通信电子线路实物实验报告
- 格式:docx
- 大小:679.70 KB
- 文档页数:10
一、实训背景随着信息技术的飞速发展,通信电子线路在现代社会中扮演着越来越重要的角色。
为了提高我们的专业技能,增强实际操作能力,我们选择了通信电子线路实训作为本次课程的主要内容。
通过本次实训,我们不仅加深了对通信电子线路理论知识的理解,而且掌握了通信电子线路的实际操作技能。
二、实训目的1. 理解通信电子线路的基本概念和基本原理。
2. 掌握通信电子线路的实验操作方法。
3. 培养实际动手能力,提高工程实践水平。
4. 增强团队协作意识,提高沟通协调能力。
三、实训内容本次实训主要包括以下内容:1. 通信电子线路基本概念与原理:学习通信电子线路的基本概念、基本原理以及各类电路的特性。
2. 通信电子线路实验操作:通过实验,掌握通信电子线路的实际操作方法,如电路搭建、参数测量、故障排查等。
3. 通信电子线路综合实验:完成一个通信电子线路的综合实验项目,将所学知识应用于实际项目中。
四、实训过程1. 理论讲解:首先,由指导老师对通信电子线路的基本概念、基本原理进行讲解,并介绍实验操作方法和注意事项。
2. 实验操作:按照实验指导书的要求,进行通信电子线路的实验操作。
实验内容包括:- 基本放大电路实验:搭建放大电路,测试放大倍数、带宽等参数。
- 滤波电路实验:搭建滤波电路,测试滤波效果。
- 调制与解调电路实验:搭建调制与解调电路,测试调制效果和解调效果。
3. 综合实验:完成一个通信电子线路的综合实验项目,如设计一个无线通信系统。
五、实训结果与分析1. 基本放大电路实验:通过搭建放大电路,成功实现了信号的放大。
实验结果显示,放大倍数、带宽等参数符合预期。
2. 滤波电路实验:通过搭建滤波电路,成功实现了信号的滤波。
实验结果显示,滤波效果符合预期。
3. 调制与解调电路实验:通过搭建调制与解调电路,成功实现了信号的调制与解调。
实验结果显示,调制效果和解调效果符合预期。
4. 综合实验:成功设计并搭建了一个无线通信系统,实现了信号的发射、接收和传输。
电子线路实习报告(精选4篇)电子线路篇1:通过一个星期的电工实习,使我对电器元件及电路的连接与调试有一定的感性和理性认识,打好了日后学习电工技术课的基础。
同时实习使我获得了自动控制电路的设计与实际连接技能,培养了我理论联系实际的能力,提高了我分析问题和解决问题的能力,增强了独立工作的能力。
最主要的是培养了我与其他同学的团队合作、共同探讨、共同前进的精神。
具体如下:1.熟悉手工常用工具的使用及其维护与修理。
2.基本掌握电路的连接方法,能够独立的完成简单电路的连接。
3.熟悉控制电路板设计的步骤和方法及工艺流程,能够根据电路原理图、电器元器件实物,设计并制作控制电路板。
4.熟悉常用电器元件的类别、型号、规格、性能及其使用范围。
5.能够正确识别和选用常用的电器元件,并且能够熟练使用数字万用表。
6.了解电器元件的连接、调试与维修方法。
实习内容:1.观看关于实习的录像,从总体把握实习,明确实习的目的和意义;讲解电器元件的类别、型号、使用范围和方法以及如何正确选择元器件2.讲解控制电路的设计要求、方法和设计原理 ;3.分发与清点工具;讲解如何使用工具测试元器件;讲解线路连接的操作方法和注意事项;4.组装、连接、调试自动控制电路;试车、答辩及评分5.拆解自动控制电路、收拾桌面、地面,打扫卫生6.书写实习报告实习心得与体会:对交流接触器的认识交流接触器广泛用作电力的开断和控制电路。
它利用主接点来开闭电路,用辅助接点来执行控制指令。
主接点一般只有常开接点,而辅助接点具有两对常开和常闭功能的接点,小型的接触器也经常作为中间继电器配合主电路使用。
交流接触器的接点,由银钨合金制成,具有良好的导电性和耐高温烧蚀性。
它的动作动力来源于交流电磁铁,电磁铁由两个“山”字形的幼硅钢片叠成,其中一个固定,在上面套上线圈,工作电压有多种供选择。
为了使磁力稳定,铁芯的吸合面,加上短路环。
交流接触器在失电后,依靠弹簧复位。
另一半是活动铁芯,构造和固定铁芯一样,用以带动主接点和辅助接点的开断。
通信电子线路实验报告金艳霞通信1202 201203110210 实验一高频谐振功率放大器一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。
2、掌握谐振功率放大器的调谐特性和负载特性。
二、实验内容1、调试谐振功放电路特性,观察各点输出波形。
2、改变输入信号大小,观察谐振功率放大器的放大特性。
3、改变负载电阻值,观察谐振功率放大器的负载特性三、实验仪器1、BT-3频率特性测试仪(选项)一台2、高频电压表(选项)一台3、20MHz双踪模拟示波器一台4、万用表一块5、调试工具一套四、实验原理1、电路的基本原理利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。
根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
图3-1为由两级功率放大器组成的高频功率放大器电路,其中晶体管Q1组成甲类功率放大器,晶体管Q2组成丙类谐振功率放大器,这两种功率放大器的应用十分广泛。
五、实验步骤1、按下开关KE1,调节WE1,使QE1的发射极电压VE=2.2V (即使ICQ=7mA,通过测量P5与G两焊点之间的电压,见图0-2所示)。
2、连接JE2、JE3、JE4、JE5。
3、使用BT—3型频率特性测试仪,调整TE1、TE2,使得TE1初级与CE7,TE2初级与CE4谐振均在10.7MHz,同时测试整个功放单元的幅频特性曲线,使峰值在10.7MHz处(如果没有BT-3型频率特性测试仪,则这一步不作要求)。
4、从INE1处输入10.7MHz的载波信号(此信号由高频信号源提供,参考高频信号源的使用),信号大小为VP-P=250mV左右。
《通信电子线路》实验报告实验名称:高频功率放大器学院:专业班级:姓名:学号:联系方式指导教师:一、实验环境Multisim 14.0二、实验目的1、进一步了解Multisim仿真步骤,熟练操作获取波形2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状态的波形三、实验原理和设计高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。
故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。
原理图如图2.1所示。
图2.1输出电流Ic和Vce 关系曲线,如图2.2图2.2四、实验步骤1,按照原理图连接电路。
2,计算电路谐振频率,画出幅频响应和相频响应。
3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。
4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态五、实验结果及分析1、并联谐振回路的幅频响应和相频响应,如图4.1所示图4.1并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。
其0.707带宽为15.65MHz2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示图4.2.1输出信号频谱如图4.2.2所示图4.2.23、观察时域波形。
调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示图4.3.1根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。
但是仿真出波形为完整余弦脉冲,不符合理论。
可能的原因有,三极管导通电压参数与理论值差异较大,发射结反偏程度低。
三极管模型不符合实际特性,无截止区。
调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2输出电压Vc产生失真,可能因放大倍数等参数不合适导致。
通信电子线路实验报告一、调频解调电路实验实验内容:1.将拨动开关JP8置于1、2之间,接通“调频信号的解调电路”的直流电压。
2.用信号源产生一个FM信号,参数为:载波频率f c=6.5MHz,调制频偏Freq DIV=0.5MHz,调制信号频率fΩ=10kHz。
3.将FM信号加到P18端,将拨动开关JP3置于1、2之间(把音频输出与功放输入相连接),拨动开关JP9置于1、2之间,用示波器观察P19的波形。
4.调节FM信号的各个参数,观察P19波形的变化。
二、高频小信号谐振放大器一、实验内容1.将拨动开关JP11 置于1~2之间,接通“小信号谐振放大器”的直流电压+12V;2.小信号谐振放大器静态工作点的调整:调节电位器W1,使BG1 集电极电流Ic1约为1.5mA左右(通过测量P3 点的电压来确定电流IC1);3.从P1端接入6.5MHZ的正弦信号,幅度约为50mV 左右;4.用示波器观察比较P2端的波形,应有不失真的放大波形;5.选IST-B“频率键控”(18号)功能,并设始频为5.0MHZ,频率间隔为100KHz,按IST-B 键盘光标键,随着信号频率的变化,应能观察到P2 信号输出波形从小到大,再从大到小的变化。
并记录谐振点的频率。
6.选IST-B“频响测试”(13 号)功能,并设置参数:始频为5.5MHZ,频率间隔为100KHZ,N=20,S=1ms。
P1为输入点,P2为输出点,P2点接示波器探头(X10档),做一次频响测试,并记录测试结果。
(P1、P2 点各有一个测量孔,用于插接IST-B 的探头)7.P2点接示波器探头(X1档)步骤同六再做一次频响测试,并记录测试结果。
8.将拨动开关JP1 置于2、3 使谐振回路并接电阻R8 重复实验6。
比较接与不接R8两种情况下频响曲线有何区别。
二、实验结果及分析1、实验中幅度-频率数据记录:2、实验中用IST -B “频响测试”功能测得的频响波形如下:3、实验结果分析通过MATLAB ,利用采样点频率及对应的电压值描绘出频响曲线图,如下分析:(1)从图中我们可以看出:小信号谐振放大器在谐振频率两侧呈现的是衰减的趋势,由于谐振回路中电感品质因数Q 有限,因此频响并不关于谐振点呈现重中心对称的结论。
中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
通信电路实习报告姓名*夏霞学号8同组者巢楚颉,曾高,胡超,刘诗荣指导老师*代玲莉实习时间2011年11月28日至2011年12月9日AM调幅电路设计与制作一.实验目的:掌握通信电子电路的实际开发所要掌握技术,培养其动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。
提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作风和辩证思维能力。
二.实验仪器:芯片MC1496信号源低频和高频信号发生器双踪示波器电路板,电阻,电容,电源,引线以及焊接电路所需工具等若干三.实验原理:幅度调制是正弦波或脉冲序列的幅度随调制信号线形变化的过程,标准调幅信号可用下式表示:其中 Ac 为外加直流,f (t )表示调制信号.在AM 调幅中, 输出已调信号的包络与输入调制信号成正比,基于此我们采用控制输入调制信号的幅度来改变调制度ma, 使其可在10%~100%之间程控调节,步进量10%.本系统中采用的是模拟乘法器 MC1496 来实现调制器的设计, MC1496 中包含了由带双电流源的标准差动放大器驱动的四个高位放大器输出集电极交叉耦合,产生了两个输入电压的全波平衡调制乘积现象,也就是说输出信号是一个常数乘以两个输入信号的乘积, 即为V0= KV1V2.使用模拟乘法器比较容易实现调幅。
调制质量高。
实验原理图如下所示:图1 AM调幅电路原理图四.实验内容和步骤:(1).在计算机上利用Protel99se软件按照原理图进行画图,并标记好各个元器件的数值和正负极性等。
(2).再次利用Protel99se软件对所做的原理图进行自动排列顺序,以求排列好的PCB电路图美观流畅,如果排列好的PCB图不够理想,则可以手动进行排列整齐,封装好的PCB原理图如下图所示:图2 封装好的PCB原理图(3).对照封装好的PCB原理图,利用焊接工具将各元器件一次焊接在电路板上,再次对照原路图,检查是否连接正确和有无焊接技术上的错误。
一、实验目的1. 了解通信电子电路的基本组成和工作原理。
2. 掌握通信电子电路的基本实验技能和操作方法。
3. 培养分析问题和解决问题的能力。
二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。
本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。
2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。
3. 放大电路:对信号进行放大,提高信号的传输质量。
四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入放大电路的输入端。
③ 使用示波器观察放大电路的输出波形。
④ 改变放大电路的参数,观察输出波形的变化。
⑤ 使用数字万用表测量放大电路的增益。
《通信电子线路课程设计》课程实验报告一、实验目的巩固理论知识,提高实际动手能力和分析能力,掌握调频发射整机电路的设计与调试方法,以及高频电路调试中常见故障的分析与排除;学会如何将高频单元电路组合起来实现满足工程实际要求的整机电路的设计与调试技术。
二、实验仪器1)直流稳压电源一台;2)数字万用表一台;3)示波器(≥100MHz)一台;4)调频收音机(87~108MHz)一台;5)电烙铁、镊子、斜口钳。
三、系统原理分析图1 小功率调频无线话筒的系统框图图2 振荡部分高频等效电路四、电路原理分析1.音频放大低频放大,由三极管实现功能。
理论上该部分能对输入的语音信号放大10 倍左右,被放大后的语音信号就是调频系统的基带信号。
微型麦克风将采集的语音信号转换成电压信号输入电路,R15 微麦克风偏置电阻,用来确定麦克风的静态工作点。
C16 用来稳定放大器,同时起到低通滤波的作用。
R16、R17、R18、R19、R20 为三极管9013 的偏置电阻。
C17 为旁路电容,三极管静态工作时,不起任何作用。
当输入交流信号时,R19 被C17 短路,C14、C15 接地起到滤波作用。
C18 为隔离电容。
图 2 音频放大模块原理图2.高频振荡与频率调制调频系统中,用一个频率较高的信号作为载波。
载波的频率将被基带信号所控制,携带基带信号的全部信息。
此处采用电容三端式振荡器,加了变容二极管Cx1 和反馈网络,外接电源后只要有一个微小的开关扰动就能产生自激振荡,最终输出频率为几十M 的正弦波。
通过调节可调电感L1,可逐渐改变正弦波的频率直至达到期望值。
图 3 高频振荡模块原理图3.缓冲隔离与高频功放缓冲高频振荡部分输出的信号,同时隔离前后级电路。
此处采用的是射极跟随器,三极管T2 9018 的静态工作点由偏置电阻R7、R8、R9 确定。
此处同样设置了一个简单的模拟滤波电路,由C12、C13、L4 构成,C9 为隔离电容。
图4 缓冲隔离模块原理图高频振荡电路输出的调制信号幅值一般较小,而话筒天线传输出去的信号是在无线信道中传播的,必然存在一定程度上的幅值衰减,所以必须在震荡电路之后添加一个高频功率放大器。
通信电子线路实验报告三点式振荡.一、实验目的本实验的目的是通过建立一个三点式振荡器电路,了解其原理和实际应用,学会使用计算机模拟软件Multisim进行实验电路的仿真和实验数据的分析,同时培养实验操作技能和实验报告撰写能力。
二、实验原理1.三点式振荡电路三点式振荡电路是一种自激振荡电路,由放大器、电容、电阻及正、负反馈电路等组成。
其中,放大器的放大倍数和正反馈电路的增益决定了电路的振荡频率和振幅。
在电容、电阻、正、负反馈电路合理设计的条件下,电路可以自发地产生一定频率和振幅的周期性波形,达到振荡效果。
2.电路设计本实验采用的是三点式振荡电路,电路如下图所示:其中,放大器采用运放IC1,它的反馈回路由R3和C2组成,C2连接在运放输出端。
在这里R1和R2形成一个分压器,将8V降压至4V,提供给运放IC1的正输入端。
在这个电路中,R3C2组成的反馈回路和R1、R2以及C1形成的振荡回路交替地向运放IC1输出正、负信号,形成了一个周期性振荡。
三、实验步骤1.按照电路图连接电路,并用万用表检查各个元器件的连接情况。
2.用电压表测量IC1正输入端的电压是否为4V,若不是,则需要根据实际情况调整电路元器件的值,直到IC1正输入端的电压为4V。
3.通过Multisim模拟软件,进行电路的仿真操作,观察电路输出的波形是否与理论波形相符。
4.用示波器检测电路输出的波形,并通过调整电位器观察波形的变化情况。
5.将调节好的电路输出连接到音响,通过音响观察电路输出波形的振幅变化情况。
四、实验结果本实验中的三点式振荡电路在实际操作中表现非常稳定,实验数据与仿真数据也非常接近。
当电路输出连接到示波器时,我们可以很清晰地看到正弦波形的变化,而通过调节电位器,我们也可以改变波形的振幅大小。
五、实验分析本实验中的三点式振荡电路可以用于制作各种音乐器材、振动控制装置、数码时钟等等。
第1篇一、实验目的1. 理解通信电路的基本组成和工作原理。
2. 掌握通信电路中常用元件的性能和作用。
3. 学习通信电路的调试方法和故障排除技巧。
4. 提高实际操作能力和动手能力。
二、实验器材1. 通信电路实验箱2. 双踪示波器3. 函数信号发生器4. 信号源5. 测试仪6. 连接线7. 阻抗箱三、实验原理通信电路主要包括发送电路、接收电路和传输线路。
本实验主要涉及以下原理:1. 调制与解调:将信息信号转换成适合传输的信号(调制),在接收端再将信号还原为信息信号(解调)。
2. 放大与滤波:放大信号,增强信号强度,同时滤除干扰信号。
3. 编码与解码:将信息信号进行编码,以便于传输和识别,接收端再将编码信号解码为信息信号。
四、实验步骤1. 搭建通信电路:根据实验要求,搭建通信电路,包括发送电路、接收电路和传输线路。
2. 调试电路:调整电路参数,使电路工作在最佳状态。
3. 测试电路性能:使用测试仪测量电路的各项性能指标,如增益、带宽、信噪比等。
4. 分析实验结果:根据实验数据,分析电路性能,找出存在的问题,并提出改进措施。
五、实验内容1. 调制与解调实验:- 使用函数信号发生器产生基带信号。
- 使用调制电路将基带信号调制为高频信号。
- 使用解调电路将调制信号解调为基带信号。
- 比较调制前后信号的变化,验证调制和解调电路的工作原理。
2. 放大与滤波实验:- 使用信号源产生信号。
- 使用放大电路放大信号。
- 使用滤波电路滤除干扰信号。
- 测量放大和滤波后的信号强度,验证放大和滤波电路的工作原理。
3. 编码与解码实验:- 使用编码电路将信息信号编码。
- 使用解码电路将编码信号解码。
- 比较编码前后信号的变化,验证编码和解码电路的工作原理。
六、实验结果与分析1. 调制与解调实验:- 通过实验验证了调制和解调电路的工作原理。
- 发现调制后的信号频率较高,带宽较宽,有利于信号的传输。
- 解调后的信号与基带信号基本一致,说明解调电路能够有效还原信息信号。
一、实验目的1.通过实验了解振幅调制的工作原理。
2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。
3.掌握用示波器测量调幅系数的方法。
二、实验内容1.模拟相乘调幅器的输入失调电压调节。
2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。
3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。
4.用示波器观察调制信号为方波、三角波的调幅波。
三、实验原理调制过程是用被传递的低频信号去控制高频振荡信号,使高频输出信号的参数(幅度、频率、相位)相应于低频信号变化而变化,从而实现低频信号搬移到高频段,被高频信号携带传播的目的。
完成调制过程的装置叫调制器。
1.振幅调制和调幅波振幅调制就是用低频调制信号去控制高频载波信号的振幅,使载波的振幅随调制信号成正比地变化。
经过振幅调制的高频载波称为振幅调制波(简称调幅波)。
调幅波有普通调幅波(AM)、抑制载波的双边带调幅波(DSB)和抑制载波的单边带调幅波(SSB)三种。
2.振幅调制实验电路MC1496组成的调幅器实验电路用1496组成的调幅器实验电路如图所示。
图中,与图相对应之处是:8R08对应于RT,8R09对应于RB,8R03、8R10对应于RC。
此外,8W01用来调节(1)、(4)端之间的平衡,8W02用来调节(8)、(10)端之间的平衡。
8K01开关控制(1)端是否接入直流电压,当8K01置“on”时,1496的(1)端接入直流电压,其输出为正常调幅波(AM),调整8W03电位器,可改变调幅波的调制度。
当8K01置“off”时,其输出为平衡调幅波(DSB)。
晶体管8Q01为随极跟随器,以提高调制器的带负载能力。
四、实验结果及分析1. 整理按实验步骤所得数据,绘制记录的波形,并作出相应的结论。
DSB信号波形DSB信号反相点波形AM(常规调幅)波形不对称调制度的AM波形调制度为100%的AM波形过调制时的AM波形调制信号为三角波时的调幅波根据上述AM(常规调幅)波形和Ma的定义,测出A=420和B=84,可得到调制度Ma=67%。
东南大学电工电子实验中心实验报告课程名称:电子电路与综合实验第一次实物实验院(系):信息科学与工程学院专业:信息工程姓名:陈金炜学号:04013130实验室:高频实验室实验组别:同组人员:陈秦郭子衡邹俊昊实验时间:2015年11月21日评定成绩:审阅教师:实验一常用仪器使用一、实验目的1. 通过实验掌握常用示波器、信号源和频谱仪等仪器的使用,并理解常用仪器的基本工作原理;2.通过实验掌握振幅调制、频率调制的基本概念。
二、实验仪器示波器(带宽大于 100MHz) 1台万用表 1台双路直流稳压电源 1台信号发生器 1台频谱仪 1台多功能实验箱 1 套多功能智能测试仪1 台三、实验内容1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。
答:(1)频谱仪结构框图为:频谱仪的主要工作原理:①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。
这种方法对于AD 要求很高,但还是难以分析高频信号。
②通过直接接收,称为超外差接收直接扫描调谐分析仪。
即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。
得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小。
(2)示波器的测量精度与示波器带宽、被测信号频率之间的关系:示波器的带宽越宽,在通带内的衰减就越缓慢; 示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。
2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。
答:上电时间示意图:工作原理:捕获这个过程需要示波器采样周期小于过渡时间。
示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。
这样,就可以利用游标读出电源上电的上升时间。
本次通信电子线路实习旨在通过实际操作,加深对通信电子线路理论知识的理解,提高动手能力,培养解决实际问题的能力。
通过实习,期望能够掌握以下技能:1. 熟悉通信电子线路的基本原理和电路结构。
2. 能够独立进行电路的组装、调试和测试。
3. 学会使用基本的电子测试仪器,如示波器、信号发生器等。
4. 增强团队协作和沟通能力。
二、实习单位简介本次实习单位为我国某知名通信设备生产企业,公司主要从事通信设备的研发、生产和销售,拥有一支专业的技术团队。
三、实习内容1. 理论基础学习:实习初期,我们首先对通信电子线路的基本理论进行了深入学习,包括模拟信号与数字信号、滤波器、放大器、调制解调器等基本概念。
2. 电路组装与调试:在理论学习的指导下,我们开始进行电路组装。
实习过程中,我们组装了多种通信电子线路,如滤波器、放大器、调制解调器等。
在组装过程中,我们学会了如何正确选择元器件,如何焊接电路板,以及如何进行电路调试。
3. 测试与验证:组装完成后,我们使用示波器、信号发生器等仪器对电路进行测试和验证。
通过测试,我们验证了电路的性能是否符合设计要求,并对电路进行了必要的调整和优化。
4. 项目实践:在实习过程中,我们还参与了一个实际项目。
该项目涉及通信电子线路的设计和调试,我们负责其中一部分的设计和调试工作。
通过这个项目,我们深入了解了通信电子线路在实际应用中的设计和调试方法。
1. 理论知识方面:通过本次实习,我们对通信电子线路的理论知识有了更加深入的理解,掌握了通信电子线路的基本原理和电路结构。
2. 实践操作方面:在实习过程中,我们学会了如何组装、调试和测试通信电子线路,提高了动手能力。
3. 团队合作与沟通能力:在项目实践中,我们学会了如何与团队成员进行有效沟通,提高了团队合作能力。
4. 解决问题的能力:在实习过程中,我们遇到了各种问题,通过查阅资料、请教老师和团队成员,我们学会了如何分析和解决这些问题。
五、实习总结本次通信电子线路实习是一次非常有意义的学习经历。
一、实验目的1. 理解通信电子线路的基本原理和组成;2. 掌握通信电子线路实验仪器的使用方法;3. 通过实验验证通信电子线路理论知识的正确性;4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验原理通信电子线路是研究信号在传输过程中,如何通过电子电路进行调制、解调、放大、滤波等处理的学科。
本实验主要涉及以下内容:1. 调制:将信息信号(基带信号)加载到高频载波上,以便于信号的传输;2. 解调:将调制后的信号还原为基带信号;3. 放大:提高信号强度,满足传输要求;4. 滤波:去除信号中的噪声,提高信号质量。
三、实验器材1. 通信电子线路实验箱;2. 双踪示波器;3. 高频信号发生器;4. 万用表;5. 长度可调同轴电缆。
四、实验内容1. 调制实验(1)实验目的:掌握调制原理和调制电路的设计方法。
(2)实验步骤:① 调制信号发生:使用示波器观察调制信号波形,确保其频率、幅度等参数符合要求;② 载波信号发生:使用高频信号发生器产生高频载波信号,频率与调制信号频率相同;③ 调制电路搭建:将调制信号和载波信号接入调制电路,观察调制后的信号波形;④ 分析调制效果:根据调制后的信号波形,分析调制深度、相位等参数,判断调制效果。
2. 解调实验(1)实验目的:掌握解调原理和解调电路的设计方法。
(2)实验步骤:① 解调信号发生:使用示波器观察解调信号波形,确保其频率、幅度等参数符合要求;② 解调电路搭建:将解调信号接入解调电路,观察解调后的信号波形;③ 分析解调效果:根据解调后的信号波形,分析解调深度、相位等参数,判断解调效果。
3. 放大实验(1)实验目的:掌握放大电路的设计方法,提高信号强度。
(2)实验步骤:① 放大信号发生:使用示波器观察放大信号波形,确保其频率、幅度等参数符合要求;② 放大电路搭建:将放大信号接入放大电路,观察放大后的信号波形;③ 分析放大效果:根据放大后的信号波形,分析放大倍数、频率响应等参数,判断放大效果。
大连理工大学本科实验报告课程名称:通信电子线路实验学院:电子信息与电气工程学部专业:电子信息工程班级:电子0904 学号: 200901201 学生姓名:朱娅2011年11月20日实验四、调幅系统实验及模拟通话系统一、实验目的1.掌握调幅发射机、接收机的整机结构和组成原理,建立振幅调制与解调的系统概念。
2.掌握系统联调的方法,培养解决实际问题的能力。
3.使用调幅实验系统进行模拟语音通话实验。
二、实验内容1.实验内容及步骤,说明每一步骤线路的连接和波形(一)调幅发射机组成与调试(1)通过拨码开关S2 使高频振荡器成为晶体振荡器,产生稳定的等幅高频振荡,作为载波信号。
拨码开关S3 全部开路,将拨码开关S4 中“3”置于“ON”。
用示波器观察高频振荡器后一级的射随器缓冲输出,调整电位器VR5,使输出幅度为0.3V左右。
将其加到由MC1496 构成的调幅器的载波输入端。
波形:此时示波器上,波形为一正弦波,f=10.000MHz,Vpp=0.3V。
(2)改变跳线,将低频调制信号(板上的正弦波低频信号发生器)接至模拟乘法器调幅电路的调制信号输入端,用示波器观察J19 波形,调VR9,使低频振荡器输出正弦信号的峰-峰值Vp-p 为0.1~0.2V.波形:此时示波器上,波形为一正弦波,f=1.6kHz,Vpp=0.2V。
(3)观察调幅器输出,应为普通调幅波。
可调整VR8、VR9 和VR11,使输出的波形为普通的调幅波(含有载波,m 约为30%)。
(4)将普通的调幅波连接到前置放大器(末前级之前的高频信号缓冲器)输入端,观察到放大后的调幅波。
波形:前置放大后的一调幅波,包络形状与调制信号相似,频率特性为载波信号频率。
fΩ=1.6kHz,Vpp=0.8V,m≈30%。
(5)调整前置放大器的增益,使其输出幅度1Vp-p 左右的不失真调幅波,并送入下一级高频功率放大电路中。
(6)高频功率放大器部分由两级组成,第一级是甲类功放作为激励级,第二级是丙类功放。
篇一:通信电子电路实验报告实验八三点式lc振荡器及压控振荡器一、实验目的1、掌握三点式lc振荡器的基本原理;2、掌握反馈系数对起振和波形的影响;3、掌握压控振荡器的工作原理;4、掌握三点式lc振荡器和压控振荡器的设计方法。
二、实验内容1、测量振荡器的频率变化范围;2、观察反馈系数对起振和输出波形的影响;三、实验仪器20mhz示波器一台、数字式万用表一块、调试工具一套四、实验原理1、三点式lc振荡器三点式lc振荡器的实验原理图如图8-1所示。
图 8-1 三点式lc振荡器实验原理图图中,t2为可调电感,q1组成振荡器,q2组成隔离器,q3组成放大器。
c6=100pf,c7=200pf,c8=330pf,c40=1nf。
通过改变k6、k7、k8的拨动方向,可改变振荡器的反馈系数。
设c7、c8、c40的组合电容为c∑,则振荡器的反馈系数f=c6/ c∑。
通常f约在0.01~0.5之间。
同时,为减小晶体管输入输出电容对回路振荡频率的影响,c6和c∑取值要大。
当振荡频率较高时,有时可不加c6和c∑,直接利用晶体管的输入输出电容构成振荡电容,使电路振荡。
忽略三极管输入输出电容的影响,则三点式lc振荡器的交流等效电路图如图8-2所示。
c6图8-2 三点式lc振荡器交流等效电路图图8-2中,c5=33pf,由于c6和c∑均比c5大的多,则回路总电容c0?c5?c4 则振荡器的频率f0可近似为:f0?12?2c0?12?2(c5?c4)调节t2则振荡器的振荡频率变化,当t2变大时,f0将变小,振荡回路的品质因素变小,振荡输出波形的非线性失真也变大。
实际中c6和c∑也往往不是远远大于c5,且由于三极管输入输出电容的影响,在改变c∑,即改变反馈系数的时候,振荡器的频率也会变化。
五、实验步骤1、三点式lc振荡器(1)连接实验电路在主板上正确插好正弦波振荡器模块,开关k1、k9、k10、k11、k12向左拨,k2、k3、k4、k7、k8向下拨,k5、k6向上拨。
通信电子线路实验报告通信电子线路实验报告概述:通信电子线路是现代通信系统中不可或缺的组成部分。
本实验旨在通过搭建和测试不同类型的通信电子线路,深入了解其原理和功能。
本报告将详细介绍实验过程、结果分析以及对通信电子线路的应用前景进行探讨。
实验一:放大器电路在本实验中,我们搭建了一个基本的放大器电路,通过输入信号的放大来实现信号传输。
我们使用了共射极放大器电路,该电路具有较高的电压增益和较低的输出电阻。
通过测量输入和输出信号的幅度,我们可以计算出电压增益。
实验结果表明,放大器电路能够有效地放大输入信号,从而提高信号的传输质量。
实验二:滤波器电路滤波器电路是通信电子线路中常用的组件,它可以通过选择性地通过或阻断特定频率的信号来实现信号的处理和调整。
我们搭建了一个RC低通滤波器电路,并通过改变电容和电阻的数值来调整滤波器的截止频率。
实验结果显示,滤波器电路能够有效地滤除高频杂波,使得输出信号更加纯净和稳定。
实验三:调制解调电路调制解调电路是现代通信系统中必不可少的部分,它能够将信息信号转换为适合传输的载波信号,并在接收端将载波信号还原为原始信息信号。
我们搭建了一个简单的调制解调电路,通过改变调制信号的幅度和频率来观察调制效果。
实验结果表明,调制解调电路能够有效地实现信号的传输和还原,为通信系统的正常运行提供了基础支持。
实验四:数字信号处理电路随着数字通信技术的发展,数字信号处理电路在通信系统中的作用日益重要。
我们搭建了一个简单的数字信号处理电路,通过数字滤波器对输入信号进行滤波和调整。
实验结果显示,数字信号处理电路能够有效地抑制噪声和干扰,提高信号的传输质量和可靠性。
应用前景:通信电子线路在现代通信系统中具有广泛的应用前景。
随着通信技术的不断发展,人们对通信电子线路的需求也越来越高。
通信电子线路的应用领域涵盖了移动通信、卫星通信、光纤通信等多个领域。
例如,在移动通信领域,通信电子线路可以实现无线信号的放大和调整,提高信号的传输距离和质量。
东南大学电工电子实验中心实验报告课程名称:电子电路与综合实验第一次实物实验院(系):信息科学与工程学院专业:信息工程姓名:陈金炜学号:04013130实验室:高频实验室实验组别:同组人员:陈秦郭子衡邹俊昊实验时间:2015年11月21日评定成绩:审阅教师:实验一常用仪器使用一、实验目的1. 通过实验掌握常用示波器、信号源和频谱仪等仪器的使用,并理解常用仪器的基本工作原理;2.通过实验掌握振幅调制、频率调制的基本概念。
二、实验仪器示波器(带宽大于 100MHz) 1台万用表 1台双路直流稳压电源 1台信号发生器 1台频谱仪 1台多功能实验箱 1 套多功能智能测试仪1 台三、实验内容1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。
答:(1)频谱仪结构框图为:频谱仪的主要工作原理:①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。
这种方法对于AD 要求很高,但还是难以分析高频信号。
②通过直接接收,称为超外差接收直接扫描调谐分析仪。
即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。
得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小。
(2)示波器的测量精度与示波器带宽、被测信号频率之间的关系:示波器的带宽越宽,在通带内的衰减就越缓慢; 示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。
2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。
答:上电时间示意图:工作原理:捕获这个过程需要示波器采样周期小于过渡时间。
示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。
这样,就可以利用游标读出电源上电的上升时间。
3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的?答:载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数) 已调的瞬时相角为00t ()()ttc ft dt t k ut dt θωωθΩ=++⎰⎰()=所以FM 已调波的表达式为:000()cos[()]tom c fu t U t k ut dt ωθΩ=++⎰当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即mf fU M k Ω=Ω。
这样,调制信号的幅度与频率信息是已加到 FM 波中。
4、对于单音调制信号,分别采用AM与FM调制方式,信号所占的带宽如何计算,并与频谱仪测试结果进行比较说明。
答:(1)AM波的带宽公式:(2)FM波的带宽公式:可以观察到FM占用的带宽远大于AM。
这一点与从频谱仪上观察的结果一致。
实验二振幅调制与解调电路实验一、实验目的1、通过实验加深理解振幅调制的基本概念、调幅波的性质及其特点;2、通过实验加深理解大信号包络检波的基本概念及基本原理。
二、实验仪器双踪示波器(带宽大于40MHZ)1台万用表1台双路直流稳压电源1台信号发生器 2台频谱仪 1台三、实验内容(1)打开实验箱调幅与解调部份供电电源;(2)测量MC1496 各引脚直流电位,估算片内各三极管工作状态,注意不要让使其引脚短路。
(3)在P10 端输入信号f C =2MHz,Vpp=400mV 正弦单音信号作为载频信号,该信号可用智能测试仪的高频信号输出端口产生。
(4)在P11 端输入信号f M =2KHz, Vpp=400mV 正弦单音信号作为调制(基带)信号,该信号可用信号发生器产生(也可以用实验箱DDS 的功能5 产生,DDS 信号输出端为P24)。
(5)示波器通道衰减打到X10 档;(6)分别用示波器和频谱仪观察P13 端振幅调制信号。
(7)分别改变载波和基带信号频率及幅度,观察已调信号波形。
(8)用信号发生器产生调幅信号,载频为2MHz,调制信号为2KHz,调制度在60%左右,调幅波信号峰峰值大于700mV,输入到调幅解调电路的P14 输入信号端。
(9)用示波器观察AM 解调输出端P17 的波形,分别改变载频、基带信号频率、幅度及调制度,观察波形失真情况。
(10)改变图3.3.8 中包络检波器中放电时间常数(RL 值),即接通与断开开关LJQ2,观察对解调波形的影响。
二、实验结果(2)根据所测电压,分析并判断调幅集成电路内主要晶体管的工作状态。
原理图见教材152页5脚、14脚所接的三极管作为恒流源正常工作,1脚、4脚所接三极管导通,其余四只差分对三极管未导通。
(3)当 f C =2MHz, Vpp=200mV 正弦单音信号,f M = 2KHz, Vpp=200mV 正弦单音信号时,①分别画出调幅信号的频域及时域波形,计算调制指数; ②测量此时的调幅波形,从所测量波形上计算调制数; ③用频谱仪测量此已调波的频谱。
①t f t f t t V k V t u c M C m a cm o ππω2cos ]2cos 5.01[200cos )cos ()(+=Ω+=Ω②由测量结果所得的调制指数%12.62%100206.85206.85=⨯+-=A m③(4)写出此调幅信号的数学表达式,并计算此调幅波所占带宽。
此调幅信号的数学表达式为:)(108cos )104cos 5.01(200)(63mV t t t V O ⨯⨯+=ππ此调幅波所占带宽为:324102wf Hz ωπ∆==⨯ (5)实验步骤(3)与(4)中分别改变载波和基带信号幅度时,哪一个对已调信号波形的影响大些,为什么?答:从实验中可见已调信号的振幅是周期变化的,主要受基带信号振幅的影响,基带信号幅度对已调波形影响较大。
分析:引脚2 与引脚 3 间的反馈电阻可增加射频电压的线性范围,引脚 5 和引脚14间电压恒定,引脚 5 接T7、T8的基极,这两个三极管为恒流源。
从MC1496的原理图,可以看出晶体管T1~T4组成双差分放大器,T5、T6组成单差分放大器,用以激励晶体管T1~T4,晶体管T7、T8为恒流电路。
当两个输入电压相等时,乘法器的线性动态范围较小,在引脚2和引脚3之间外接电阻R E ,可扩大输入的线性动态范围。
基带信号加载到引脚1和引脚4之间,T5、T6将基带信号电流放大,载波信号加载到引脚8和引脚10之间,若三极管T1~T4的放大倍数均为β,则5152c B B I I I ββ==,可见T5的基极电流变化对结果的影响较大。
实验三 高频小信号谐振放大器一、实验目的1.通过实验加深理解高频小信号谐振放大器的基本性能特点;2.通过实验理解小信号谐振放大器的增益、通频带、选择性等主要性能指标;3.掌握双踪示波器、IST-B 智能信号测试仪的使用方法和小信号谐振放大器主要性能指标的测试方法。
二、实验内容与步骤1.将拨动开关JP11置于1~2之间,接通“小信号谐振放大器”的直流电压+12V ;2.小信号谐振放大器静态工作点的调整:调节电位器W1,使BG1集电极电流Ic1约为1.5mA 左右(通过测量P3点的电压来确定电流IC1);3.从P1端接入6.5MHZ 的正弦信号,幅度约为50mV 左右;4.用示波器观察比较P2端的波形,应有不失真的放大波形;5.选IST-B“频率键控”(18号)功能,并设始频为5.0MHZ,频率间隔为100KHz,按IST-B 键盘光标键,随着信号频率的变化,应能观察到P2信号输出波形从小到大,再从大到小的变化。
并记录谐振点的频率。
6.选IST-B“频响测试”(13号)功能,并设置参数:始频为5.5MHZ,频率间隔为100KHZ,N=20,S=1ms。
P1为输入点,P2为输出点,P2点接示波器探头(X10档),做一次频响测试,并记录测试结果。
(P1、P2点各有一个测量孔,用于插接IST-B的探头)7.P2点接示波器探头(X1档)步骤同六再做一次频响测试,并记录测试结果。
8.将拨动开关JP1置于2、3使谐振回路并接电阻R8重复实验6。
比较接与不接R8两种情况下频响曲线有何区别。
三、实验结果与数据分析1、谐振功率放大V mV MHz输入::141.4,6.5iV mV输出::52.8oV mVRMV MHz输入::100,6.5iV mV输出::103o3、实验测得频响波形:分析:从图中我们可以看出:小信号谐振放大器在谐振频率两侧呈现的是衰减的趋势,由于谐振回路中电感品质因数Q有限,因此频响并不关于谐振点呈现重中心对称的结论。
利用采样点直接测量输出电压幅度测量频响与利用智能信号测试仪直接测得的频响在图像上有很大的相似,但是存在一定的差压。
这是由于高频实验中,布线电容,测量仪器引入误差导致测量结果存在一定差异。
此外,还可以得到谐振频率大约是4.3MHz~4.5MHz。
4、比较所描绘的曲线,分析实验结果比较可知,示波器探头X10衰减后,最大频率值和对应输出电压值都发生了变化。
示波器探头X1时,最大频率值为6.1MHz,探头X10以后,最大频响值出现在6.4MHz。
这是由于示波器探头衰减后,带宽变大,增益变小。
5.分析接入电阻R8以后对测量结果的影响接入电阻R8以后,主要发生两方面的变化:谐振频率点的减小和在谐振点电压增益减小。
这是由于接入电阻R8,相当于在输出端并入电阻,谐振频率降低,负载输出减小。