)cosC = (a^2 + b^2 - c^2) / (2ab)通过上述公式,我们可以求得角A,角B和角C的余弦值,再利用反余弦函数求得它们的度数。
二、正弦定理正弦定理是指在任意三角形中,三条边和对应的角的正弦之间存在着一个关系,即:a / sinA =b / sinB =c / sinC正弦定理可以用于解决已知一个角和与之对应的两个边,求解其他角和边长的问题。
例如,我们有一个三角形,已知角A为30度,边a为5cm,边b 为7cm。
第05讲正弦定理和余弦定理的应用(精讲)-1第05讲正弦定理和余弦定理的应用(精讲)1、基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线.为使测量具有较高的精确度,应根据实际需要选取合的基线长度.一般来说,基线越长,测量的精确度越高.2、仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角3、方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0360θ≤≤ .4、方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α,例:(1)北偏东α:(2)南偏西α:5、坡角与坡比坡面与水平面所成的锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平长度之比叫坡比(坡度),即tan h i lθ==(2022·河南安阳·高一阶段练习)1.公园内有一棵树,A ,B 是与树根处O 点在同一水平面内的两个观测点,树顶端为P .如图,观测得75OAB ∠=︒,60OBA ∠=︒,60OAP ∠=︒,10AB =米,则该树的高度OP 大约为()A .21米B .18米C .15米D .10米(2022·新疆·乌市八中高一期中)2.现只有一把长为2m 的尺子,为了求得某小区草坪边缘,A B 两点的距离AB (AB 大于2m ),在草坪坛边缘找到点C 与D ,已知090ACD ∠=,且tan ADB ∠=-,测得1.2m AC =,0.9m CD =,1m BD =,则AB =()A .m3B C .m 2D .m 2(2022·全国·高一专题练习)3.如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与A ,B 不共线的一点C ,然后给出了三种测量方案(ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ):①测量A ,B ,b ;②测量a ,b ,C ;③测量A ,B ,a .则一定能确定A ,B 间距离的所有方案的个数为()A .3B .2C .1D .0(2022·江苏·高一课时练习)4.如图,在救灾现场,搜救人员从A 处出发沿正北方向行进x 米达到B 处,探测到一个生命迹象,然后从B 处沿南偏东75︒行进30米到达C 处,探测到另一个生命迹象,如果C 处恰好在A 处的北偏东60︒方向上,那么x =()A .102米B .103米C .10米D .106米(2022·重庆八中高一期中)5.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度(轨道高度是指卫星到地球表面的距离)为h .将地球看作是一个球心为O ,半径为r 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.如果地球表面上某一观测点与该卫星在同一条子午线(经线)所在的平面,且在该观测点能直接观测到该卫星.若该观测点的纬度值为α,观测该卫星的仰角为β,则下列关系一定成立的是()A .cos cos()r h r βαβ+=+B .cos cos()h r βαβ=+C .sin sin()r h r βαβ+=+D .sin sin()h r βαβ=+高频考点一:解三角形应用举例角度1:测量距离问题例题1.(2022·广东·信宜市第二中学高一阶段练习)6.如图,一轮船从A 点沿北偏东70 的方向行驶10海里至海岛B ,又从B 沿北偏东10 的方向行驶10海里至海岛C ,若此轮船从A 点直接沿直线行驶至海岛C ,则此船沿__________方向行驶__________海里至海岛C ()A.北偏东60;B.北偏东30 ;C.北偏东40;D.北偏东20 ;例题2.(2022·全国·高三专题练习)7.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测量A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50m,∠ABC=105°,∠BCA =45°.就可以计算出A,B两点的距离为().A.m B.m C.m D.m例题3.(2022·福建龙岩·高一期中)8.两座灯塔A和B与海洋观察站C的距离分别为5km,8km,灯塔A在观察站C的北偏东70 方向上,灯塔B在观察站C的南偏东50 方向上,则灯塔A与B的距离为______km.例题4.(2022·广东·广州市第六十五中学高一期中)9.如图,为了测量,B C两点间的距离,选取同一平面上,A D两点,已知90∠= ,ADC∠= ,2A60AB=,BD=DC=BC的长为________.例题5.(2022·江苏·高一课时练习)10.《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图,为张衡地动仪的结构图,现要在相距200km的A,B两地各放置一个地动仪,B在A的东偏北60°方向,若A地动仪正东方向的铜丸落下,B地东南方向的铜丸落下,则地震的位置在A地正东________________km.角度2:测量高度问题例题1.(2022·江西师大附中三模(理))11.滕王阁,位于江西省南昌市西北部沿江路赣江东岸,始建于唐朝永徽四年,因唐代诗人王勃诗句“落霞与孤鹜齐飞,秋水共长天一色”而流芳后世.如图,小明同学为测量滕王阁的高度,在滕王阁的正东方向找到一座建筑物AB,高为12m,在它们的地面上的点M(B,M,D三点共线)测得楼顶A,滕王阁顶部C的仰角分别为15︒和60︒,在楼顶A处测得阁顶部C的仰角为30︒,则小明估算滕王阁的高度为()(精确到1m)A.42m B.45m C.51m D.57m例题2.(2022·山东菏泽·高一期中)12.2022年北京冬奥会,首钢滑雪大跳台(如图1)是冬奥历史上第一座与工业遗产再利用直接结合的竞赛场馆,大跳台的设计中融入了世界文化遗产敦煌壁画中“飞天”的元素.某校研究性学习小组为了估算赛道造型最高点A(如图2)距离地面的高度AB(AB 与地面垂直),在赛道一侧找到一座建筑物PQ,测得PQ的高度为25.4米,并从P点测得A 点的仰角为30°;在赛道与建筑物PQ 之间的地面上的点M 处测得A 点,P 点的仰角分别为75°和30°(其中B ,M ,Q 三点共线),该学习小组利用这些数据估算得赛道造型最高点A 距离地面的高度约为()( 1.41≈ 1.73≈ 2.45≈)A .58B .60C .66D .68例题3.(2022·四川成都·高一期中)13.如图,AE 是底部不可到达的一个烟囱,为测量烟囱的高度,在地面选取C ,D 两点,使C ,D ,E 三点在同一条直线上,在C ,D 两点测得顶点A 的仰角分别为37α=︒,67β=︒,且C ,D 两点之间的距离为20米,则烟囱AE 的高度为_________米.(用四舍五入法将结果精确到个位数,参考数据:sin 670.92cos 670.39,sin 370.60cos370.80︒≈︒≈︒≈︒≈,, 1.73≈)例题4.(2022·福建省厦门集美中学高一期中)14.厦门双子塔是厦门的新地标,两栋独立的塔楼由裙楼相连,外观形似风帆,并融入了厦门市花“三角梅”的视觉元素.小明计划测量双子塔A 塔的高度,他在家测得塔尖的仰角为26.3°,再到正上方距家42米的天台上,测得塔尖仰角为22.3°,塔底俯角为10.8°.则A 塔的高度约为______米.(精确到个位)参考数据:sin 40.07︒≈,sin 33.10.55︒≈,sin 63.70.90︒≈,sin 79.20.98︒≈.角度3:测量角度问题例题1.(2022·江苏·高一课时练习)15.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40 ,灯塔B 在观察站南偏东60 ,则灯塔A 在灯塔B 的()A .北偏东10B .北偏西10C .南偏东10D .南偏西10 例题2.(2022·吉林吉林·模拟预测(文))16.位于灯塔A 处正西方向相距()5n mile 的B 处有一艘甲船需要海上救援,位于灯塔A 处北偏东45°相距mile 的C 处的一艘乙船前往营救,则乙船的目标方向线(由观测点看目标的视线)的方向是南偏西()A .30°B .60°C .75°D .45°例题3.(2022·江苏南通·高一期末)17.图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h ,日影长为l .图2是地球轴截面的示意图,虚线表示点A 处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬2326'︒)在某地利用一表高为2dm 的圭表按图1方式放置后,测得日影长为2.98dm ,则该地的纬度约为北纬()(参考数据:tan 340.67︒≈,tan 56 1.49︒≈)A .2326'︒B .3234'︒C .34︒D .56︒题型归类练(2022·天津市求真高级中学高一阶段练习)18.如图,一艘船上午8:00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8:30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距)A .16海里/小时B .15海里/小时C ./小时D .海里/小时(2022·河北保定·高一阶段练习)19.如图,在一场足球比赛中,甲同学从点A 处开始做匀速直线运动,到达点B 时,发现乙同学踢着足球在点C 处正以自己速度的12向A 做匀速直线运动,已知3cos 5BAC ∠=,3m AB =,7m AC =.若忽略甲同学转身所需的时间,则甲同学最快拦截乙同学的点是线段AC 上离A 处____________m 的点.(2022·福建省宁化第一中学高一阶段练习)20.第四届数字中国建设峰会将于2021年4月25日至26日在福州举办,三明市以此为契机,加快推进“5G +光网”双千兆城市建设.如图,某县区域地面有四个5G 基站A ,B ,C ,D .已知C ,D 两个基站建在江的南岸,距离为;基站A ,B 在江的北岸,测得75ACB ∠=︒,120ACD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,则A ,B 两个基站的距离为______.(2022·江苏·高一课时练习)21.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =500m ,则山高MN =______m .(2022·全国·高三专题练习)22.如图,某湿地为拓展旅游业务,现准备在湿地内建造一个观景台D ,已知射线AB ,AC 为湿地两边夹角为π3的公路(长度均超过4千米),在两条公路AB ,AC 上分别设立游客接送点E ,F ,且AE AF ==若要求观景台D 与两接送点所成角EDF ∠与BAC ∠互补且观景台D 在EF 的右侧,并在观景台D 与接送点E ,F 之间建造两条观光线路DE 与DF ,则观光线路之和最长是_________________(千米).(2022·广东梅州·高一阶段练习)23.如图,测量河对岸的塔高AB ,可以选取与塔底B 在同一水平面内的两个测量基点C 和D .现测得75BCD ∠=︒,45BDC ∠=︒,50CD =米,在点C 测得塔顶A 的仰角为60°,则塔高AB 为()米.A .B .C .D .(2022·全国·高三专题练习(理))24.魏晋南北朝时期,中国数学的测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,因其第一题为测量海岛的高度和距离,故题为《海岛算经》.受此题启发,某同学依照此法测量郑州市二七纪念塔的高度.如图,点D ,G ,F 在水平线DH 上,CD 和EF 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”测得以下数据(单位:米):前表却行DG =1,表高CD =EF =2,后表却行FH =3,表距DF =61.则塔高AB =()A .60米B .61米C .62米D .63米(2022·湖南·高一阶段练习)25.如图,无人机在离地面高300m 的A 处,观测到山顶M 处的仰角为15 、山脚C 处的俯角为45 ,已知60MCN ∠= ,则山的高度MN 为___m .(2022·广西南宁·一模(理))26.2021年9月17日,搭载着3名英航天员的神舟十二号载人飞船返回舱成功着陆于东风着陆场,标志着神舟十二号返回任务取得圆满成功.假设返回舱D 是垂直下落于点C ,某时刻地面上点A B 、观测点观测到点D 的仰角分别为4575︒︒、,若A B 、间距离为10千米(其中向量CA 与CB同向),试估算该时刻返回舱距离地面的距离||CD 约为___________ 1.732≈).(2022·河南安阳·高一阶段练习)27.某校学生参加课外实践活动“测量一土坡的倾斜程度”,在坡脚A 处测得15PAC ∠=︒,沿土坡向坡顶前进25m 后到达D 处,测得45PDC ∠=︒.已知旗杆10m,CP PB AB =⊥,土坡对于地平面的坡角为θ,则cos θ=()A1B 1C .54-D (2022·江苏·高一课时练习)28.当太阳光线与水平面的倾斜角为60 时,一根长为2m 的竹竿,要使它的影子最长,则竹竿与地面所成的角α=________.(2022·全国·高一专题练习)29.如图,两名搬家工人要将一个大衣柜搬出房间,已知衣柜长1.5m ,宽0.8m ,高2.5m ,房门的宽为1.2m ,高为2.2m .试问此衣柜的倾斜度要在多少度以下,才能顺利通过房门?(tan30.960.6︒≈,sin48.590.75︒≈ 2.92≈)(2022·全国·高三专题练习)30.甲船在静水中的速度为40海里/小时,当甲船在点A 时,测得海面上乙船搁浅在其南偏东60︒方向的点P 处,甲船继续向北航行0.5小时后到达点B ,测得乙船P 在其南偏东30︒方向,(1)假设水流速度为0,画出两船的位置图,标出相应角度并求出点B与点P之间的距离.(2)若水流的速度为10海里/小时,方向向正东方向,甲船保持40海里/小时的静水速度不变,从点B走最短的路程去救援乙船,求甲船的船头方向与实际行进方向所成角的正弦值.参考答案:1.A【分析】在OAB 中利用正弦定理求出OA ,再在直角AOP 中即可求出.【详解】在OAB 中,180756045AOB ∠=︒-︒-︒=︒,则由正弦定理可得sin sin OA AB OBAAOB=∠∠3222=,解得OA =在直角AOP中,tan 6021OP OA =⋅︒=米.故选:A.2.C【分析】先由勾股定理求得AD ,再由余弦定理可求AB .【详解】因为090, 1.2m,0.9m ACD AC CD ∠===,所以 1.5m AD ==.因为tan ADB ∠=-1cos 3ADB ∠=-,所以2AB m ==.故选:C 3.A【分析】根据正余弦定理解三角形即可.【详解】对于①,利用内角和定理先求出C A B π=--,再利用正弦定理sin sin b cB C=解出c ;对于②,直接利用余弦定理2222cos c a b ab C =+-即可解出c ;对于③,先利用内角和定理求出C A B π=--,再利用正弦定理sin sin a cA C=解出c .故选:A.4.D【分析】根据三角形正弦定理即可求解结果.【详解】依题意得18045C A B =︒--=︒,由正弦定理得sin 60sin 45BC AB=︒︒22=,x =故选:D5.A【分析】由题意,画出示意图,在三角形OAB 中利用正弦定理即求解.【详解】解:如图所示,2B παβ∠=--,由正弦定理可得sin sin OA OBB OAB=∠,即sin sin 22rr hππαββ+=⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,化简得cos()cos r r hαββ+=+,故选:A.6.C【分析】先求出各角的角度,再使用余弦定理求解长度.【详解】由题意得:1807010120ABC ∠=︒-︒+︒=︒,10AB BC ==,故30BAC ∠=︒,所以从A 到C 的航向为北偏东703040︒-︒=︒,由余弦定理得:2222212cos 10102003002AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭,故AC =故选:C 7.D【分析】根据正弦定理,结合三角形内角和定理进行求解即可.【详解】由三角形内角和定理可知:18030BAC ACB ABC ︒︒∠=-∠-∠=,由正弦定理得:501sin sin 22AB BC AB ACB BAC =⇒⇒=∠∠故选:D 8.7【分析】首先画出方位图,得到60ACB ∠=︒,再利用余弦定理求解即可【详解】根据题意作出如图的方位图,则5,8AC BC ==180705060ACB ∠=︒-︒-︒=︒在△ABC 中,由余弦定理,有:22212cos 602564258492AB AC BC AC BC =+-⋅︒=+-⨯⨯⨯=所以7AB =故答案为:79.【分析】在ABD △中利用正弦定理可求得sin ADB ∠,即cos BDC ∠;在BDC 中,利用余弦定理可求得结果.【详解】在ABD △中,由正弦定理得:sin sin 4AB A ADB BD ⋅∠== ,90ADC ∠=o Q ,cos BDC ∴∠=,在BDC 中,由余弦定理得:2222cos 244848BC BD CD BD CD BDC =+-⋅∠=+-⨯=,BD ∴=故答案为:10.)1001+【分析】依题意画出图象,即可得到60,75,45A B C === ,200AB =,再利用正弦定理计算可得;【详解】解:如图,设震源在C 处,则200AB km =,则由题意可得60,75,45A B C === ,根据正弦定理可得200sin45sin75AC=,又()4s c in 232162cos o 752sin 4530sin 45304523s 0sin 22+=++=⨯+=⨯= 所以()200200sin75100314sin452622AC =+⨯==+,所以震源在A 地正东()10031km +处.故答案为:()10031+11.D【分析】在ACM △中求得30ACM ︒∠=,由正弦定理得sin 2sin sin15CAM ABCM AM ACM ︒∠=⋅=∠,再在Rt CDM 中6sin 60ABCD CM ︒=,计算即可.【详解】由题意得,在Rt ABM 中,sin15ABAM ︒=,在ACM △中,301545CAM ︒︒︒∠=+=,1801560105AMC ︒︒︒︒∠=--=,所以30ACM ︒∠=,由正弦定理sin sin AM CMACM CAM=∠∠,得sin 2sin sin15CAM ABCM AM ACM ︒∠=⋅=∠,又232162sin15sin(4530)22224︒︒︒=-=⨯-⨯=,在Rt CDM 中,6126sin 6036123572sin156224ABCD CM ︒===+≈-⨯.故选:D.12.B【分析】在PMQ 中,求得PM ,在PAM △中,利用正弦定理求得AM ,然后在ABM 中,由sin AB AM AMB =⋅∠求解.【详解】解:如图所示:由题意得:75,30,75,60,45AMB PMQ AMP APM PAM ∠=∠=∠=∠=∠= ,在PMQ 中,50.8sin PQPM PMQ==∠,在PAM △中,由正弦定理得sin sin AM PMAPM pAM=∠∠,所以25.4AM =⨯,在ABM 中,sin 25.460AB AM AMB =⋅∠=⨯,故选:B 13.22【分析】先在ACD 中,利用正弦定理求得AD ,再在DAE 中,由sin AE AD β=求解.【详解】在ACD 中,由正弦定理得()sin sin CD ADβαα=-,即20sin 30sin 37AD=,所以20sin 37sin 30AD =,在DAE 中,20sin 37sin sin 6740sin 37sin 67400.600.9222sin 30AE AD β==⨯=≈⨯⨯≈(米).故答案为:22.14.303【分析】由题意画出图,可知112.3,63.7ABC BAC ∠=︒∠=︒,所以4ACB ∠=︒,再在ABC 中利用正弦定理可得BC 的值,在BCD △中利用正弦定理可求得CD 的值【详解】解:如图,设塔高CD ,42AB =,26.3,22.3,10.8CAE CBF FBD ∠=︒∠=︒∠=︒,所以112.3,63.7ABC BAC ∠=︒∠=︒,所以4ACB ∠=︒,在ABC 中,由正弦定理得sin sin AB BCACB BAC=∠∠,即42sin 4sin 63.7BC =︒︒,因为sin 40.07︒≈,sin 63.70.90︒≈,所以解得540BC =,在BCD △中,9010.879.2BDC ︒︒︒∠=-=,22.310.833.1CBD ︒︒︒∠=+=,由正弦定理得sin sin BC CDBDC CBD=∠∠,即540sin 79.2sin 33.1CD =︒︒,解得303CD ≈,故答案为:30315.B【分析】作出灯塔A ,B 的相对位置图,分别求出ACB ∠,CAB ∠,CBA ∠的值即可求解.【详解】灯塔A ,B 的相对位置如图所示,由已知得80ACB ∠= ,50CAB CBA Ð=Ð=o ,则605010a =-=o o o ,即北偏西10 .故选:B.16.B【分析】根据已知条件作出图形,找出要求的角为BCD ∠,运用解三角形的知识进行求解.【详解】依题意,过点C 作CD BA ⊥的延长线交于点D ,如图,则5AB =,AC =45ACD ∠= ,在Rt ADC 中,5AD DC ==,在Rt BDC 中,BD =5DC =,tan BDBCD DC ∴∠==又π0,2BCD ⎛⎫∠∈ ⎪⎝⎭π3BCD ∴∠=,则乙船的目标方向线(由观测点看目标的视线)的方向是南偏西60°.故选:B.17.B【分析】由题意有2tan 0.672.98α=≈,可得MAN ∠,从而可得β【详解】由图1可得2tan 0.672.98α=≈,又tan 340.67︒≈,所以34α=︒,所以903456MAN ∠=︒-︒=︒,所以5623263234β''=︒-︒=︒,该地的纬度约为北纬3234'︒,故选:B .18.A【分析】利用正弦定理即可求解.【详解】由图可知BS =,753045ASB ∠=︒-︒=︒,则sin 45sin 30AB =︒︒,得8AB =,所以该船的航行速度为1162AB ÷=(海里/小时).故选:A 19.5【分析】甲同学最快拦截乙同学的地点是点D ,CD x =,则2BD x =,7AD x =-,进而在ABD △中结合余弦定理求解即可.【详解】解:如图,设甲同学最快拦截乙同学的地点是点D ,CD x =,则2BD x =,7AD x =-所以,在ABD △中,2223cos 25AB AD BD A AB AD +-==⋅,整理可得()()21552164158220x x x x +-=+-=,解得2x =或8215x =-(舍去).、故甲同学最快拦截乙同学的点是线段AC 上离A 处5m 的点.故答案为:5.20.【分析】结合余弦定理、正弦定理,先求得,AD BD ,然后求得AB .【详解】在三角形ACD中,30,ADC DAC AC CD ∠=∠=︒==由余弦定理得30km AD ==,在三角形BCD 中,45,30,1207545ADB ADC BCD ∠=︒∠=︒∠=︒-︒=︒,所以60CBD ∠=︒,由正弦定理得sin 60sin 45CD BD=︒︒,2BD ==在三角形ABD中,由余弦定理得10AB =.故答案为:21.750【分析】利用直角三角形求出AC ,再由正弦定理求出AM ,然后利用直角三角形求出MN【详解】在Rt ABC 中,45,500CAB BC m ∠=︒=,所以AC =,在AMC 中,75,60MAC MCA ∠=︒∠=︒,则45AMC ∠=︒,由正弦定理得,sin 45sin 60AC AM =︒︒,所以2AM =,在Rt MNA △中,,60AM MAN =∠=︒,所以sin 60750MN AM m =︒=,故答案为:75022.4【分析】求出EF AE AF ===,23EDF π∠=,在DEF 中,利用余弦定理结合基本不等式即可得出答案.【详解】解:在AEF △中,因为AE AF ==π3EAF ∠=,所以EF AE AF ===又EDF ∠与BAC ∠互补,所以23EDF π∠=,在DEF 中,由余弦定理得:2222cos EF AE AF AE AF EDF =+-⋅⋅∠,即2212AE AF AE AF ++⋅=,即()212AE AF AE AF +-⋅=,因为()214AE AF AE AF ⋅≤+,所以()()()2221124AE AF AE AF AE AF AE AF +-⋅=≥+-+,所以4AE AF +≤,当且仅当2AE AF ==时,取等号,所以观光线路之和最长是4.故答案为:423.A【分析】在BCD △中,由正弦定理求出BC ,进而在ABC 中求得答案即可.【详解】由题意,在BCD △中,180754560BDC ∠=︒-︒-︒=︒,由正弦定理可知50sin60sin453BC BC=⇒=︒︒.在ABC中,易知,60AB BC ACB⊥∠=︒,于是tan603AB BC=⨯︒==故选:A.24.D【分析】根据已知条件,利用CDG与ABG、EFH△与ABH相似即可求出AB的值.【详解】解:根据题意,CDG ABG∽△△,EFH ABH∽,所以22,1643AB ABBD BD==++,解得63AB=.故选:D.25.450【分析】由直角三角形求得AC,再在△AMC中,由正弦定理求得MC,然后在直角三角形中求得MN.【详解】∵//AD BC,∴45ACB DAC∠=∠=,∵AC==,又180465705MCA∠-=-=,154560MAC∠=+=,∴45AMC∠= ,在△AMC中,由正弦定理得MC==,∴sin60450mMN MC MCN=∠== .故答案为:450.26.14【分析】利用正弦定理求得AC,由此求得CD.【详解】在三角形ABC中,45,18075105,30A ABC ACB∠=︒∠=︒-︒=︒∠=︒,由正弦定理得sin30sin105AB AC=︒︒,()20sin10520sin6045AC=⨯︒=⨯︒+︒()20sin60cos45cos60sin455=⨯︒︒+︒︒=,所以551422CD AC=⨯=⨯≈千米.故答案为:1427.D【分析】先在ADP △中由正弦定理可得AP ,然后表示出PB 、AB ,利用三角函数同角关系表示出tan θ,化简可得.【详解】在ADP △中,由正弦定理可得sin135sin 30AD AP ︒==︒在Rt ABP 中,易知15),15)AB PB θθ=+︒=+︒,则sin tancos θθθ==整理可得cos sin1522θ=︒=⨯故选:D28.30【分析】作出示意图,设竹竿与地面所成的角为α,影子长为x ,依据正弦定理可得()2sin 60sin 120x a °=-o ,再根据正弦函数性质求解即可.【详解】作出示意图如下如,设竹竿与地面所成的角为α,影子长为x ,依据正弦定理可得()2sin 60sin 120x a °=-o ,所以()sin 120x a =-o ,因为0120120a <-<o o o ,所以要使x 最大,只需()sin 1201a -=o ,即120=90a -o o ,所以30α= 时,影子最长.答案为:30 .29.17.63︒.【分析】根据题意,只需 2.2EF ≤,结合已知条件,求得CAB ∠,以及CAF ∠的最大值,即可求得θ的最大值.【详解】根据题意,要顺利通过房门,只需 2.2EF ≤,又sin sin sin EF AC CAF CAF CAF =⨯∠=∠=∠,故sin 0.75CAF ∠≤≈,则48.59CAF ∠≤︒又 1.5tan 0.62.5AD CAB AB ∠===,则30.96CAB ∠≈,又CAF CAB θ∠=+∠,故17.63CAF CAB θ=∠-∠≤︒.故衣柜的倾斜度要在17.63︒以下,才能顺利通过房门.故答案为:17.63︒.30.(1)点B 与点P 之间的距离为(2)8.【分析】(1)画出图形,利用余弦定理求解即可;(2)利用向量的加法的平行四边形法则画出图形,然后利用正弦定理求解即可.【详解】(1)两船的位置图如下:由图可得,120,30PAB APB ∠=︒∠=︒,所以400.520AB AP ==⨯=所以由余弦定理可得PB ===所以点B 与点P 之间的距离为(2)如图,BC 的方向为水流的方向,BD 的方向为船头的方向,BP 的方向为实际行进的方向,其中4,60BD BC CBP BPD =∠=∠=︒在BPD △中,由正弦定理可得sin sin PD BD PBD BPD =∠∠所以1sin sin 428PD PBD BPD BD ∠=∠=⋅=即甲船的船头方向与实际行进方向所成角的正弦值为8。
余弦定理的几何意义余弦定理是三角函数中的重要公式,它描述了一个三角形的边长和夹角之间的关系。
在数学中,我们通常使用余弦定理来计算一个三角形的某个边长或夹角。
但是,除了数学上的应用外,余弦定理还有许多几何意义。
一、余弦定理的定义和公式在介绍余弦定理的几何意义之前,我们先来看一下它的定义和公式。
对于一个三角形ABC,其三条边分别为a、b、c,夹角分别为A、B、C。
则余弦定理可以表示为:c² = a² + b² - 2ab cosC其中cosC表示∠C的余弦值。
二、余弦定理的几何意义1. 用于测量距离和高度余弦定理可以用于测量两点之间的距离和物体高度等问题。
例如,在平面直角坐标系中,已知两个点A(x1,y1)和B(x2,y2),则它们之间的距离d可以通过以下公式计算:d = √((x2-x1)² + (y2-y1)²)这个公式可以通过余弦定理来推导得出。
将点A看作三角形ABC中∠C所对应的顶点,则AB就是三角形的斜边c,而AC和BC则是三角形的两条直角边a和b。
因此,可以通过余弦定理来计算AB的长度。
同样地,余弦定理也可以用于测量物体高度。
例如,在一个平面上已知一个物体的高度h和距离d,则可以通过以下公式计算出物体与观察者之间的夹角θ:cosθ = h/d这个公式也可以通过余弦定理来推导得出。
2. 用于求解三角形的不等式在三角形中,任意两边之和大于第三边。
这个不等式被称为三角形不等式。
利用余弦定理,我们可以将三角形不等式表示为:a +b > cb +c > ac + a > b这个不等式可以帮助我们判断一个给定的三边长度是否能够构成一个三角形。
3. 用于计算向量之间的夹角在向量运算中,我们经常需要计算两个向量之间的夹角。
利用余弦定理,我们可以将两个向量A和B之间的夹角表示为:cosθ = (A·B) / (|A|·|B|)其中,A·B表示向量A和向量B的数量积(点积),|A|和|B|分别表示向量A和向量B的模长。
数学解题技巧之余弦定理与正弦定理的应用在数学解题中,余弦定理与正弦定理是两个非常重要且经常被使用的定理。
它们能够帮助我们求解各种三角形相关的问题。
本文将探讨余弦定理与正弦定理的定义、应用以及解题技巧。
一、余弦定理余弦定理是描述三角形边与角之间关系的定理。
它可以用来解决一些已知三边或两边一角的三角形问题。
假设有一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。
则余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC其中,^2表示乘方,cosC表示角C的余弦值。
余弦定理可以应用于以下几种情况:1. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用余弦定理计算角A、角B、角C的大小。
2. 已知两边一角求边长:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的长度。
3. 已知两边和夹角求第三边:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的可能范围。
二、正弦定理正弦定理也是解决三角形相关问题的重要工具。
它可以描述三角形的边和角之间的关系。
对于一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的应用有以下几种情况:1. 已知两角一边求另外一边:如果已知三角形的两个角A、B和一边c的长度,我们可以利用正弦定理计算另外两个边a、b的长度。
2. 已知两边一角求角度:如果已知三角形的两个边长a、b和夹角C 的大小,我们可以利用正弦定理计算另外两个角A、B的大小。
3. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用正弦定理计算三个角A、B、C的大小。
三、解题技巧1. 判断何时使用余弦定理或正弦定理:根据已知条件的不同,确定使用何种定理。
如果已知两边一角,则通常使用余弦定理;如果已知两角一边,则通常使用正弦定理。
知识篇知识结构与拓展高二数学2020年11月申孝址姦浬化余"定理%&明及其应用■河南省孟津县第一高级中学赵剑涛(特级教师)余弦定理是解三角形中最重要的定理之b2+c2—a2—■,在高考题中出现频率非常高,四川省高考2bc°题曾直接考查余弦定理的证明。
也即a2=b2+c2—2b ccos A,证毕# -、余弦定理的证明证法三:建立直角b人教版教材运用向量法对余弦定理进行坐标系,如图2#A推导证明,很好地体现了向量运算工具的作贝U A(0,0),B(c,\用,这里给出其他证明方法供大家参考。
0%,C(b cos A,b s1A%#/\证法一:在+ABC中,由正弦定理可得由两点间的距离公井a b c c式得a2=BC2=(c—sin)sin B sin C sin()+B%%b cos A%2+(b s1A%2#图2贝U b s1)=a s1B;%也即a2=b2+c2—2b ccos A,证毕#c s1)=a s1()+B%=a s1A co s B+证法四:以C为圆心,a co s A s1B#②CA的长为半径作圆,如图将①式代入②式,可得a co s B=c—3#0b cos A#③直线BC与圆交于点Y丿将①,③平方相加可得:D/,延长AB交圆于F,a2=(c—b co s A%2人延长AC交圆于G,连接图3+(b s1A%2=b2+c2—/°FG#2bc co s A,证毕#贝U AF=2b cos A,BF=2b cos A—c#证法二:如图1,过\由相交弦定理可得BA•BF=BD•点A作AD丄BC,交BC BE,艮卩c•(2b cos A—c%=(b+a)•(b—于点D,则在Rt A ABD養a%,a2=b2+c2―2bc cos A,证毕#bd图-中,s1/BAD=A*,二、余弦定理的应用余弦定理在解三角形中至关重要,可以ADco s/BAD=A*#推导出三角形中很多结论,如亠,CD 1.两边之和大于第三边,两边之差小于在Rt+ACD中,s1/CAD=ac,第三边;AD2.三角形内角和等于180A;co s/CAD#A C3.勾股定理;由co s A=co s(/BAD+/CAD%=14.中线长公式—(三/2(b2+c2)—a2 co s/BAD•co s/CAD―s1/BAD•s1/C A D,得:—b=1/2(a2+c2)-b,—c=AD AD BD CD zco s A A B•AC AB*AC1可/2(a2+b2%—c2;AD2—BD•CDbc5.高线长公式h a=2AD2—2BD•CD2—3•(3—a%•(—b%•(3—-c%,h b= 2bc ac2—BD2+b2—CD2—2BD•CD22bc亍3•(3—a%•(3—b%•(3—bc%,h c=知识篇知识结构与拓展高二数学2020年11月中孝生皋捏化a+b+c26,海伦公S+ABC/-$—a)$—b)$—c),其中a+b+c2式余弦定理在高考中是常考知识点,常与其他知识相结合进行考查#题目:(2020年全国新高考!卷第17题)在①a c=-3!②c71A=3,③c=-3b 这三个条件中任选一个,补充在下面问题中#若问题中的三角形存在,求c的值;若问题中由①a c=/—!解得a=-3,b=c=1#因此,选条件①时问题中的三角形存在,此时c=1#方案二:选条件②#由C=6和余弦定理得,a H b C h-3。
余弦定理及其应用【教学目标】【知识与技能目标】(1) 了解并掌握余弦定理及其推导过程.⑵会利用余弦定理来求解简单的斜三角形中有关边、角方面的问题.(3)能利用计算器进行简单的计算(反三角).【过程与能力目标】(1)用向量的方法证明余弦定理,不仅可以体现向量的工具性,更能加深对向量知识应用的认识.(2)通过引导、启发、诱导学生发现并且顺利推导出余弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力.【情感与态度目标】通过三角函数、余弦定理、向量数量积等知识间的联系,来体现事物之间的普遍联系与辩证统一.【教学重点】余弦定理的证明及应用.【教学难点】(1)用向量知识证明余弦定理时的思路分析与探索.(2)余弦定理在解三角形时的应用思路.【教学过程】一、引入问:答: c2 a2 b2在Rt △ ABC中,若C=900,问: 若C M 900,三边之间是否还满足上述关系?答: 问: 应该不会有了! 何以见得?答: 假如a,b不变,将A、B往里压缩,则C V 90°,且c2同理,假如a,b不变,将A、B往外拉伸,则C> 90°师:非常正确!那么,这样的变化有没有什么规律呢? 答:问:规律肯定会有,否则,您就不会拿它来说事了. 仔细观察,然后想想,到底会有什么规律呢?答: 有点象向量的加法或减法,b c a或a bb厶;2 I 2a |-【探求】设^ ABC勺三边长分别为a,b,c.由于AC AB BCAC? AC (AB BC)?(AB2BC)即AC b2问: 答:师:答:AB?AB 2AB?BC BC?BC AB2c2 a2 AB BC cos(1800B)2ac cos Ba22c 2accosBBC仔细观察这个式子,你能否找出它的内在特点?能!式子中有三边一角,具体包括如下三个方面: 第一、左边是什么边,右边就是什么角;第二、左边有什么边,右边就没有什么边;第三、很好!边是平方和,乘积那里是“减号”.那么,你能否仿照这个形式写出类似的另外两个?可以! 它们是:a2 b2 c2 2bccos A和c2 a2 b2 2abccosC . 【总结】这就是我们今天要讲的余弦定理,现在,让我们来继续研究它的结构特点以及其应用问题.板书课题余弦定理及其应用二、新课(一)余弦定理的文字表述:三角形的任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍.(二)余弦定理的另一种表述形式b2 c2 a2cos A ----------- ;cosB2bc ‘(三)归纳1.熟悉定理的结构,注意“平方”2 2 . 2a cb 小;cosC 2ac ‘2 . 2 2a b c2ab“夹角” “余弦”等;2.每个式子中都有四个量,知道其中的三个就可以求另外的一个;3.当夹角为90 (即三角形为直角三角形)时即为勾股定理(特例).b2(2 由)2(76 血)2 2 2託(76 42).2 2 2b c a2bc cos— 8, 4(272)2 (Jg 72)2(2J3)22 2V2 (血72)解得b 2J2 ;(四)余弦定理的适用范围1.已知三边求角;2.已知两边及其夹角求第三边.三、应用例1.在△ ABC中,已知a 7,b 5,c 3,求这个三角形的最大内角. 【分析】根据大边对大角的原则,知:A为最大.解:由a b C ABC ,2 2 2A b c a 25 9 49cos A ---------- -----------2bc 2 5 3 即该三角形的最大内角等于120° .b 2 2 2用公式cos A ----- c--- - 即可求出角 A.2bc解:由b2 a2 c2 2accosB 得: 1-,二 A = 1200, 2练习1 .已知△ ABC勺三边长分别是a 3,b 4,c 737,求三角形的最大内角. 答案: 1200.思考:提示: 求出与最大边相对应的角的余弦值,再与①若>0,则为锐角三角形;②若=0,则为直角三角形;③若V0,则为钝角三角形.0进行比较,判定标准如下:例2. 在^ ABC中, a 2J3,C 46血,B求b及A.4【分析】已知两边夹角,可以用公式b2 a2c2 2accosB直接求出b ;然后例 3.已知△ ABC 中, a:b:c 2:V 6:(73 1),解此三角形.【分析】知道边的比值,可以设其公约数为k,因为,在后面的运算中又可以同时 约分将其约掉,原则上一般先求最小的角;当然,也可以先求最大的角.a 2k,b 76k,c (吴 1)k ,••• A 450 ;解法一:设其三边的公约数为k ,则由 cosA2 2c a A-------- 得 cos A2bc(76k)2 [(73 1)k]2 (2k)22 76k (V3 1)k2 r a 由cosB —— 2 .2c bc-------- 得 cos B 2ac(2k)2 [(J3 1)k]2 (J6k)22 2k (73 1)k•- B= 600; 因此 C=1800(A B) 1800 (450 600) 750 .解法二:设其三边的公约数为 k ,则 a 2k,b 76k,c (73 1)k , 2 ,2 2丄 c a b c由 cosC -----------得 cosC(2k )2 (屁2 M1)k]22 2k即 cosC胚 厲,(此时可用计算器的第二功能求譽的反余弦)72 ^/3 72 1 2sin 45° sin30°2 2 2 cos450cos30cos(450300)•-C= 750;2r a 由cos B ——c 2b 22ac得 cos B(2k)2[(73 1)k]2(76k)212,2 2k (73 1)k0 0•- B= 60 ;••• A= 180 (BC) 1800(60 0 075 ) 45 .A 1200,a例4.已知△ ABC 中,【分析】这种题型一般都要归结为解方程组.7,b c 8,求b,c 及 B .解:由a2b2c22bccosA得72 b2 c2 2bccos1200, 即b2c2 bc 49 (b c)2 bc 49 bc 8249 15,c 8 bc 15b 5或b 3,分类讨论如下: c 3 c 5即 b 5,c3, B 38.20 或 b 3,c 5, B 21.8练习 2 .在△ ABC 中,A C 2B,a c 8, ac 15,求 b .提示:••• B 60°,b2a 2 c 2 2accosB (a c)2 3ac 19,二b J 19 .练习3.在棱长为1的正方体ABCD A i B i C i D i 中,M 、N 分别为AQ 与BB i 的 中点,那么直线AM 与CN 所成角的余弦值是(答案:(D) 四、 课堂小结 五、 反思 六、 课后练习 七、 实践活动\.7A提示:取AB 、 CC 1 中点 E 、F ,连 B 1E 和 B 1F ,则 B 1E B 1FJ 5 76J匚厂22⑴当b5时, a 7,c 3,由 cosB72 32 5211 2 7 314⑵当b3时, a 7,c5,由 cosB72 52 3213 2 7 514cosBcosB2a2 .2c b2ac38.202a 2,2c b 2ac 得:21.80略 略 略参阅《解三角形》B 得:B。
空间三余弦定理
空间三余弦定理是一个重要的几何定理,它描述了三角形的三条边之间的关系。
它是由古希腊数学家凯撒·拉斐尔在公元前三世纪提出的,并被称为“凯撒定理”。
空间三余弦定理的公式是:a²= b²+ c²- 2bc·cosA,其中a、b、c分别表示三角形的三条边,A表示两边b和c之间的夹角。
空间三余弦定理的应用非常广泛,它可以用来计算三角形的面积,也可以用来求解三角形的三条边。
它还可以用来解决一些复杂的几何问题,比如求解三角形的外接圆半径、求解三角形的内切圆半径等。
空间三余弦定理也可以用来解决一些物理问题,比如求解物体在三维空间中的运动轨迹,求解物体在三维空间中的加速度等。
此外,它还可以用来解决一些天文学问题,比如求解行星的轨道、求解行星的轨道半径等。
空间三余弦定理的另一个重要应用是在几何建模中,它可以用来构建三维物体的模型,比如构建三维立体图形、构建三
维立体图形的表面等。
总之,空间三余弦定理是一个重要的几何定理,它在几何、物理和天文学等领域都有着广泛的应用,是一个非常有用的定理。
余弦定理应用题
余弦定理是三角形中的重要定理,通过余弦定理我们可以求解三角
形的边长和角度。
在实际问题中,余弦定理也经常被应用。
下面我们
通过一个具体的实例来看看余弦定理在解决实际问题中的应用。
假设有一个三角形ABC,已知边长a=5,b=7,夹角C=60度,现在要求解第三条边c的长度。
根据余弦定理,我们可以得到其表达式为:
c^2 = a^2 + b^2 - 2ab * cosC
将已知数值带入上式可得:
c^2 = 5^2 + 7^2 - 2 * 5 * 7 * cos60°
计算得:
c^2 = 25 + 49 - 70 * 0.5
c^2 = 25 + 49 - 35
c^2 = 39
因此,c = √39
通过计算可得第三边c的长度为√39。
这就是余弦定理在实际问题中的应用。
通过余弦定理,我们可以解
决各种不同形式的三角形问题,提高数学运算能力和解决问题的能力。
总结起来,余弦定理是解决三角形相关问题中的重要工具,通过不断练习和应用,我们可以更加熟练地解决各种实际问题。
希望通过本文的介绍,读者们能更好地理解和掌握余弦定理的应用。
愿大家在学习中取得更好的成绩!。