高速逆流色谱法原理与应用ppt课件
- 格式:ppt
- 大小:1.17 MB
- 文档页数:13
高速逆流色谱仪原理特点及应用气路管路、进样器、注射器的清洗清洗气路连接管时,应首先将该管的两端接头拆下,再将该段管线从色谱仪中取出,这时应先把管外壁灰尘擦洗干净,以免清洗完管内壁时再产生污染。
清洗管路内壁时应先用无水乙醇气路管路、进样器、注射器的清洗清洗气路连接管时,应首先将该管的两端接头拆下,再将该段管线从色谱仪中取出,这时应先把管外壁灰尘擦洗干净,以免清洗完管内壁时再产生污染。
清洗管路内壁时应先用无水乙醇进行疏通处置,这可除去管路内大部分颗粒状堵塞物及易被乙醇溶解的有机物和水分。
在此疏通步骤中,如发觉管路不通,可用洗耳球加压吹洗,加压后仍无效可考虑用细钢丝捅针疏通管路。
如此法还不能使管线畅通,可使用酒精灯加热管路使堵塞物在高温下炭化而实现疏通的目的。
用无水乙醇清洗完气路管路后,应考虑管路内壁是否有不易被乙醇溶解的污染物。
如没有,可加热该管线并用干燥气体对其吹扫,将管线装回原气路待用。
假如由分析样品过程判定气路内壁可能还有其它不易被乙醇溶解的污染物,可针对实在物质溶解特性选择其它清洗液。
选择清洗液的顺序应先使用高沸点溶剂、而后再使用低沸点溶剂浸泡和清洗。
可供选择的清洗液有萘烷、N、N—二甲基酰胺、甲醇、蒸馏水、丙酮、乙醚、氟里昂、石油醚、乙醇等。
对进样器(包含汽化室)的清洗应以疏通为先导。
通常在进样器中的堵塞物是进样隔垫的碎片,样品中被炭化了的高沸点物,对这些固态杂质可用不锈钢捅针疏通,然后再用乙醇或丙酮冲洗。
为了使清洗更彻底,可选用2:1:4的H2SO4/HNO3/H2O混合溶液先对进样器清洗,然后再用蒸馏水,最后再用丙酮或乙醇清洗。
清洗完后烘干,装上仪器通载气半小时,加热到120℃待几小时后即可正常工作。
在拆装进样器时需注意不要碰断加热器引线或使引线碰到外壳;测温元件也应在装回进样器之后,按原先测温点装回。
通常测温元件和进样器加热体是紧密接触的,如距离过大将会造成过高的汽化温度。
注射器使用前可先用丙酮清洗,以免玷污样品,但可以还是用待注射样品对注射器自身做一二次清洗。
高速逆流色谱(high-speed countercurrent chromatography ,HSCCC )是20 世纪80 年代发展起来的一种连续高效的液—液分配色谱分离技术,它不用任何固态的支撑物或载体。
它利用两相溶剂体系在高速旋转的螺旋管内建立起一种特殊的单向性流体动力学平衡,当其中一相作为固定相,另一相作为流动相,在连续洗脱的过程中能保留大量固定相。
由于不需要固体支撑体,物质的分离依据其在两相中分配系数的不同而实现,因而避免了因不可逆吸附而引起的样品损失、失活、变性等,不仅使样品能够全部回收,回收的样品更能反映其本来的特性,特别适合于天然生物活性成分的分离。
而且由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,是一种理想的制备分离手段。
它相对于传统的固—液柱色谱技术,具有适用范围广、操作灵活、高效、快速、制备量大、费用低等优点。
目前HSCCC 技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域,特别在天然产物行业中已被认为是一种有效的新型分离技术;适合于中小分子类物质的分离纯化。
我国是继美国、日本之后最早开展逆流色谱应用的国家,俄罗斯、法国、英国、瑞士等国也都开展了此项研究。
美国FDA 及世界卫生组织(WHO )都引用此项技术作为抗生素成分的分离检定,90 年代以来,高速逆流色谱被广泛地应用于天然药物成分的分离制备和分析检定中。
逆流色谱原理:1.逆流色谱是20世纪50年代源于多极萃取技术(非连续性)但是多极萃取设备庞大复杂、易碎、溶剂体系容易乳化,溶剂耗量大,分离时间长。
2.20世纪70年代,出现了液滴逆流色谱(DCCC)特点:(1)流体静力学原理(Hydrostatic equilibrium system,HSES)(2)分离时间过长、连接处容易出现渗漏等3.20世纪70年代出现了离心分配色谱仪(Centrifugal partition chromatography,CPC)特点:(1)基于流体静力学原理(Hydrostatic equilibrium system,HSES),利用公转产生的单一力场(2)连接处较多而且容易出现渗漏,清洗维护复杂4.20世纪80年开始出现了现在的高速逆流色谱,可称为最先进的逆流色谱特点:(1)基于流体动力学原理(Hydrodynamic equilibrium system,HDES)(2)通过公转、自转(同步行星式运动)产生的二维力场,保留两相中的其中一相作为固定相(3)通过高速旋转提高两相溶剂的萃取频率,1000rpm旋转时可达到17次/s频率的萃取过程。
高速逆流色谱综述高速逆流色谱(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术。
该技术由于不需要固体支撑体,物质的分离依据其在两相中分配系数的不同而实现,因而避免了因不可逆吸附引起的样品损失、失活、变性等问题,具有传统的液-固色谱所不具备的独特优势,特别适合于天然生物活性成分的分离。
而且由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,是一种理想的制备分离手段,因此此项技术己被广泛应用于中药成分分离、保健食品、生物化学、生物工程、天然产物化学、有机合成、环境分析等领域[1]。
1 高速逆流色谱原理[1-2]图.1高速逆流色谱仪利用螺旋管的自转和公转同步同向行星式运动所产生的变化离心力场将固定相保留在螺旋管中,允许流动相快速流过螺旋管并与固定相进行连续高效的混合和分配,达到一种特殊的流体动力学平衡——单向流体动力学平衡,此时在螺旋柱中任何一部分,两相溶剂都反复进行着混合和静置的分配过程,这一过程频率极高,在800rpm转速下时,混合和分配的频率可以达到13次/s。
大大提高了两相溶剂的混合效率,可以极大地缩短分离时间,这就是高速逆流色谱分离效率高的原因。
如图.1。
2 高速逆流色谱(HSCCC)的特点及与制备型高效液相色谱(prep-HPLC)的比较[3-4]目前制备出高纯度的天然产物的方法中,制备型高效液相色谱是使用最为广泛的。
与其相比,高速逆流色谱具有以下一些突出的优点。
(1)HSCCC回收率高:由于HSCCC不需要固体支撑体,避免了样品在分离过程中的不可逆吸附、分解、变性等问题。
理论上,滞留在柱中的样品可以通过多种洗脱方式予以完全回收;实验中只要调整好分离条件,一般都有很高的回收率。
粗样可以直接上样而不会对柱内固定相造成任何损害。
而prep-HPLC在样品吸附过程中会出现死吸附的现象,在制备高纯品的过程中,必然会以牺牲得率为代价,这是prep-HPLC不可避免的。
高速逆流色谱High Speed Counter Current Chromatography(HSCCC)Outline1. Principle2. Properties3. Applications分配定律:Nernst, 1891 年,K=C1/C2两组分K相差较大:较小:一次萃取可得到分离多次萃取•1941, Martin & Synge级联链型萃取,开创了分配色谱技术•1944,Craig 非连续式逆流分溶(countercurrent distribution, CCD)•1966,Ito 离心式螺旋管逆流色谱(countercurrent chromatography,CCC)•1981,Ito 高速逆流色谱High Speed Counter Current Chromatography (HSCCC)液液分配色谱的新纪元CCD法(Countercurrent distribution,反流分布法,逆流分溶法):是一种多次连续的液-液萃取分离过程Principle 液-液分配色谱or 逆流色谱¾利用一种特殊的流体动力学现象使互不混溶的两相溶剂(固定相和流动相)在螺旋管中高效地接触、混合、分配和传递¾其中固定相以一种相对均匀的方式分布在一根聚四氟乙烯管绕成的螺旋管中¾流动相以一定的速度通过固定相,并按照被分离物质分配系数的不同依次洗脱而获得分离特殊的流体动力学?逆流色谱(CCC)的原理•流体静力平衡体系(hydrostatic equilibrium system,HSES)•流体动力平衡体系(hydrodynamic equilibrium system,HDES)HSES液滴逆流色谱(droplet CCC, DCCC)收集器进样器溶剂泵约300根管柱上行法收集器进样器溶剂泵约300根管柱下行法优点:DCCC仪器轻巧简便,能避免乳化或泡沫的产生。