生物反应工程(3)2014.10.22
- 格式:pdf
- 大小:1.91 MB
- 文档页数:43
生物反应工程原理复习资料生物反应过程与化学反应过程的本质区别在于有生物催化剂参与反应。
生物反应工程是指将实验室的成果经放大而成为可提供工业化生产的工艺工程。
酶和酶的反应特征酶是一种生物催化剂,具有蛋白质的一切属性;具有催化剂的所有特征;具有其特有的催化特征。
酶的来源:动物、植物和微生物酶的分类:氧化还原酶、水解酶、裂合酶、转移酶、连接酶和异构酶酶的性质:1)催化共性:①降低反应的活化能②加快反应速率③不能改变反应的平衡常数。
2)催化特性:①较高的催化效率 ②很强的专一性 ③温和的反应条件 易变性和失活 3)调节功能:浓度、激素、共价修饰、抑制剂、反馈调节等固定化酶的性质固定化酶:在一定空间呈封闭状态的酶,能够进行连续反应,反应后可以回收利用。
与游离酶的区别:游离酶----一般一次性使用(近来借助于膜分离技术可实现反复使用)固定化酶--能长期、连续使用(底物产物的扩散过程对反应速率有一定的影响;一般情况下稳定性有所提高;以离子键、物理吸附、疏水结合等法固定的酶在活性降低后,可添加新鲜酶溶液,使有活性的酶再次固定,“再生”活性)固定化对酶性质的影响:底物专一性的改变 、稳定性增强 、最适pH 值和最适温度变化、动力学参数的变化单底物均相酶反应动力学米氏方程快速平衡法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑这个可逆反应(3) 为快速平衡, 为整个反应的限速阶段,因此ES 分解成产物不足以破坏这个平衡稳态法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑这个可逆反应(3)中间复合物ES 一经分解,产生的游离酶立即与底物结合,使中间复合物ES 浓度保持衡定,即P E ES S E k k k +→+⇔-211P E ES +←ES S E ⇔+P E ES +→P E ES +←0=dt dC ES双倒数法(Linewear Burk ): 对米氏方程两侧取倒数得 以 作图 得一直线,直线斜率为 ,截距为根据直线斜率和截距可计算出Km 和rmax抑制剂对酶反应的影响:失活作用(不可逆抑制) 抑制作用(可逆抑制 ):竞争抑制 、反竞争抑制 、非竞争抑制 、 混合型抑制 竞争抑制反应机理:非竞争抑制反应机理:Sm C r K r r 111max max +=S C r 1~1max r K m max1r PE ES S E k k k +→+⇔-211EI I E I K ⇔+P E ES S E k k k +→+⇔-211EII E IK ⇔+ESI I ES IK ⇔+可逆抑制各自的特点:P37多底物均相酶反应动力学 (这里讨论:双底物双产物情况 )强制有序机制 顺序机制 西-钱氏机制 双底物双产物反应机制: 随即有序机制乒乓机制注意在工业级反应中, 反应速度一般是由改变所用酶浓度和(或)反应时间,而不是改变底物浓度来控制的,并且要测定的最重要参数是可测的转化率,而不是反应速度酶失活的因素有哪些?酶会由于种种因素发生失活。
《生物反应工程》课程笔记第一章绪论1.1 定义、形成与展望生物反应工程,简称BRE(Bioreaction Engineering),是一门应用化学工程原理和方法,研究生物反应过程和生物系统的科学。
它涉及到生物学、化学、物理学、数学等多个学科,是一门典型的多学科交叉领域。
生物反应工程的研究对象包括微生物、细胞、酶等生物催化剂,以及它们在生物反应器中的行为和相互作用。
生物反应工程的形成和发展与生物技术的快速崛起密切相关。
生物技术是指利用生物系统和生物体进行物质的生产、加工和转化的技术。
随着生物技术的不断发展,生物反应工程逐渐成为生物技术领域的一个重要分支,为生物制品的生产提供了重要的理论支持和实践指导。
展望未来,生物反应工程将继续在生物技术领域发挥重要作用。
随着科学技术的进步和生物产业的发展,生物反应工程将不断完善和发展,为人类的生产和生活带来更多的便利和福祉。
特别是随着合成生物学、系统生物学等新兴学科的发展,生物反应工程将面临新的机遇和挑战,有望在生物制造、生物医药、生物能源等领域取得更大的突破。
1.2 生物反应工程的主要内容生物反应工程的主要内容包括以下几个方面:(1)生物反应动力学:研究生物反应过程中反应速率、反应机理和反应物质量的变化规律。
包括酶促反应动力学、微生物反应动力学、细胞反应动力学等。
(2)生物反应器设计:根据生物反应的特性和要求,设计合适的生物反应器,使其能够高效、稳定地进行生物反应。
包括反应器类型的选择、反应器尺寸的确定、反应器内部构件的设计等。
(3)生物反应器操作:研究生物反应器中生物反应的运行规律,优化操作条件,提高生物反应的效果。
包括分批式操作、流加式操作、连续式操作等。
(4)生物反应器优化:通过对生物反应器的设计和操作进行优化,提高生物反应的产率和质量。
包括过程优化、参数优化、控制策略优化等。
(5)生物反应器控制:研究生物反应过程中的控制策略和方法,实现对生物反应过程的稳定控制。
生物反应工程课程设计一、教学目标本节课旨在让学生掌握生物反应工程的基本概念、原理和应用,培养学生对生物反应工程技术的兴趣和好奇心,提高学生的科学素养。
1.了解生物反应工程的定义、分类和特点。
2.掌握生物反应器的设计原理和操作条件。
3.熟悉生物反应工程在医药、食品、环保等领域的应用。
4.能够运用生物反应工程的原理解决实际问题。
5.能够分析生物反应工程案例,提出优化方案。
情感态度价值观目标:1.培养学生对生物反应工程技术的认同感和责任感。
2.激发学生对生物反应工程技术的创新意识。
二、教学内容本节课的教学内容主要包括生物反应工程的定义、分类和特点,生物反应器的设计原理和操作条件,以及生物反应工程在医药、食品、环保等领域的应用。
1.生物反应工程的定义、分类和特点。
2.生物反应器的设计原理和操作条件。
3.生物反应工程在医药、食品、环保等领域的应用案例。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过讲解生物反应工程的定义、分类和特点,使学生掌握基本概念。
2.讨论法:学生讨论生物反应器的设计原理和操作条件,提高学生的思考能力。
3.案例分析法:分析生物反应工程在医药、食品、环保等领域的应用案例,培养学生解决实际问题的能力。
4.实验法:安排实验课程,让学生亲身体验生物反应工程的魅力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《生物反应工程》。
2.参考书:相关领域的学术论文和专著。
3.多媒体资料:生物反应工程的图片、视频等。
4.实验设备:生物反应器、分析仪器等。
五、教学评估为了全面、客观地评估学生的学习成果,本节课将采用多种评估方式,包括平时表现、作业和考试等。
1.平时表现:观察学生在课堂上的参与程度、提问和回答问题的表现,了解学生的学习态度和兴趣。
2.作业:布置生物反应工程的相关的练习题,评估学生对知识点的掌握程度。
生物反应工程知识点总结生物反应工程是一门交叉学科,结合了生物学、化学工程和生物化学等多个学科的知识,旨在利用微生物、酶和其他生物体系进行生产、治疗和环境保护等方面的工程应用。
生物反应工程在农业、食品工业、医药、环保等领域具有广泛的应用价值。
本文将围绕生物反应工程的基本概念、发展历程、相关技术和应用领域等方面进行总结。
一、基本概念1.生物反应生物反应是生物体在特定条件下对外界刺激产生的一系列生化反应的总称。
生物反应包括呼吸、发酵、光合作用等,这些反应都是生物体为了维持生命活动而进行的基本生化过程。
2.生物反应工程生物反应工程是利用生物体系进行生产、治疗和环境保护等方面的工程应用的学科。
它主要研究生物反应的基本原理、工程方法和技术手段,旨在发展出高效、经济、环保的生化工艺和技术。
3.微生物微生物是一类单细胞生物,包括细菌、真菌、藻类等。
它们在生物反应工程中扮演着重要的角色,可以用于生产酶、抗生素、酒精等化学品,也可以用于处理废水、废气和固体废弃物。
4.酶酶是生物反应中的一种催化剂,可以促进生化反应的进行,具有高效、特异性和温和的特点。
在生物反应工程中,酶的应用范围非常广泛,如制糖、酿酒、生物柴油生产等方面都有重要应用。
二、发展历程生物反应工程作为一个新兴的交叉学科,其发展经历了以下几个阶段:1.早期阶段生物反应工程的萌芽可以追溯到19世纪末20世纪初。
当时,人们开始意识到微生物在发酵过程中的重要作用,并开始尝试利用微生物制备酒精、乳酸和醋等产品。
2.发展阶段20世纪50年代后,随着生物技术的发展,生物反应工程逐渐形成了自己的理论体系和技术手段。
在这一阶段,人们开发了大量的酶工程和发酵工程技术,并将其应用于制药、食品、农业等领域。
3.成熟阶段近年来,随着基因工程、蛋白工程等技术的不断进步,生物反应工程进入了一个快速发展的阶段。
人们可以通过改变微生物菌种的遗传信息,使其具有更高的产酶性能,从而实现高效生产。
⽣物反应⼯程(知识点参考)名词解释1,返混:不同停留时间的物料的混合。
2,双膜理论:作为界⾯传质动⼒学的理论,该理论较好地解释了液体吸收剂对⽓体吸收质吸收的过程。
⼀种关于两个流体相在界⾯传质动⼒学的理论3,构象改变:在分⼦⽣物学⾥,⼀个蛋⽩质可能为了执⾏新的功能⽽改变去形状;每⼀种可能的形状被称为构象,⽽在其之间的转变即称为构象改变。
4,分配效应:分配的马太效应(Matthew Effect),是指好的愈好,坏的愈坏,多的愈多,少的愈少的⼀种现象。
5,酶的固定化技术:酶固定化技术是通过物理或化学的⽅法将酶连接在⼀定的固相载体上成为固定化酶,从⽽发挥催化作⽤。
固定化后的酶在保持原有催化活性的同时,⼜可以同⼀般催化剂⼀样能回收和反复使⽤,可在⽣产⼯艺上实现连续化和⾃动化,更适应⼯业化⽣产的需要。
6,结构模型:就是应⽤有向连接图来描述系统各要素间的关系,以表⽰⼀个作为要素集合体的系统的模型.7,固定化酶:⽔溶性酶经物理或化学⽅法处理后,成为不溶于⽔的但仍具有酶活性的⼀种酶的衍⽣物。
在催化反应中以固相状态作⽤于底物。
8,停留时间:⼜称寄宿时间,是指在稳定态时,某个元素或某种物质从进⼊某物到离开该物所度过的平均时间。
9,恒化器:⼀种微⽣物连续培养器。
它以恒定的速度流出培养液,使容器中的微⽣物⽣长繁殖始终低于最快⽣长速度。
这种容器反映的是培养基的化学环境恒定。
⽽恒浊器反映的是细胞浊度(浓度)的恒定。
10,恒浊器:⼀种连续培养微⽣物的装置。
可以根据培养液中的微⽣物的浓度,通过光电系统观控制培养液的流速,从⽽使微⽣物⾼密度的以恒定的速度⽣长。
11,⽣物反应⼯程:⼀个由⽣物反应动⼒学与化学反应⼯程结合的交叉分⽀学科。
着重解决不同性质的⽣物反应在不同型式的⽣物反应器中以不同的操作⽅式操作时的优化条件12,连续灭菌:就是将配制好的培养基在通⼊发酵罐时进⾏加热,保温,降温的灭菌过程,也称连消。
13,间歇灭菌:在100℃条件下,灭菌30分钟,间隔24⼩时再重复操作三次。
生物反应工程原理复习资料1 生物反应工程:生物反应工程是一门以研究生物反应过程中带有共性的工程技术问题的学科。
是以生物学、化学、工程学、计算机与信息技术等多学科为基础的交叉学科。
2 生物反应过程:是指将实验室的成果经放大而成为可供工业化生产的工艺过程,包括实现工业化生产过程的高效率运转,或者说提高生产过程效率。
4 生物反应器:是指以活细胞或酶为生物催化剂进行细胞增殖或生化反应提供适宜环境的设备或者场所。
5 生物反应过程的缩小:根据生产实际,在实验室中使用小型反应器来模拟生产过程,以进行深入研究。
6 转化率:某反应物的转化浓度与该反应物起始比值的百分比7 收率:指按反应物进行量计算,生成目的产物的百分数。
用质量百分数或者体积百分数表示8 流加操作:是指先将一定量基质加入反应器内,在适宜的条件下将微生物菌种接入反应器中,反应开始,反应过程中将特定的限制性基质按照一定要求加入到反应器中,以控制限制性基质浓度保持一定,当反应结束时取出反应物料的操作方式。
9 指数流加操作:通过采用随时间呈指数变化的方式流加基质,维持微生物细胞对数生长的操作方式。
10 非结构模型:在确定论模型的基础上,不考虑细胞内部结构的不同,即认为细胞为单一组分,在这种理想状态下建立起来的动力学模型。
13Da准数:最大反应速率和最大传质速率之比。
14 分批发酵:是指将新鲜的培养基一次性加入发酵罐中,在适宜的条件下接种后开始培养,培养结束后,将全部发酵液取出的培养方法。
15 连续培养发酵连续式操作(continuousoperation):是指以一定的速率不断向发酵罐中供给新鲜的培养基,同时等量地排出发酵液,维持发酵罐中液量一定的培养方法。
16 稀释率:培养液流入速度和反应器内培养液的体积之比,他表示连续反应器中物料的更新快慢程度。
17 得率系数;是对碳元素等物质生成细胞或是其他产物的潜力进行定量评价的重要参数。
18 细胞得率:消耗1克基质生成细胞的克数称为细胞得率或是生长得率。
生物反应工程基本内容生物反应工程是一门综合应用生物学、化学、工程学等多学科知识,对生物体进行利用和改造的学科。
它主要研究利用微生物、酶和细胞等生物体进行生物转化过程的优化和控制,以达到工业生产的需求。
生物反应工程的基本内容包括:1. 微生物培养与酶工程:生物反应工程的基础是对微生物的培养和酶的研究。
通过优化培养基的配方、培养条件的控制以及酶的筛选和改造等手段,提高微生物和酶的产量和活性,以满足工业生产的需要。
2. 反应器设计与工艺优化:生物反应器是进行生物反应的关键设备,其设计和优化对反应效果有着重要影响。
通过研究反应器的物质传递、能量转化和动力学等特性,确定最佳的反应器类型、参数和运行条件,以提高反应效率和产量。
3. 代谢工程与基因工程:代谢工程是通过改造生物体的代谢途径和调控基因表达,使其产生特定的化合物或物质。
基因工程则是通过改变生物体的基因组,引入新的基因或改变现有基因的表达,以增强其产物合成能力。
这些技术在生物反应工程中被广泛应用,用于提高产量、改善产物质量和调控代谢途径。
4. 应用于生物药物生产:生物反应工程在生物药物生产中有着广泛的应用。
通过选择合适的生产菌株,优化培养条件和生产工艺,可以实现大规模的生物药物的生产。
此外,生物反应工程还可以用于生物药物的质量控制和产物纯化等环节。
5. 生物过程监测与控制:生物反应工程中,对生物体内部代谢过程的监测和控制是至关重要的。
通过建立合适的传感器和监测系统,可以实时监测关键参数如温度、pH值、氧气浓度和代谢产物浓度等。
同时,通过建立反馈控制系统,实现对反应过程的自动调节和优化。
总之,生物反应工程是一门涉及多学科知识的学科,通过优化微生物、酶和细胞等生物体的利用和改造,以实现工业生产的需求。
它不仅在生物药物生产中有着重要的应用,还可以用于环境保护、农业生产和能源开发等领域。
随着科技的不断进步,生物反应工程的研究与应用前景将越来越广阔。
发酵技术现状及其研究进展中国科学院过程工程研究所一、发酵技术现状主体技术---液态发酵液态发酵发展历程---40年代固态发酵----古老落后二、液态发酵技术及设备1. 发酵过程的种类l分批培养l补料分批培养l半连续培养l连续培养l分批发酵简单的过程,培养基中接入菌种以后,没有物料的加入和取出,除了空气的通入和排气。
整个过程中菌的浓度、营养成分的浓度和产物浓度等参数都随时间变化。
分批培养中微生物的生长分批培养的优缺点优点操作简单,周期短,染菌机会少,生产过程和产品质量容易掌握缺点产率低,不适于测定动力学数据l补料分批培养在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。
在此过程中只有料液的加入没有料液的取出,所以发酵结束时发酵液体积比发酵开始时有所增加。
在工厂的实际生产中采用这种方法很多。
Feedstock vessel (sterile)Pump补料分批培养的优缺点优点在这样一种系统中可以维持低的基质浓度,避免快速利用碳源的阻遏效应;可以通过补料控制达到最佳的生长和产物合成条件;还可以利用计算机控制合理的补料速率,稳定最佳生产工艺。
缺点由于没有物料取出,产物的积累最终导致比生产速率的下降。
由于有物料的加入增加了染菌机会l半连续培养在补料分批培养的基础上间歇放掉部分发酵液(带放)称为半连续培养。
某些品种采取这种方式,如四环素发酵优点放掉部分发酵液,再补入部分料液,使代谢有害物得以稀释有利于产物合成,提高了总产量。
缺点代谢产生的前体物被稀释,提取的总体积增大l连续培养发酵过程中一边补入新鲜料液一边放出等量的发酵液,使发酵罐内的体积维持恒定。
达到稳态后,整个过程中菌的浓度,产物浓度,限制性基质浓度都是恒定的。
优点控制稀释速率可以使发酵过程最优化。
发酵周期长,得到高的产量。
由于μ=D,通过改变稀释速率可以比较容易的研究菌生长的动力学缺点菌种不稳定的话,长期连续培养会引起菌种退化,降低产量。
长时间补料染菌机会大大增加。
2. 生物反应器设计原则和要求1、生物反应器设计的目标和原则v一个优良的生物反应器的作用:•为细胞代谢提供一个适宜的物理及化学环境,•使细胞能更快更好地生长,•并得到更多需要的生物量或代谢产物。
v一个优良的生物反应器应具备:•严密的结构•良好的液体混合性能•高的传质和传热速率•灵敏的检测和控制仪表v判断生物反应器好坏的唯一标准是:该装置能否适合工艺要求以取得最大的生产效率。
v生物反应器设计的主要目标:使产品的质量高、成本低。
生物反应器处于生物过程的中心,是影响整个过程的经济效益的一个重要方面,其中生物反应器的节能是设计的一个重要因素。
v生物反应器设计的重要方面包括:•改善生物催化剂;•好的过程控制;•好的无菌条件;•克服速度限制因素(热量、质量传递)3. 好氧发酵罐的类型一般按能量的输入方式不同,把发酵罐分为: 机械搅拌发酵罐-----这是一种目前使用最广泛的发酵罐,也称为通用发酵罐。
能量通过搅拌器搅动发酵液而输入,用于分散空气。
空气喷射发酵罐----这是一种通过压缩空气喷入发酵液中,利用喷射动能和气液重量差使发酵液形成气液循环流动。
如气生式发酵罐。
n按结构分为罐式发酵罐(高径比小于3)塔式发酵罐(高径比大于3)n按发酵液的流动情况分为并流式、对流式、上流式和下流式发酵罐机械搅拌罐Outlet portStirrer motor pH probeTemperature probeFoam breaker Mixing flangeStirrer paddleSterile air supply0.5m filter unitFilling/inoculation portGlass (< 10L) orsteel vessel Heat exchange elementAir outlet (to condenser)挡板作用:防止液面中央形成旋涡而促使液体激烈翻动,以提高溶氧发酵车间搅拌浆气升式发酵罐工作原理:在罐内装设上升管,上升管两端与罐底及罐上部相连接,构成一个循环系统。
在上升管的下部装设空气喷咀,空气喷咀以250~300m/s的速度喷入上升管,借喷咀的作用使空气泡分割细碎,与上升管的发酵液密切接触。
由于上升管内的发酵液轻,加上压缩空气的喷流动能,使上升管的液体上升。
罐内液体下降而进入上升管,形成反复的循环,供给发酵液所耗的溶解气量,使发酵正常进行。
特点:----结构简单,冷却面积小;----无搅拌传动设备,节约动了约50%,节约钢材;----操作无噪音;----料液可充满达80~90%;缺点:----不能代替好气量较小发酵罐,对于粘度大的发酵液溶氧系数较低。
气流搅拌玻璃发酵罐反应器的放大原则1、发酵罐的放大原则-----由于发酵罐的类型很多,所用的体系也各异,因此发酵罐的放大是比较复杂的。
-----发酵罐的放大无论从学术上或工程角度上都具有重要意义。
-----但遗憾的是目前为止尚未得出一个十分有效的放大方法,所以发酵罐的放大技术仍然处于凭经验或半经验状态。
-----在发酵罐放大中,主要解决放大后的生产罐的空气流量、搅拌转速和搅拌功率消耗等三个问题。
(1)几何相似按小的与大的几何尺寸大致相同放大,即当体积放大10倍时,设备直径和高度均放大101/3倍。
(2)恒定等体积功率放大,即[Pg/V]1=[Pg/V]2此法用的较多,较简单,可保证罐内有良好的混合。
放大比例为:P g -在通气下轴功率,V-发酵液体积,N-搅拌转速,d-搅拌器直径2/3121232211dn=n()ddP=P()d(3)恒定传氧系数ka放大L这个方法抓住了传氧这一关键因素,目前应用的很多。
(4)以单位培养液体积中空气流量相同的原则方放大(vvm1=vvm2)(5)另外,还有恒定剪切力、恒定叶端速度、恒定混合时间放大等以上各种方法各集中在一个侧重点,有时得出的结论往往有很大差异。
选用什么原则是要积累较多的经验,多参考一些放大的事例,加上对放大体系特点的深入分析。
生物反应器开发的趋势和未来方向§改进生物反应器的传质、传热的方法§生物反应器向大型化和自动化方向发展§特殊要求的新型生物反应器的研制开发§降低设备投资方面,对连续过程更加重视。
生物反应器开发的趋势和末来的方向是多样化、大型化和高度自动化。
三、固态发酵技术1. 固态发酵技术特点n 固态发酵的天然优势----节水、节能绿色的发酵技术----产品种类多(食品、农药、饲料等)----国民经济重要组成原料来源广n 固态发酵的问题-----古老而落后代表-----难以实现大规模现代化发酵工业方式-----没有成为发酵工业的主体倍受国内外广泛关注固态发酵的理解固态发酵和固体发酵:一般讲一切使用不溶性固体基质来培养微生物的工艺过程,称之为固体发酵。
按照这样理解既包括将固体悬浮在液体中的深层发酵,也包括在没有(或几乎没有)游离水的湿固体材料上培养微生物的工艺过程。
而对于固态发酵来讲,是指没有或几乎没有自由水存在下,在有一定湿度的水不溶性固态基质中,用一种或多种微生物发酵的一个生物反应过程。
固态发酵的理解•固态发酵和液态发酵:固态发酵是以气相为连续相的生物反应过程;液态发酵是以液相为连续相的生物反应过程。
..……。
.。
…。
…。
…....………………..。
.。
..。
..。
.。
.........……………….………..发酵液体(水作为连续相)细胞气泡不溶性底物无菌空气搅拌电机气体(空气作为连续相)固体颗粒及细胞菌体AB图1-1固态发酵液态发酵的比较A 液态发酵系统B 固态发酵系统2. 固态发酵存在的问题•物料导热系数低存在热量去除的问题•装料系数小,发酵罐利用率较低•可检测参数少•缺乏有效的过程调控手段•固态物料操作不便,劳动量大•对于纯度要求较高的产品提取较为困难3.固态发酵生物反应器根据固态发酵反应器形态可分为九种类型的固态发酵反应器:1)转鼓式;2)木盒式;3)加盖盘式;4)垂直培养盒式;5)倾斜接种盒式;6)浅盘式;7)传送带式;8)园柱式;9)混合型式等。
以基质的运动情况则可以分为两类,1)静态固态发酵反应器,包括浅盘式和塔柱式反应器;2)动态固态发酵反应器,包括机械搅拌的筒,柱式,转鼓式反应器等。
3.1 静态固态发酵反应器将一个或多个静态园柱式反应器平行放在一个恒温箱中并通以饱和空气,其优点。
(1)系统简单,廉价,操作方便(2)克服固态发酵无法用摇瓶法作大量基础研究的缺点,同时可作多条件的平行实验并且温度,湿度等条件均一(3)系统易灭菌静态固态发酵反应器其缺点:---无法准确控制气体和物料的湿度,只能供饱和湿空气---无法取样分析---放大过程中难以消除床径扩大的影响---静态固态发酵反应器无论体积,高径比如何变化,其基本形式是不变的,但供气,保温,控温系统却是千差万别的。
静态固态发酵反应器3.2 动态固态发酵反应器动态固态发酵反应器中的基质处于间断或连续的运动状态,而强化了传热和传质,设备结构紧凑,自动化程度相对较高,发酵器内微生物生长较快并且均一。
其存在的问题有。
---由于机械部件多,结构复杂,灭菌消毒比较困难---固态基质的搅拌能耗过大,发酵物料的持续运动有可能会破坏菌丝体,从而影响菌体的生长与代谢---放大过程中所遇到的困难是由于物料运动导致在生长过程中菌丝被伤害,这个问题的严重性随着发酵器容积的增大而增加---在放大过程中还会存在:发酵体系温度控制,保持不染菌,发酵基质聚集成球状而影响传质传热等诸多方面的问题。
动态固态发酵反应器转鼓式谢谢!。