混频器基础介绍
- 格式:ppt
- 大小:1.53 MB
- 文档页数:18
混频器一.混频器的工作原理混频器在发射机和接收机系统中主要负责频率的搬移功能,在频域上起加法器或减法器的作用,频域上的加减法通过时域上的乘积获得。
混频器通常可以表示为如图1所示的三端口系统,应至少包含三个信号:两个输入信号和一个输出信号。
根据图1可以表示混频器最常见的数学模型:式中表征输入信号的振幅,表征本振信号的振幅。
图1.混频器原理框图对于混频器而言,混频器的输入信号分别定义为射频信号RF(Radio Frequency),频率记为,和本振信号LO(Local Oscillator),频率记为。
混频器的输出信号定义为中频信号IF(Intermediate Frequency),频率记为。
根据混频器的应用领域不同,中频输出选择的频率分量也不同。
当时,混频器称为下变频器,输出低中频信号,多用于接收机系统;当时,混频器称为上变频器,输出高中频信号,多用于发射机系统。
常用的混频器实现方法主要有三种:第一种是用现有的非线性器件或电路,比如利用二极管电压电流的指数关系实现的二极管微波混频器;第二种是采用开关调制技术实现信号在频域上的加减运算,进而实现频率变换的功能,比如基于吉尔伯特单元的混频器;第三种是利用已有的电子元件实现混频电路的乘法模块。
二.混频器性能指标(一)转换增益转换增益(或者转换损耗),其定义是需要的IF输出与RF输入的比值。
混频器的电压转换增益可表示为:混频器的功率转换增益可表示为:其中和分别为中频输出电压和射频输入电压的有效值.是负载电阻,是源电阻。
当输入电阻和负载电阻相等时,两种增益的dB形式相等。
(二)噪声系数一般而言,在分析系统噪声性能时,系统内的各模块视为黑盒子.即无需知道模块内部具体电路的噪声如何,而是用一个统一的系统参数对各模块噪声进行描述。
因此在分析混频器噪声性能时,将其看成是一个线性二端口网络。
噪声系数被用来衡量信号经过混频器后信噪比的恶化程度,即混频器本身引入的噪声的大小。
混频器原理混频器是一种广泛应用于通信领域的电子元件,它的作用是将两个或多个不同频率的信号进行混合,产生出新的频率信号。
混频器在无线通信、雷达、卫星通信等领域都有着重要的作用,下面我们来详细了解一下混频器的原理。
混频器的原理基于非线性元件的特性,它可以将两个输入信号的频率进行线性或非线性的组合,产生出新的频率信号。
混频器通常由三个端口组成,射频输入端口、本振输入端口和中频输出端口。
射频输入端口用来接收高频信号,本振输入端口用来接收本振信号,中频输出端口则输出混频后的中频信号。
在混频器中,射频信号和本振信号首先通过非线性元件相互作用,产生出包含原始频率和它们的和、差频率的信号。
然后通过滤波器将所需的频率信号进行选择,最终输出所需的中频信号。
混频器的原理可以用数学公式来描述,假设输入的射频信号为$A_{RF}\cos(2\pi f_{RF}t)$,本振信号为$A_{LO}\cos(2\pi f_{LO}t)$,其中$A_{RF}$和$A_{LO}$分别为射频信号和本振信号的幅度,$f_{RF}$和$f_{LO}$分别为射频信号和本振信号的频率,t为时间。
那么混频器的输出信号可以表示为:$A_{IF}\cos(2\pi f_{IF}t) =\frac{1}{2}A_{RF}A_{LO}\cos(2\pi(f_{RF}+f_{LO})t) +\frac{1}{2}A_{RF}A_{LO}\cos(2\pi(f_{RF}-f_{LO})t)$。
其中$A_{IF}$和$f_{IF}$分别为中频信号的幅度和频率。
从上式可以看出,混频器的输出信号包含了原始频率和它们的和、差频率成分。
混频器的原理还涉及到一些重要的参数,比如转换增益、转换损耗、隔离度等。
转换增益是指混频器将射频信号和本振信号转换成中频信号时的增益,转换损耗则是指在信号转换过程中损失的功率。
隔离度是指混频器在工作时射频信号和本振信号之间的隔禅程度,隔离度越高,说明混频器的性能越好。
混频器-混频器混频器-正文输出信号频率等于两输入信号频率之和、差或为两者其他组合的电路。
混频器通常由非线性元件和选频回路构成(图1)。
输入频率f和来自本地振荡器的本振频率f1经混频器作用后,输出频率变为f i(见超外差)。
它们的关系可用f i=│±pf1±qf│表示,其中p和q是任意正整数。
若混频和本地振荡由同一装置完成,则称为变频器。
混频器混频器的输出信号除中心频率有所改变外,其余参数,如包络波形和所含频谱成分的相对关系均不改变。
输出信号频率高于输入信号频率的称为上混(变)频,反之,则称为下混(变)频。
图2表示某调幅信号下混(变)频前后的波形和频谱。
混频器混频器最早用于等幅电报信号的接收,称为差拍检波器,后来已是超外差接收机、载波电话(见有线载波通信)和许多电子设备的基本组成单元。
非线性变换若非线性元件的特性用下式描述:i(t)=ɑ0+ɑ1u(t)+ɑ2u2(t)+ɑ3u3(t)+ (1)当两不同频率的信号电压u1(t)=U1cos2πf1t和u2(t)=U2cos2πf i t同时作用于非线性元件时,则元件中的电流i(t)将含有丰富的谐波和组合频率成分,它们与f1及f i的关系为(2)式中p=0,1,2,…,n,q=1,2…,m。
要使输出信号频率变为f i=f1-f,只须使i(t)通过一调谐于f i的选择性回路便可取出f i而滤掉其他频率成分。
混频器二极管混频器典型电路如图3。
调整偏置电压E0,使二极管工作特性呈非线性,而输出回路则调谐在f i即可实现两输入信号的混频。
这种混频器结构简单,可以工作在较高频段,但变频增益较低,各回路之间相互影响较严重,组合频率干扰也较大。
平衡混频器典型电路如图4。
由于采用平衡电路结构,输出的谐波及其组合干扰成分较少,本振电路产生的噪声也不会出现在它的输出端。
混频器晶体管变频器兼具振荡和混频两种功能的电路(图5)。
图中晶体管T、电感线圈L4、L3和电容器C3、构成一互感耦合振荡器。
混频器的名词解释混频器(也称为混合器、混音器、调音台)是一种在音频和音乐制作中常用的电子设备,用于混合、控制和处理多个音频信号。
混频器的功能十分广泛,它可以接受来自不同声源的音频输入,通过调节各个通道上的参数,如音量、音调、平衡等,最终将这些音频信号混合成一个平衡且适合输出的信号。
混频器的工作原理可以简单概括为信号输入、混合处理和信号输出三个主要阶段。
当多个音频信号输入混频器时,它们会被分配到不同的通道上。
每个通道都有自己的音量控制,可以独立调整信号的强弱。
除了音量控制外,混频器还提供了其他参数,例如音调控制,可用于调整音频信号的音调,使其更符合音乐或音效的需要。
此外,平衡控制也是混频器中常见的参数,它可用于调整左右声道的平衡,以达到音频效果的均衡输出。
混频器通常也会提供一些特殊效果和处理功能,用于改变音频信号的特性。
例如,混频器可能具备强调低音或高音的均衡器,以增强音频的音色。
还有一些混频器提供内置的延迟、混响和合唱效果,用于营造特殊的音频氛围。
这些特殊效果可以通过混频器的控制面板或软件界面进行调整和设置,使得音频制作的过程更加灵活和自由。
在音乐制作和现场演出中,混频器起到了不可或缺的作用。
无论是录制一首歌曲,还是调整音响系统的音质,混频器都承担了关键的角色。
在录音棚里,混频器通过将不同的音频源进行组合和调节,实现了多轨录音的平衡和融合。
而在现场演出中,混频器则负责接收并处理各种乐器、麦克风等音频信号,将它们混合为一个适合大型音响系统输出的信号。
尽管混频器的功能强大,但对于非专业人士来说,混频器的操作可能会显得有些复杂。
因此,对于初次接触混频器的用户,理解混频器的基本原理和操作方法是非常重要的。
通过对混频器的学习和熟悉,人们可以更好地掌握音频处理技术,并有效地应用于音乐创作、声音设计、现场演出等方面。
总结起来,混频器是一种重要的音频处理设备,用于混合、控制和处理多个音频信号。
它能够将来自不同声源的音频信号进行混合,并通过调整参数和应用特效,使得混合后的音频信号达到理想的效果。