数控系统的国内外发展及应用现状
- 格式:doc
- 大小:87.00 KB
- 文档页数:17
数控技术课大作业专业:学号:学生:指导教师:完成日期:数控系统的国外开展及应用现状目录第1章序言第2章数控系统的开展过程和趋势2.1数控系统的开展过程2.2数控系统的开展趋势第3章国外和国数控系统功能介绍与应用分析3.1 国外数控系统功能介绍与应用分析3.1.1 西门子SINUMERIK 840D3.1.2 FANUC 数控系统63.2 国数控系统功能介绍与应用分析3.2.1 华中“世纪星〞数控系统3.2.2 数控GSK27全数字总线式高档数控系统第4章国外数控系统比拟及差距分析4.1 国外数控系统比拟4.1.1 西门子公司数控系统(SIEMENS)的产品特点4.1.2 FANUC公司数控系统的产品特点4.2 我国数控系统与国外数控系统的差距参考文献第一章序言数控即数字控制(Numerical Control,NC)。
数控技术是指用数字信号形成的控制程序对一台或多台机械设备进展控制的一门技术。
数控机床,简单的说,就是采用了数控技术的机床。
即将机床的各种动作、工件的形状、尺寸以及机床的其他功能用一些数字代码表示,把这些数字代码通过信息载体输入给数控系统,数控系统经过译码、运算以及处理,发出相应的动作指令,自动地控制机床的刀具与工件的相对运动,从而加工出所需要的工件。
因此,数控机床就是一种具有数控系统的自动化机床。
它是典型的机电一体化产品,是现代制造业的关键设备。
第二章数控系统的开展过程和趋势2.1数控系统的开展过程1946年诞生了世界上第一台电子计算机,这说明人类创造了可增强和局部代替脑力劳动的工具。
六年后,即在1952年,计算机技术应用到了机床上。
在美国诞生了第一台数控机床。
从此,传统机床产生了质的变化。
近半个世纪以来,数控系统经历了两个阶段和六代的开展。
1.数控(NC)阶段(1952-1970年)早期计算机运算速度低,这对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。
人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控,简称为数控(NC)。
数控系统市场分析现状1. 引言数控系统是一种通过电脑控制工具机进行加工的自动化技术。
在当今工业领域,数控系统已经成为了重要的加工工具。
本文将对数控系统市场的现状进行分析,以帮助读者了解该市场的发展动态和趋势。
2. 市场规模目前,全球数控系统市场规模正在不断扩大。
根据市场研究报告,预计数控系统市场在未来几年内将以稳定的增长率增加。
这主要是由于制造业的智能化升级和自动化需求的不断增加,从而推动了数控系统市场的发展。
3. 市场驱动因素数控系统市场的增长受到多种驱动因素的影响。
首先,制造业的数字化和智能化升级需要更高效、精准的加工工具,从而带动了数控系统的需求增长。
其次,全球制造业竞争激烈,提高生产效率已成为企业的迫切需求,数控系统的应用可以有效提高生产效率和产品质量。
此外,工业4.0的兴起也促进了数控系统市场的发展,因为数控系统是实现智能制造和自动化生产的重要基础。
4. 市场细分数控系统市场可以按照产品类型进行细分,常见的数控系统包括数控车床系统、数控铣床系统、数控磨床系统等。
此外,市场还可以按照应用行业进行细分,例如机械制造、汽车制造、航空航天等。
不同细分市场之间存在一定的差异和需求特点。
5. 市场竞争态势数控系统市场竞争激烈,市场上存在着多家具有一定规模和技术优势的厂商。
这些厂商通过不断创新和技术研发,努力提高产品的性能和质量,以获取更大的市场份额。
此外,市场上的竞争也推动了数控系统的技术进步和成本下降。
6. 市场发展趋势在未来的市场发展中,数控系统有几个明显的趋势。
首先,数控系统将更加智能化和自动化,通过人工智能和大数据技术的应用,实现更精准、高效的加工。
其次,数控系统将更加注重节能减排,以满足环保要求。
最后,数控系统将进一步融入物联网和云计算,实现更高级别的数据集成和生产流程优化。
7. 结论数控系统市场在全球范围内呈现出稳定增长的趋势。
市场规模不断扩大,市场驱动因素多样且强力驱动着市场的发展。
国内外数控系统现状及发展趋势随着信息技术的不断发展,数控系统在现代制造业中的应用越来越广泛。
数控系统以其高效、精准、灵活的特点,成为现代制造业提高生产效率和产品质量的重要手段。
本文将从国内外数控系统的现状和发展趋势两个方面进行探讨。
一、国内数控系统的现状国内数控系统市场逐渐成熟,已经形成了以华中数控、广州数控、海天数控等为代表的一批龙头企业。
这些企业在数控系统的研发、生产和销售方面具有较强的实力和技术优势。
同时,国内数控系统的应用领域也在不断拓展,除了传统的金属加工行业外,还涉及到了航空航天、汽车制造、电子信息等领域。
国内数控系统的发展受到多方面因素的影响。
首先是技术水平的提升。
随着国内制造业的转型升级,对数控系统的需求越来越高,这就要求国内数控系统企业不断提升自身的研发和创新能力,不断推出更加先进、功能更强大的产品。
其次是市场需求的扩大。
随着国内经济的快速发展,各个行业对数控系统的需求不断增加,这为数控系统企业提供了广阔的市场空间。
最后是政策的支持。
国家对于数控系统产业给予了大力支持,并出台了一系列的政策措施,鼓励企业加大研发投入,提高产品质量,提升企业竞争力。
二、国外数控系统的现状国外数控系统的发展相对较早,技术水平较高。
目前,德国、日本、美国等国家的数控系统企业处于行业的领先地位。
这些企业在数控系统的研发和创新方面具有显著的优势,其产品不仅在国际市场上有很大的市场份额,而且在技术水平上也遥遥领先于其他国家。
国外数控系统企业的成功主要得益于以下几个方面的因素。
首先是技术积累的优势。
这些企业在数控系统的研发和生产方面已经有着多年的经验和积累,具备了先进的技术和工艺手段。
其次是市场运作的能力。
这些企业在国际市场上有着广泛的渠道和客户资源,能够灵活地应对市场需求的变化。
最后是品牌影响力的积累。
这些企业多年来通过不断提升产品质量和服务水平,已经建立起了良好的品牌形象和口碑。
三、数控系统的发展趋势随着科技的不断进步,数控系统将会呈现出以下几个发展趋势。
2023年数控系统行业市场分析现状数控系统行业是现代制造业的重要组成部分,其技术和产品在机械加工、零部件加工、模具制造等领域具有重要应用价值。
随着工业化的发展和制造业的升级,数控系统行业市场呈现出良好的发展势头。
下面将从市场规模、市场需求、竞争格局等方面对数控系统行业市场进行分析。
一、市场规模数控系统行业的市场规模逐年增长。
根据市场研究数据显示,2019年全球数控系统市场规模达到1000亿美元,预计到2025年将超过1600亿美元。
与此同时,中国数控系统市场也在持续扩大,2019年中国数控系统市场规模约为350亿元,预计到2025年将超过600亿元。
市场规模的不断扩大,为数控系统行业提供了广阔的发展空间。
二、市场需求数控系统行业的市场需求主要来自于制造业的需求。
随着制造业的转型升级,对高精度、高效率、高灵活性的数控系统需求越来越大。
同时,随着人工成本的上升和人工智能技术的进步,各行业对自动化和智能化生产设备的需求也在增加。
例如,汽车制造业对车床、铣床等数控机床的需求量不断增加;航空航天工业对数控加工中心、数控车床等高精度数控设备的需求也在不断增加。
因此,市场需求的不断增加将推动数控系统行业的发展。
三、竞争格局数控系统行业的竞争格局相对激烈,主要表现在以下几个方面:1. 市场份额分散:目前数控系统行业市场份额相对分散,没有一家企业可以垄断整个市场。
在中国数控系统市场,国内外知名企业如德马吉、西门子、同方威视等各自拥有一定的市场份额。
同时,还存在一些地方性、小规模的数控系统企业。
2. 技术创新驱动:在竞争格局中,技术创新是企业立足市场的重要手段。
数控系统行业的竞争主要表现在技术领域,比如控制系统的稳定性、精度、速度等方面的提升。
技术创新不仅能提高企业产品的竞争力,还能满足市场对高性能数控系统的需求。
3. 售后服务与品牌影响力:数控系统的售后服务和品牌影响力也是企业竞争的重要方面。
优质的售后服务能够提升客户的满意度,增加客户的忠诚度。
数控技术的发展及国内外现状数控技术的发展及国内外现状摘要:数控技术(Numerical Contrl)是一种采用计算机对生产过程中各种控制信息进行数字化运算、处理,并通过高性能的驱动单元对机械执行构件进行自动化控制的高新技术。
本文对数控技术的发展经行了研究,并比较对比了国内外数控技术的发展现状,对国内数控未来的发展提出了建议。
关键词:数控技术;发展;国内外现状数控技术集传统的机械制造技术、计算机技术、现代控制技术、传感检测技术、网络通信技术和光、电技术于一体的现代制造业的基础技术。
它具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化和智能化起着举足轻重的作用。
数控技术是制造自动化的基础,是现代制造装备的灵魂核心,是国家工业和国防工业现代化的重要手段,关系到国家战略地位,体现国家综合国力水平,其水平的高低和数控装备拥有量的多少是衡量一个国家工业现代化的重要标志。
1.数控技术的发展概述1948年,美国帕森斯公司接受美国空军委托,研制直升飞机螺旋桨叶片轮廓检验用样板的加工设备。
由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出采用数字脉冲控制机床的设想。
1949年,该公司与美国麻省理工学院(MIT)开始共同研究,并于1952年试制成功第一台三坐标数控铣床,当时的数控装置采用电子管元件。
1959年,数控装置采用了晶体管元件和印刷电路板,出现带自动换刀装置的数控机床,称为加工中心( MC Machining Center),使数控装置进入了第二代。
60年代末,先后出现了由一台计算机直接控制多台机床的直接数控系统(简称 DNC),又称群控系统;采用小型计算机控制的计算机数控系统(简称 CNC),使数控装置进入了以小型计算机化为特征的第四代。
1974年,研制成功使用微处理器和半导体存贮器的微型计算机数控装置(简称 MNC),这是第五代数控系统。
20世纪80年代初,随着计算机软、硬件技术的发展,出现了能进行人机对话式自动编制程序的数控装置;数控装置愈趋小型化,可以直接安装在机床上;数控机床的自动化程度进一步提高,具有自动监控刀具破损和自动检测工件等功能。
数控系统行业市场分析数控系统是机械制造行业中的重要技术装备,常见于机床、塑胶机械、印刷机械等领域。
随着自动化、智能化的推进,数控系统的需求持续增长,市场前景广阔。
本文将从市场规模、发展趋势、竞争格局、机遇与挑战等方面进行分析。
一、市场规模数控系统市场规模庞大。
根据市场研究机构的数据显示,2024年全球数控系统市场规模达到90亿美元,预计到2025年这一数字将达到140亿美元,年复合增长率将维持在7%左右。
中国是全球最大的数控系统市场,占据约30%的市场份额,市场规模达到30亿美元以上。
二、发展趋势1.自动化、智能化:随着智能制造的发展,数控系统也在朝着自动化、智能化方向发展。
智能化数控系统具有高精度、高效率、灵活性强等特点,正在成为市场的主流产品。
2.产业升级:随着制造业的升级换代,对设备的精度和效率要求越来越高,数控系统的需求也相应增加。
同时,一些传统行业也在向数字化、网络化、智能化方向发展,数控系统也将得到更广泛的应用。
3.个性化定制:消费升级趋势明显,个性化定制需求凸显。
数控系统具有灵活性强的特点,可以满足客户个性化定制需求,因此在一些高端市场有较大的发展空间。
三、竞争格局数控系统行业竞争激烈。
全球数控系统市场主要由西门子、Fanuc、松下等国际知名企业垄断,这些企业凭借技术实力、品牌影响力和全球化布局等优势,占据了市场的大部分份额。
同时,中国的数控系统企业也在不断崛起,如中国精工、长沙金城等公司在国内市场具有一定竞争优势,逐渐向海外市场扩张。
四、机遇与挑战1.升级换代需求:随着制造业升级换代的推进,数控系统的需求将持续增长。
尤其是在新兴行业和高附加值领域,数控系统将发挥重要作用。
2.技术进步带来的机遇和挑战:随着技术的进步,数控系统将朝着高精度、高效率、智能化的方向发展。
这不仅为数控系统企业带来市场机遇,同时也会带来技术更新和转型升级的挑战。
3.国际市场竞争激烈:数控系统行业是一个全球化竞争的市场,国际知名企业具有较强的市场竞争力。
第一章国内外数控机床发展现状及数控知识简介一、国内数控机床发展现状1.1 国内数控机床近几年发展我国的数控机床无论从产品种类、技术水平、质量和产量上都取得了很大的发展,在一些关键技术方面也取得了重大突破。
据统计,目前我国可供市场的数控机床有1500种,几乎覆盖了整个金属切削机床的品种类别和主要的锻压机械。
这标志着国内数控机床已进入快速发展的时期。
近年来我国机床行业不断承担为国家重点工程和国防军工建设提供高水平数控设备的任务。
如国产XNZD2415型数控龙门混联机床充分吸取并联机床的配置灵活与多样性和传统机床加工范围大的优点,通过两自由度平行四边形并联机构形成基础龙门,在并联平台上附加两自由度串联结构的A、C轴摆角铣头,配以工作台的纵向移动,可完成五自由度的运动。
该构型为国际首创。
基于RT一Linux开发的数控系统具有的实时性和可靠性,能在同一网络中与多台PLC相连接,可控制机床的五轴联动,实现人机对话。
该机床的作业空间4.5mx1.6mx1.2m,A轴转角±1050,C轴连续转角0一4000,主轴转速(无级)最高10000r/min,重复定位精度±0.01mm,可实现三维立体曲面如水轮机叶片,导叶的五轴联动高速切削加工。
超精密球的加面车床为陀螺仪工提供了基础设备,这类车床也可用于透镜模具、照相机塑料镜片、条型码阅读设备、激光加工机光路系统用聚焦反射镜等产品的加工。
高速五轴龙门铣床采用铣头内油雾润滑冷却、横梁预应力反变形控制等技术。
这类铣床可用于航空、航天、造船、水泵叶片、高档模具等的加工。
目前我国已经可以供应网络化、集成化、柔性化的数控机床。
同时,我国也已进入世界高速数控机床和高精度精密数控机床生产国的行列。
目前我国已经研制成功一批主轴转速在8000—10000r/min以上的数控机床。
我国数控机床行业近年来大力推广应用CAD等技术,很多企业已开始和计划实施应用ERP、MRPII 和电子商务。
数控技术国内外现状数控技术是制造业的重要组成部分之一,可以替代传统的手工操作,提高生产效率和产品质量,从而满足广大消费者对高品质、高精度、高效率的需求。
本文将探讨数控技术在国内外的现状,并对未来的发展趋势进行预测。
一、国外现状在欧美发达国家,数控技术的应用已经非常广泛,尤其是在汽车、航空航天、船舶、能源等行业的制造中,数控机床已经成为不可或缺的设备。
与此同时,随着工业机器人的进一步发展和普及,数控技术已经被引入到了更广泛的领域中,包括精密电子、医疗器械、生命科学等。
在海外市场上,德国、日本、美国等国家拥有数控技术领域的发达产业链和成熟的技术体系,占据了世界市场的主导地位。
二、国内现状中国数控技术行业也在近年来得到了长足的发展,尤其是在高速铁路、航空航天等领域。
可以说,中国的制造业已经完成了从简单的代工加工到独立开发生产的重要转型。
同时,政府也鼓励了国内企业的创新能力和自主研发能力,通过资金补贴、税收优惠等政策,使得数控技术产业得到了快速发展。
然而,尽管中国的数控机床市场正在快速蓬勃发展,但与发达国家的数控技术水平相比,依然存在很大差距。
中国的数控技术和生产装备的精度和质量控制还需要提高,同时,与国际先进水平相比,中国数控机床的结构和控制系统设计也需要进一步提高。
在这种情况下,尤其需要强调自主研发能力,提高对关键核心技术的掌握,才能够向世界领先水平挺进。
三、未来发展趋势从国内外数控技术产业的现状来看,未来几年数控技术的应用领域将会进一步扩大,而且在自主研发和技术能力提升方面也会得到更大的关注。
随着人工智能、云计算等新技术的不断成熟,数控技术产业链也将发生重大改变,控制系统将更加智能化、灵活化,并且更加集成化。
同时,新材料、新加工方式等新技术的应用将推动数控技术产业更加多样化和创新化。
在国内市场方面,数控市场需求也将会进一步提升,在机械加工、汽车、电子、航空航天、高铁、半导体等产业下的需求对数控设备和技术的发展都具有十分重要的推动作用。
数控系统的国内外发展及应用现状数控系统是自动化技术和数字控制技术相结合的产物,是一种以数字信号为基础的自动控制系统。
它广泛应用于机械制造、航空航天、汽车制造、电子制造等领域。
本文将从国内外发展和应用现状两个方面来探讨数控系统的发展情况。
首先,国外发展。
数控系统最初在二战期间由美国等西方国家开始研发,用于航空制造,进一步推动了航空技术的进步。
随后,数控技术逐渐应用于其他工业领域,如汽车制造、电子制造等。
美国、日本和德国等发达国家在数控系统的研发和应用方面保持着领先地位。
特别是日本,其在数控技术方面投入巨大,使得其机械制造业获得了全球领先地位。
例如,日本的数控车床、加工中心等设备在全球市场占有很大份额。
而在中国,数控技术的发展起步较晚。
上世纪50年代末,我国开始引进一些数控设备,并在1965年建立了第一个数控机床生产厂。
从那时起,我国开始了数控技术的研发与推广,在国内一些关键领域形成了自主的数控技术体系。
近年来,中国在数控系统的研发和应用方面取得了巨大的进步,国内的数控设备制造技术水平逐步提高,一些大型企业在技术上具备了与国外企业竞争的能力。
目前,我国的数控设备已广泛应用于机械制造、航空航天、汽车制造等领域。
在应用现状方面,数控系统在各个国家和地区都得到了广泛应用。
数控设备改变了传统的手工操作模式,提高了生产效率和产品质量。
它不仅可以提供高度精确和稳定的加工能力,还能够实现复杂零件的自动化生产。
此外,随着智能制造和工业4.0的发展,数控系统将更加智能化和自动化,为工业生产带来更多的便利和效益。
总之,数控系统是现代制造业的重要技术之一,其在国内外的发展和应用呈现出不同的特点。
国外发达国家在数控技术方面具有明显的优势,而中国在近年来的快速发展使得其在数控技术领域逐步迎头赶上。
随着技术的进步和应用的推广,数控系统在工业生产中的地位将愈加重要。
国内外数控技术的发展现状与趋势一、本文概述数控技术,即数控加工编程技术,是现代制造业的核心技术之一,它涉及到计算机编程、机械设计、自动控制等多个领域。
随着科技的飞速发展,数控技术在国内外都取得了显著的进步,广泛应用于航空航天、汽车制造、模具加工等各个行业。
本文将对国内外数控技术的发展现状与趋势进行深入探讨,以期了解数控技术的最新发展动态,为相关领域的从业者提供有益的参考。
本文将回顾数控技术的起源与发展历程,从最初的简单数控系统到现在的高度智能化、网络化数控系统,阐述数控技术在国内外的发展历程和主要成就。
接着,本文将重点分析国内外数控技术的现状,包括数控系统、数控机床、数控编程软件等方面的发展情况,以及数控技术在各个行业的应用现状。
同时,本文还将探讨数控技术发展中的关键问题,如精度与效率、智能化与自动化、开放性与标准化等。
在趋势分析方面,本文将关注数控技术的前沿动态,探讨数控技术的未来发展方向。
随着、大数据、云计算等新一代信息技术的快速发展,数控技术将如何实现与这些技术的深度融合,提高加工精度、效率和智能化水平,将是本文关注的重点。
本文还将分析数控技术在绿色制造、智能制造等领域的应用前景,以及国内外数控技术市场竞争格局的变化趋势。
本文旨在全面梳理国内外数控技术的发展现状与趋势,为相关领域的从业者提供有价值的参考信息,推动数控技术的持续创新与发展。
二、数控技术的历史回顾数控技术,即数字控制技术,其发展历程可以追溯到20世纪40年代末。
初期的数控技术主要应用于军事工业,例如美国为了制造飞机叶片而研发的数控铣床。
随着计算机技术的飞速发展和普及,数控技术也逐步实现了电子化、信息化和智能化。
20世纪50年代,数控技术开始进入商业应用领域,主要用于机床加工和自动化生产线。
此时,数控系统多为硬件连线式,编程复杂,灵活性差。
进入60年代,随着计算机软件技术的发展,数控系统开始采用软件编程,大大提高了编程的灵活性和效率。
数控系统是一种利用数字信号对执行机构的位移、速度、加速度和动作顺序等实现自动控制的控制系统。
从1952年美国麻省理工学院研制出第1台实验性数控系统,到现在已走过了半个世纪。
数控系统也由当初的电子管式起步,发展到了今天的开放式数控系统。
中高档数控系统的需求也越来越大。
以往中高档数控系统基本被国外厂商占领,因此我国中高档数控系统技术必须加快发展。
一、国外数控系统现状在国际市场,德国、美国、日本等几个国家基本掌控了中高档数控系统。
国外的主要数控系统制造商有西门子、发那克、三菱电机、海德汉、博世力士乐、日本大隈等。
1.纳米插补与控制技术已走向实用阶段纳米插补将产生的以纳米为单位的指令提供给数字伺服控制器,使数字伺服控制器的位置指令更加平滑,从而提高了加工表面的平滑性。
将“纳米插补”应用于所有插补之后,可实现纳米级别的高质量加工。
除了伺服控制外,“纳米插补”也可以用于Cs轴轮廓控制;刚性攻螺纹等主轴功能。
西门子的828D所独有的80bit浮点计算精度,可使插补达到很高的轮廓控制精度;三菱公司的M700V 系列的数控系统也可实现纳米级插补。
2.机器人使用广泛未来机床的功能不仅局限于简单的加工,而且还具有一定自主完成复杂任务的能力。
机器人作为数控系统的一个重要应用领域,其技术和产品近年来得到快速发展。
机器人的应用领域延伸到了机床上下料、换刀、切削加工、测量、抛光及装配领域,从传统的减轻劳动强度的繁重工种,发展到IC封装、视觉跟踪及颜色分检等领域,大大提高了数控机床的工作效率。
典型的产品有德国的KUKA,FANUC公司的M-1iA、M-2000iA、M-710ic。
3.智能化加工不断扩展随着计算机领域中人工智能的不断渗透和发展,数控系统的智能化程度也得到不断提高。
应用自适应控制技术数控系统能够检测到过程中的一些重要信息,并自动调整系统中的相关参数,改进系统的运行状态;车间内的加工监测与管理可实时获取数控机床本身的状态信息,分析相关数据,预测机床状态,使相关维护提前,避免事故发生。
2023年数控系统行业市场发展现状数控系统是一种通过电子计算机控制各种机床、自动化的切削工具的一种控制系统,其主要原理是通过程序指令控制机床的各个动作,从而实现自动化的加工生产。
随着现代工业的发展,数控系统行业已逐渐成为工业领域不可或缺的重要组成部分之一。
本文将就数控系统行业的市场发展现状进行分析。
一、市场规模数控系统行业是一个庞大的市场,其在传统机械加工领域中起到了非常重要的作用,国内外市场规模都非常大。
目前,对于数控系统的需求主要来自于公路、桥梁、航空航天、汽车、船舶、电子、精密仪器、医疗器械、国防军工等各个领域,市场需求一直保持较高的增长。
二、产品发展随着新科技的不断发展,数控系统的产品也在不断更新,从传统的数字式到现在的NC、CNC,再到下一个发展趋势。
其中NC控制器是数控机床的核心部件,具有处理、运动控制、数字量输入输出和通讯等功能,其技术水平和发展水平直接关系到数控机床的性能、可靠性、操作性和适应性,在数控系统技术发展的过程中起着重要的推动作用。
三、市场竞争目前国内数控系统行业市场竞争非常激烈,主要的企业主要有卧龙数控、江苏三友、华数、广东天简、浙江路宝等等。
这些企业在技术研发、产品质量、服务质量和品牌影响力等方面都有其自身的优势,部分知名企业根据市场需求所形成的市场波动也较为平稳,业绩总体保持增长态势。
四、面临机遇和挑战虽然数控系统行业市场规模和需求持续增加,但在国际市场中,高端数控电子产业的核心技术和关键设备主要还是由国外制造商占据,国内生产者的市场整体占有率远不及国外的市场占有率。
随着人工智能、工业互联网、5G等新兴技术的迅猛推进,数控系统行业的市场前景会更加广阔,要想在市场竞争中占据优势,并不断发掘新的机遇与突破,不断提高产品质量和技术水平,参与到国际竞争中,成为打造国家自主可控品牌与推动中国制造转型升级的行业先锋。
国内外数控系统现状及发展趋势随着制造业的快速发展,数控技术已成为现代制造的重要手段之一,数控系统在加工中的应用也越来越广泛。
本文将从国内外数控系统的现状和发展趋势两方面进行探讨。
一、国内数控系统现状在过去的数控系统市场中,国内数控系统与国外相比还存在一定的差距。
但是,随着国内制造业的快速发展和技术创新,国内数控系统的市场占有率也逐渐提升。
目前,国内数控系统市场规模已经达到了数十亿的规模,其中龙门加工中心、数控车床、车铣复合加工中心等成为国内数控系统的主流。
但是,国内数控系统在技术和品牌上仍然存在不足之处。
相较于国外品牌,国内数控系统在刀具自适应、多轴控制、高速切割等方面还有待进一步提升。
而且,国内数控系统的品牌影响力也相对较弱,在国际市场上仍有一定的差距。
二、国外数控系统现状国外数控系统的发展历史比国内要长得多,其中日本、德国等国家在数控系统方面的技术领先地位一直保持着稳定。
此外,美国、法国等国家在数控系统的创新方面也取得了很大的成就。
目前,国外数控系统的技术已经相当成熟,具有高度的自主知识产权和市场竞争力。
其中,西门子、法马格、马扎克等国外数控系统品牌的市场占有率较高,并且在技术水平和品牌影响力方面都领先于国内。
三、国内外数控系统的发展趋势1、智能化随着人工智能技术的发展,数控系统不再只是简单的控制机床的运动,而是可以通过自学习、自适应等技术实现智能化控制,提高加工质量和效率。
2、高速化在数控机床加工中,高速切割已成为一个重要的发展方向,尤其是在高端制造领域。
因此,数控系统需要提供越来越快的运行速度和更高的精度。
3、柔性化柔性制造是数控系统发展的一个重要趋势。
数控系统需要支持多种加工方式和工件形状,能够快速地在不同的制造环境下适应不同的生产需求。
4、互联化随着物联网技术的发展,数控系统也需要实现互联化,通过云计算、大数据等技术实时监控机床状态,优化生产流程,提高生产效率。
总之,数控系统已经成为现代制造不可或缺的重要组成部分,其发展趋势也将越来越多元化、智能化和互联化。
数控系统行业报告数控系统是一种通过计算机控制机械设备进行加工的自动化系统。
随着制造业的发展,数控系统在机床、机械加工、汽车制造等领域得到了广泛应用。
本报告将对数控系统行业的发展现状、市场规模、技术趋势以及未来发展进行分析和展望。
一、行业发展现状。
1.1 数控系统市场规模。
根据市场研究机构的数据显示,全球数控系统市场规模呈现稳步增长的趋势。
2019年全球数控系统市场规模达到了300亿美元,预计到2025年将达到500亿美元。
中国作为全球最大的制造业大国,数控系统市场规模占据了全球的三分之一,市场潜力巨大。
1.2 技术水平和应用领域。
随着人工智能、大数据、云计算等新一代信息技术的发展,数控系统在精密加工、柔性制造、智能制造等领域得到了广泛应用。
传统的数控系统已经不能满足复杂加工的需求,高速、高精度、多轴、多功能的数控系统成为市场的新趋势。
1.3 行业竞争格局。
数控系统行业竞争激烈,国际知名企业包括西门子、发那科、三菱电机等在技术研发和市场拓展方面具有较强竞争力。
国内企业也在不断提升自主研发能力,加大技术创新和产品升级力度,逐步走向国际市场。
二、市场需求和趋势。
2.1 市场需求。
随着制造业的数字化转型和智能化升级,对数控系统的需求不断增加。
汽车制造、航空航天、船舶制造、电子通信等行业对高精度、高效率的数控系统需求旺盛。
同时,个性化定制、小批量多样化生产也对数控系统提出了新的挑战。
2.2 技术趋势。
未来数控系统的发展将呈现以下趋势,一是智能化发展,数控系统将更加智能化、自适应、自学习,实现真正意义上的智能制造;二是柔性化生产,数控系统将更加灵活、适应性强,能够快速响应市场需求;三是绿色制造,数控系统将更加节能环保,减少资源浪费,降低环境污染。
三、未来发展展望。
3.1 国内市场。
随着“中国制造2025”战略的实施,国内数控系统市场将迎来新的发展机遇。
政府加大对制造业的支持力度,鼓励企业加大技术创新和产品升级力度,推动数控系统行业向高端化、智能化方向发展。
数控技术课大作业专业:学号:学生:指导教师:完成日期:数控系统的国内外发展及应用现状目录第1章序言第2章数控系统的发展过程和趋势2.1数控系统的发展过程2.2数控系统的发展趋势第3章国外和国内数控系统功能介绍与应用分析3.1 国外数控系统功能介绍与应用分析3.1.1 西门子SINUMERIK 840D3.1.2 FANUC 数控系统63.2 国内数控系统功能介绍与应用分析3.2.1 华中“世纪星”数控系统3.2.2 广州数控GSK27全数字总线式高档数控系统第4章国内外数控系统比较及差距分析4.1 国内外数控系统比较4.1.1 西门子公司数控系统(SIEMENS)的产品特点4.1.2 FANUC公司数控系统的产品特点4.2 我国数控系统与国外数控系统的差距参考文献第一章序言数控即数字控制(Numerical Control,NC)。
数控技术是指用数字信号形成的控制程序对一台或多台机械设备进行控制的一门技术。
数控机床,简单的说,就是采用了数控技术的机床。
即将机床的各种动作、工件的形状、尺寸以及机床的其他功能用一些数字代码表示,把这些数字代码通过信息载体输入给数控系统,数控系统经过译码、运算以及处理,发出相应的动作指令,自动地控制机床的刀具与工件的相对运动,从而加工出所需要的工件。
因此,数控机床就是一种具有数控系统的自动化机床。
它是典型的机电一体化产品,是现代制造业的关键设备。
第二章数控系统的发展过程和趋势2.1数控系统的发展过程1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。
六年后,即在1952年,计算机技术应用到了机床上。
在美国诞生了第一台数控机床。
从此,传统机床产生了质的变化。
近半个世纪以来,数控系统经历了两个阶段和六代的发展。
1.数控(NC)阶段(1952-1970年)早期计算机运算速度低,这对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。
人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控,简称为数控(NC)。
随着元器件的发展,这个阶段历经了三代,即1952年第一代——电子管;1959年第二代——晶体管;1965年第三代——小规模集成电路。
2.计算机数控(CNC)阶段(1970——现在)到1970年,通用小型计算机业已出现并成批生产。
其运算速度比五、六十年代有了大幅度的提高,这比专门"搭"成的专用计算机成本低、可靠性高。
于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的"通用"两个字省略了)。
到1971年美国lintel公司在世界上第一次将计算机的两个最核心的部件——运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处器,又可称中央处理单元(简称CPU)。
到1974年微处理器被应用于数控系统。
由于微处理器是通用计算机的核心部件,故仍称为仿计算机数控。
到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可满足作为数控系统核心部件的要求,而且PC机生产批量很大,价格便宜,可靠性高。
数控系统从此进入了基于PC的阶段。
总之,计算机数控阶段也经历了三代。
即1970年第四代——小型计算机;1974年第五代——微处理器和1990年第六代——基于PC的阶段(国外称为PC-BASED)。
必须指出,数控系统近五十年来经历了两个阶段六代的发展,只是发展到了第五代以后,才从根本上解决了可靠性低,价格极为昂贵,应用很不方便等极为关键的问题。
因此,即使在工业发达国家,数控机床大规模地得到应用和普及,是在七十年代未八十年代初以后的事情,也即数控技术经过近三十年的发展才走向普及应用的。
还要指出的是,虽然国外早已改称为计算机数控(即CNC)了,而我国仍习称数控(NC)。
所以我们日常讲的"数控"实质上已是指"计算机数控"了。
2.2数控系统的发展趋势从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了五十多年的历程。
近10年来,随着计算机技术的飞速发展,各种不同层次的开放式数控系统应运而生,发展很快。
总体上讲,目前世界数控技术及其装备发展趋势主要体现在以下几个方面:①向高速、高效、高精度、高可靠性方向发展。
②向模块化、智能化、柔性化、网络化和集成化方向发展。
③向PC—based化和开放性方向发展。
④出现新一代数控加工工艺与装备,机械加工向虚拟制造的方向发展。
⑤信息技术(IT)与机床的结合,机电一体化先进机床将得到发展。
⑥纳米技术将形成新发展潮流,并将有新的突破。
⑦节能环保机床将加速发展,占领广大市场。
第三章国外和国内数控系统功能介绍与应用分析3.1 国外数控系统功能介绍与应用分析3.1.1 西门子SINUMERIK 840DSINUMERIK 840D是西门子公司20世纪90年代推出的高性能数控系统。
它保持西门子前两代系统SINuMERIK 880和840C的三CPU结构:人机通信CPU(MMC-CPU)、数字控制CPU(NC-CPU)和可编程逻辑控制器CPU(PLC-CPU)。
三部分在功能上既相互分工,又互为支持。
在物理结构上,NC-CPU和PLC-C P U合为一体,合成在NCU(Numerical Control Unit)中,但在逻辑功能上相互独立。
SINUMERIK 840D的特点主要包括:(1)数字化驱动。
在SINUMERIK 840D中,数控和驱动的接口信号是数字量,通过驱动总线接口,挂接各轴驱动模块。
(2)轴控规模大。
最多可以配31个轴,其中可配10个主轴。
(3)可以实现五轴联动。
SINUMERIK 840D可以实现X、Y、Z、A、B五轴的联动加工,任何三维空间曲面都能加工。
(4)操作系统视窗化.SINUMERIK 840D采用Windows95作为操作平台,使操作简单、灵活,易掌握。
(5)软件内容丰富功能强大。
SINUMERIK 840D可以实现加工(Machine)、参数设置(Parameter)、服务(Services)、诊断(Diagnosis)及安装启动(Start—up)等几大软件功能。
(6)具有远程诊断功能。
如现场用PC适配器、MODEM卡,通过电话线实现SINUMERIK 840D与异域PC机通信,完成修改PLC程序和监控机床状态等远程诊断功能。
(7)保护功能健全。
SINUMERIK 840D系统软件分为西门子服务级、机床制造厂家级、最终用户级等7个软件保护等级,使系统更加安全可靠。
(8)硬件高度集成化。
SINUMERIK 840D数控系统采用了大量超大规模集成电路,提高了硬件系统的可靠性。
(9)模块化设计。
SINUMERIK 840D的软硬件系统根据功能和作用划分为不同的功能模块,使系统连接更加简单。
(10)内装大容量的PLC系统。
SINUMERIK 840D数控系统内装PLC最大可以配2048输入和2048输出,而且采用了Profibus现场总线和MPI多点接口通信协议,大大减少了现场布线。
(11)PC化。
SINUMERIK 840D数控系统是一个基于PC的数控系统。
3.1.2 FANUC 数控系统6FANUC 数控系统6,是具备一般功能和部分高级功能的中级型CNC 系统,分成6M与6T 两个品种,它们的硬件部分是通用的,只变更其部分软件来获得不同功能,6T 适用于车床,6M 适用于铣床和加工中心。
FANUC数控系统6 的特点主要包括:(1) 可靠性高。
由于使用了大容量磁泡存储器、大规模专用集成电路和高速微处理器,而且在制造过程中采用严格筛选,使用自动检测器进行自动检测以及环境试验等措施,大大提高了电路的可靠性。
为了提高动作的可靠性,该系统还备有数据奇偶校验、程序对比校验和时序校验等校验功能。
(2) 适用于高精度、高效率加工,最小脉冲当量为1 μm或0.001in,具有提高加工精度的间隙补偿和丝杠螺距误差补偿功能;还有自动监视和自动补偿伺服系统漂移的功能;有自动监视误差寄存器的静态误差与动态误差的功能;备有高效率的随机选择自动换刀机构和纯电气式的主轴快速定向控制系统;有控制主轴电动机转速、确保切削速度不变的恒速切削控制;还有为缩短加工时间的许多固定循环。
(3) 容易编程。
备有由用户自己制作特有变量型子程序的用户宏功能;有不必预先计算就能够直接指定刀尖设定点的刀尖半径补偿功能;能用图样标记半径值直接指令的圆弧补偿;还有便于某些交换工作台机械编程的返回第2 参考点功能,只需指定精加工尺寸就可以自动进行粗切削、精切削的复合型固定循环。
(4) 容易维护保养,现场调试方便。
能够使用微处理器进行CNC系统内部监视,能判断160 种(6M)或130 种(6T)停车故障;确认CNC 系统的所有输入/输出开关信号的显示值或输出值,能发现数控柜和机床强电柜的故障;间隙补偿量、螺距误差补偿量、伺服系统时间常数等参数可简单地用MDI输入设定。
(5) 操作性好,使用安全。
大容量磁泡存储器,具有最大320m 控制带的存储、编辑功能,用程序号检索可以调出所需程序进行加工,具有相当于DNC 的功能;使用CRT 显示器能确认程序内容、偏移量的设定与变更和各种动作的状态,加上手动操作,大大提高了操作性能;使用带小数点的数字表示尺寸或位置可以防止眼误;具备便于工程管理、刀具寿命管理的累计使用时间显示功能等;为了保护所存入的程序,使用带“锁”的键输入;为防止刀具与工件冲撞,使用了存储式限位开关,设置刀具禁入区域。
3.2 国内数控系统功能介绍与应用分析3.2.1 华中“世纪星”数控系统1“世纪星”系统配置主要特点如下:1)基于工业PC的数控系统,先进的开放式体系结构。
可与数控车、数控铣、加工中心、车铣复合等机床配套。
2)“世纪星”系统有普及型(HNC-21)和功能型(HNC-22)两个系列,可配4个进给轴,最大联动轴数为4轴(可扩展到6轴控制和联动)。
进给轴控制接口类型有脉冲、模拟、串口等多种类型,可连接多种伺服电机和步进电机。
既可用作半闭环、闭环控制,也可用作开环控制。
3)系统配置7.7英寸彩色液晶显示器(分辨率640×480象素),也可配10.4英寸TFT 彩色液晶显示器(分辨率640×480象素),画面美观、清晰、直观。
4)可选配电子盘、硬盘、软驱、网络等存储器,极大地方便用户的程序输入。
用户程序可断电储存容量达16MB。
程序存储个数无限制,直至存储器写满。
5)标准配置40路输入和32路输出,不需扩展即可满足大部分车、铣和加工中心的控制要求,并可根据需要扩展到128路输入和128路输出。