最新圆锥曲线轨迹问题(教师版)
- 格式:doc
- 大小:682.00 KB
- 文档页数:8
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。
专题六 圆锥曲线中的轨迹问题轨迹是动点按照一定的规律即轨迹条件运动而形成的,这个轨迹条件一旦用动点坐标的数学表达式表示出来,轨迹方程就产生了.根据动点的运动规律求出动点的轨迹方程,这是高考的常考点:一方面,求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面,求轨迹方程培养了学生数形结合的思想、函数与方程的思想以及化归与转化的思想.模块1 整理方法 提升能力曲线轨迹方程的探求有两种题型,第一种题型是曲线类型已知,该题型常用的方法是找条件或用待定系数法,难度不大;第二种题型是曲线类型未知,该题型常用的方法有以下3种:1.定义法:如果所给的几何条件能够符合一些常见定义(如圆、椭圆、双曲线、抛物线等曲线的定义),则可从定义出发直接写出轨迹方程,这种方法叫做定义法.2.直接法:如果动点运动的条件有明显的等量关系,或者是一些几何量的等量关系,这些条件简单明确,易于表达成含未知数x 、y 的等式,从而得到轨迹方程,这种方法叫做直接法.3.参数法:求解轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x 、y 之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程,这种方法叫做参数法.一般来说,引进了N 个未知数与参数,要得到未知数x 与y 之间的关系,需要找1N -个方程.常见的消参手法是:加、减、乘、除、平方、平方相加、平方相减以及整体消参等.相关点代入法、交轨法是参数法的一种特殊情况.例1已知点()2,2P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OP OM =时,求l 的方程及△POM 的面积.【解析】(1)法1(定义法):圆心()0,4C ,由垂径定理可知CM PM ⊥,于是点M 在以CP 为直径的圆上,所以M 的轨迹方程为()()()2420x x y y -+--=,即()()22132x y -+-=.法2(直接法):设M 的坐标为(),x y ,由CM PM ⊥可得0CM PM ⋅=u u u u r u u u u r.(),4CM x y =-u u u u r ,()2,2PM x y =--u u u u r ,于是()()()2420x x y y -+--=,即()()22132x y -+-=.法3(参数法):当l 的斜率不存在时,其直线方程为2x =,于是2840y y -+=,所以点M 的坐标为()2,4.当l 的斜率存在时,设直线方程为()22y k x -=-,(),M x y .联立()222280y k x x y y ⎧-=-⎪⎨+-=⎪⎩消去y 可得()()()22221448120k x k k x k k +-+++-=,于是()2221k k x k +=+,将22y k x -=-代入,消去参数k ,可得2222222212y y x x x y x ⎡⎤--⎛⎫⎛⎫+⎢⎥⎪ ⎪--⎝⎭⎝⎭⎢⎥⎣⎦=-⎛⎫+ ⎪-⎝⎭,整理可得()()22132x y -+-=(2x ≠). 综上所述,M 的轨迹方程为()()22132x y -+-=.(2)法1:由OP OM =可知点M 在以原点为圆心,OP 为半径的圆上.联立()()22221328x y x y ⎧-+-=⎪⎨+=⎪⎩,解得25145x y ⎧=-⎪⎪⎨⎪=⎪⎩,于是点M 的坐标为214,55⎛⎫- ⎪⎝⎭,于是直线l 的方程为()1223y x -=--,即380x y +-=.△POM的面积为11625=. 法2:由OP OM =可知点O 在PM 的垂直平分线上,而PM 的垂直平分线过圆心()1,3,所以直线l 的斜率为13-,直线方程为()1223y x -=--,即380x y +-=.因为OP =点O 到直线l的距离为d =,所以PM ==POM的面积为11625=. 【点评】解析几何中两直线垂直的常见转化有以下4种:点在圆上,向量数量积为0,斜率乘积为1-,勾股定理.用“点在圆上”的角度能从定义法出发直接得到轨迹方程;用“向量数量积为0”的角度能避开分类讨论.求轨迹方程时,先考虑定义法,看是否满足某种曲线的定义,再考虑直接法,看能否得到一个几何条件,进而将该几何条件代数化再化简,最后再考虑参数法,引进参数解决问题.例2在直角坐标系xOy 中,曲线1C 上的点均在圆2C :()2259x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(1)求曲线1C 的方程;(2)设()00,P x y (03y ≠±)为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A 、B 和C 、D .证明:当P 在直线4x =-上运动时,四点A 、B 、C 、D 的纵坐标之积为定值.【解析】(1)法1:由题设知,曲线1C 上任意一点M 到圆2C 的圆心()5,0的距离等于它到直线5x =-的距离,因此,曲线1C 是以()5,0为焦点,直线5x =-为准线的抛物线,所以方程为220y x =.法2:设M 的坐标为(),x y ,由已知得()22253x x y +=-+,且点M 位于直线2x =-的右侧,于是20x +>()2255x y x -+=+,化简得曲线1C 的方程为220y x =.【证明】(2)当点P 在直线4x =-上运动时,设P 的坐标为()04,y -,又03y ≠±,则过P 且与圆2C 相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为()04y y k x -=+,即040kx y y k -++=025431k y kk ++=+,整理得2200721890k y k y ++-=…①.设过P 所作的两条切线PA 、PC 的斜率分别为1k 、2k ,则1k 、2k 是方程①的两个实根,所以001218724y yk k +=-=-…②. 由10124020k x y y k y x-++=⎧⎪⎨=⎪⎩可得21014020k y y y k -++=…③.设四点A 、B 、C 、D 的纵坐标分别为1y 、2y 、3y 、4y ,则1y 、2y 是方程③的两个实根,所以()01121204y k y y k +⋅=,同理可得()02342204y k y y k +⋅=.于是()()010*******40044y k y k y y y y k k ++==()()22201201200121212400416400166400y k k y k k y y k k k k k k ⎡⎤+++-+⎣⎦==.所以当P 在直线4x =-上运动时,四点A 、B 、C 、D 的纵坐标之积为定值6400.【点评】定义法和直接法非常相似,其出发点都是找几何条件,其区别在于对所找的几何条件的理解.如果能发现所找的几何条件是满足某种曲线的定义的,则可以根据曲线的定义马上得到所求的轨迹方程,这就是定义法.如果所找的几何条件究竟满足哪种定义不太明显,则可以利用直接法,把所找的几何条件代数化,再把代数化后的式子化简到最简.第(2)问的定值证明需要引进参数,而引进多少个参数是因题而异的,一般是从点的坐标和直线的方程这两个角度引进参数.本题总共引进了六个参数:1k 、2k 、1y 、2y 、3y 、4y ,其准则是所引进的参数都能帮助解题,且最终都能将其消去,这是解析几何中“设而不求”的重要思想方法.例3已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l 、2l 分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【证明】(1)焦点坐标为1,02F ⎛⎫⎪⎝⎭.不妨设直线1l :y a =,直线2l :y b =,则2,2a A a ⎛⎫ ⎪⎝⎭,2,2b B b ⎛⎫ ⎪⎝⎭,1,2P a ⎛⎫- ⎪⎝⎭,1,2Q b ⎛⎫- ⎪⎝⎭,于是1,22a b R +⎛⎫- ⎪⎝⎭.当线段AB 垂直于x 轴时,不妨设a b >,则有1,12A ⎛⎫ ⎪⎝⎭,1,02R ⎛⎫- ⎪⎝⎭,1,12Q ⎛⎫-- ⎪⎝⎭,于是1FQ k =,1AR k =,所以AR ∥FQ .当线段AB 不垂直于x 轴时,直线AB 的斜率为22222a b k a b a b -==+-,方程为222a y a x a b ⎛⎫-=-⎪+⎝⎭,即()20x a b y ab -++=,因为F 在线段AB 上,所以1ab =-.于是1122FQ bk b ==---,22212111122ARa bba ab b k b a a b +----====-+⎛⎫+-+ ⎪⎝⎭,所以AR ∥FQ .【解析】(2)△PQF 的面积为2a b -.直线AB 与x 轴的交点为,02ab ⎛⎫- ⎪⎝⎭,所以△ABF的面积为11222aba b ⨯+-.由1222a b ab a b -=+-,可得11ab +=,于是0ab =(舍去)或2ab =-…①.设AB 中点为(),M x y ,则224a b x +=…②,2a by +=…③.③式平方,可得22224a b ab y ++=,将①②代入,可得21y x =-.方程消去2个参数,从而得到x 与y 之间的关系.一般来说,引进了N 个未知数与参数,要得到未知数x 与y 之间的关系,一般需要找1N -个方程.找到方程后,通过加、减、乘、除、模块2 练习巩固 整合提升练习1:已知圆M :()2211x y ++=,圆N :()2219x y -+=,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求AB .【解析】(1)设动圆P 的半径为r ,则1PM r =+,3PN r =-,两式相加,可得4PM PN +=,所以圆心P 是以M 、N 为焦点,24a =的椭圆(左顶点除外).2a =,1c =,b ,所以C 的方程为22143x y +=(2x ≠-).(2)由(1)可知1PM r =+,3PN r =-,所以22PM PN r MN -=-≤,于是2r ≤,当且仅当点P 为()2,0时,等号成立,所以当圆P 的半径最长时,圆P 的方程为()2224x y -+=.①当l 的斜率不存在的时候,此时显然l 就是y轴,AB =②当l 的斜率存在的时候,显然l 的斜率不为0,设l 与x 轴交于点Q ,则有12QM QP=,即1122Q Qx x --=-,由此解得4Q x =-,且k ==)4y x =+.联立)224143y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y ,可得27880x x +-=.由弦长公式,有187AB ===. 练习2:已知椭圆C :22142x y +=,()00,P x y 为椭圆C 外一点,过点P 作椭圆C 的两条切线PA 、PB ,其中A 、B 为切点.(1)当点()00,P x y 为定点时,求直线AB 的方程; (2)若PA 、PB 相互垂直,求点P 的轨迹方程. 【解析】(1)设()11,A x y 、()22,B x y ,则切线PA 方程为11142x x y y+=,点P 在切线PA 上,所以1010142x x y y +=…①.同理,切线PB 方程为22142x x y y+=,点P 在切线PB 上,所以2020142x x y y +=…②.由①②可得直线AB 的方程为00142x x y y+=,即00240x x y y +-=. (2)①若直线PA 、PB 的斜率都存在,不妨设其斜率分别为1k 、2k ,则121k k =-.设过点()00,P x y 的直线方程为()00y y k x x -=-.由()0022142y y k x x x y ⎧-=-⎪⎨+=⎪⎩消去y 可得()()()2220000214220kx k kx y x kx y +--+--=.因为直线与椭圆相切,所以()()()2222000016421220k kx y k kx y ⎡⎤∆=--+--=⎣⎦,即()22200004220x k x y k y -+-+=.由PA 、PB 与椭圆相切可知1k 、2k 是该方程的两个实数根,所以2122214y k k x -==--,即22006x y +=.②若直线PA 、PB 中有一条斜率不存在,则另一条斜率为0,此时点P 的坐标为(2,2±±,满足22006xy +=.综上所述,点P 的轨迹方程为226x y +=.【点评】给定圆锥曲线C 和点()00,P x y ,用0x x 、0y y 、02x x +、02y y+分别替换2x 、2y 、x 、y ,得到直线l ,我们称点P 和直线l 为圆锥曲线C 的一对极点和极线.其结论如下:当P在圆锥曲线C 上的时候,其极线l 是曲线C 在点P 处的切线;当P 在圆锥曲线C 外的时候,其极线l 是曲线C 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线);当P 在圆锥曲线C 内的时候,其极线l 是曲线C 过点P 的割线两端点处的切线交点的轨迹.特别地:椭圆22221x y a b +=(0a b >>),与点()00,P x y 对应的极线方程为00221x x y y a b+=.双曲线22221x y a b -=(0a >,0b >),与点()00,P x y 对应的极线方程为00221x x y y a b-=.抛物线22y px =(0p >),与点()00,P x y 对应的极线方程为()00y y p x x =+.在椭圆22221x y a b +=(0a b >>)中,点(),0P c 对应的极线方程为2a x c=,这就是椭圆的右准线.本题采用整体法进行消参方法,这是消参的一种方法.第(2)小问也可以引进()11,A x y 、()22,B x y 、()00,P x y ,共2个未知数x 、y 和4个参数:1x 、1y 、2x 、2y ,利用以下5个方程进行消参:1010142x x y y +=、2020142x x y y +=、2211142x y +=,2222142x y +=、121214x x y y =-. 练习3:如图,抛物线1C :24x y =和2C :22x py =-(0p >). 点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点分别为A 、B (M 为原点O 时,A 、B 重合于O ).当012x =时,切线MA 的斜率为12-.(1)求p 的值;(2)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(A 、B 重合于O 时,中点为O ).【解析】(1)因为抛物线1C :24x y =上任意一点(),x y 的切线的斜率为2xy '=,且切线MA 的斜率为12-,所以点A 的坐标为11,4⎛⎫- ⎪⎝⎭,故切线MA 的方程为()11124y x =-++.因为点()01M y 在切线MA 及抛物线2C 上,所以有(01132244y =-+=和(2012py =-,由此可得2p =.(2)设(),N x y ,211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫⎪⎝⎭. 当12x x ≠时,因为N 是线段AB 的中点,所以有122x x x +=…①,22128x x y +=…②.切线MA 的方程为()211124x x y x x =-+,即21124x x x y =-,同理MB 的方程为22224x x x y =-.解此方程组,得MA 、MB 的交点()00,M x y 的坐标为1202x x x +=,1204x xy =,由此及点M 在抛物线2C 上,得2004x y =-,即2212126x x x x +=-…③.由①②③可得243x y =,0x ≠.当12x x =时,A ,B 重合于原点O ,此时线段AB 的中点N 为原点O ,坐标也满足上述方程.因此,线段AB 的中点N 的轨迹方程为243x y =.。
圆锥曲线中轨迹问题曲线轨迹方程的探求一直是高考中的重点和热点,涉及面广,综合性强。
曲线轨迹方程的探求有两种类型,第一种类型是几何关系已知,轨迹未知;第二种类型是曲线形状已知,求方程。
类型一常用的方法有直接法、相关点法和参数法。
类型二常用的方法有定义法和待定系数法。
(1)直接法:如果题目中的条件有明显的等量关系,或者可以利用平面几何的基本知识推出等量关系,求方程时便可利用直接法。
(2)定义法:如果所给几何条件能够确定符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用曲线定义写出方程,这种方法称为定义法。
(3)相关点法:如果动点P(x,y)依赖于另一动点Q(a,b),而Q(a,b)又在某一已知曲线上运动,则可先列出关于x,y,a,b的方程组,利用x,y表示出a,b,把a,b代入已知曲线方程便可得出动点P的轨迹方程,又称为代入法。
(4)参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程。
(5)交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,如求两动直线的交点时常用这种方法,也可以引入参数来建立这些动曲线的联系,然后消去参数得到轨迹方程。
(6)几何法:利用平面几何或解析几何的有关基础知识去分析图形性质,发现动点运动规律和动点满足的条件,然后求出动点的轨迹方程。
热点透析题型1:直接法【例1】已知定点A、B,且AB=2a。
如果动点P到点A的距离和到点B的距离之比为2:1,求点P的轨迹方程,并说明它表示什么曲线?【解】本题首先要建立坐标系,建立坐标系的要求是保持对称性,以使所求方程简单,容易看出方程表示什么曲线。
如图,取AB所在的直线为x轴,从A到B为正方向,以AB的中点O为原点,以AB的中垂线为y轴,建立直角坐标系,则A(-a,0)、B(a,0)。
设P(x,y)。
∵即化简整理,得,即。
这就是动点P的轨迹方程。
专题1圆锥曲线的方程与轨迹方程一、考情分析求圆锥曲线的方程,一般出现在圆锥曲线解答题的第(1)问,多用待定系数法,通过解方程确定待定系数,考查频率非常高,也比较容易得分;求圆锥曲线的轨迹方程一般用定义法,有时可用到直接法、相关点法、交轨法等,难度一般中等或中等以下.二、解题秘籍(一)用待定系数法求圆锥曲线的方程1.求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.2.双曲线标准方程的形式,注意焦点F1,F2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.确定方程的形式后,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值, 当双曲线焦点的位置不确定时,为了避免讨论焦点的位置,常设双曲线方程为Ax2+By2=1(A·B<0),这样可以简化运算.3.如果已知双曲线的渐近线方程y=±b a x a>0,b>0,求双曲线的标准方程,可设双曲线方程为x2 a2-y2 b2=λ(λ≠0),再由条件求出λ的值即可.与双曲线x2a2-y2b2=1(a>0,b>0)有共同渐近线的方程可表示x2a2-y2b2=λ(λ≠0).4.利用待定系数法求抛物线的标准方程的步骤(1)依据条件设出抛物线的标准方程的类型.(2)求参数p的值.(3)确定抛物线的标准方程.【例1】(2023届山西省长治市高三上学期质量检测)已知点P1,3 2在椭圆C:x2a2+y2b2=1(a>b>0)上,且点P到椭圆右顶点M的距离为13 2.(1)求椭圆C的方程;(2)若点A,B是椭圆C上不同的两点(均异于M)且满足直线MA与MB斜率之积为14.试判断直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.【解析】(1)点P1,3 2,在椭圆C:x2a2+y2b2=1(a>b>0)上代入得:1a2+94b2=1,点P到椭圆右顶点M的距离为132,则132=a-12+94,解得a=2,b=3,故椭圆C的方程为x24+y23=1.(2)由题意,直线AB的斜率存在,可设直线AB的方程为y=kx+m(k≠0),M2,0,A x1,y1,B x2,y2.联立y=kx+m3x2+4y2=12得3+4k2x2+8km x+4m2-12=0.Δ=64k2m2-43+4k24m2-12=484k2-m2+3>0.∴x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,∵直线MA 与直线MB 斜率之积为14.∴y 1x 1-2⋅y 2x 2-2=14,∴4kx 1+m kx 2+m =x 1-2 x 2-2 .化简得4k 2-1 x 1x 2+4km +2 x 1+x 2 +4m 2-4=0,∴4k 2-1 4m 2-123+4k 2+4km +2-8km 3+4k 2+4m -4=0, 化简得m 2-2km -8k 2=0,解得m =4k 或m =-2k .当m =4k 时,直线AB 方程为y =k x +4 ,过定点-4,0 .m =4k 代入判别式大于零中,解得-12<k <12(k ≠0).当m =-2k 时,直线AB 的方程为y =k x -2 ,过定点2,0 ,不符合题意. 综上所述:直线AB 过定点-4,0 .【点评】利用待定系数法求椭圆的方程,一般需要两个独立的条件确定关于a ,b 的等式.【例2】(2023届广东省开平市忠源纪念中学高三阶段性检测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.【点评】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.注意用待定系数法确定双曲线的标准方程要注意方程的个数要与未知数的个数相等.【例3】(2023届甘肃省张掖市高三上学期诊断)已知抛物线C :y 2=2px (p >1)上的点P x 0,1 到其焦点F 的距离为54.(1)求抛物线C 的方程;(2)点E (t ,4)在抛物线C 上,过点D (0,2)的直线l 与抛物线C 交于A x 1,y 1 ,B x 2,y 2 y 1>0,y 2>0 两点,点H 与点A 关于x 轴对称,直线AH 分别与直线OE ,OB 交于点M ,N (O 为坐标原点),求证:|AM |=|MN |.【解析】(1)由点P x 0,1 在抛物线上可得,12=2px 0,解得x 0=12p.由抛物线的定义可得|PF |=x 0+p 2=12p +p 2=54,整理得2p 2-5p +2=0,解得p =2或p =12(舍去).故抛物线C 的方程为y 2=4x .(2)由E (t ,4)在抛物线C 上可得42=4t ,解得t =4,所以E (4,4),直线OE 的方程为y =x ,因为点A 和点H 关于x 轴对称,所以H x 1,-y 1 ,x 1,x 2均不为0.由题意知直线l 的斜率存在且大于0,设直线l 的方程为y =kx +2(k >0),联立y =kx +2,y 2=4x ,消去y ,得k 2x 2+(4k -4)x +4=0.则Δ=(4k -4)2-16k 2=16-32k >0,得0<k <12,所以x 1+x 2=4-4k k 2,x 1x 2=4k 2.由直线OE 的方程为y =x ,得M x 1,x 1 .易知直线OB 的方程为y =y 2x 2x ,故N x 1,x 1y 2x 2.要证|AM |=|MN |,即证2y M =y 1+y N ,即证x 1y 2x 2+y 1=2x 1,即证x 1y 2+x 2y 1=2x 1x 2,即证(2k -2)x 1x 2+2x 1+x 2 =0,则(2k -2)×4k 2+8-8kk 2=0,此等式显然成立,所以|AM |=|MN |.【点评】用待定系数法求抛物线的标准方程,只需要确定p 的值,因此只需要由已知条件整理出一个关于p 的等式.(二)直接法求曲线轨迹方程1.直接法求曲线方程的关键就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系、设点、列式、代换、化简、证明这几个步骤,但最后的证明可以省略.2.求出曲线的方程后还需注意检验方程的纯粹性和完备性.3.对方程化简时,要保证前后方程解集相同,必要时可说明x ,y 的取值范围.【例4】设动点M 在直线y =0和y =-2上的射影分别为点N 和R ,已知MN ⋅MR =OM 2,其中O 为坐标原点.(1)求动点M 的轨迹E 的方程;(2)过直线x -y -2=0上的一点P 作轨迹E 的两条切线PA 和PB (A ,B 为切点),求证:直线AB 经过定点.【分析】(1)利用直接法求轨迹方程,设M (x ,y ),把MN ⋅MR =OM 2 坐标化,即可得到动点M 的轨迹E 的方程;(2)利用导数的几何意义,求得切线斜率,设A (x 1,y 1),B (x 2,y 2),可得切线PA 、PB 的方程,联立可得切点P的坐标为x 1+x 22,x 1x 22,又点P 在直线x -y -2=0上,代入可得x 1x 2=x 1+x 2-4,再代入到直线AB的方程即可得解.【解析】(1)设M (x ,y ),则N (x ,0),R (x ,-2),所以OM =(x ,y ),MN =(0,-y ),MR=(0,-2-y ),由条件可得-y (-y -2)=x 2+y 2,整理可得点M 的轨方程为x 2=2y ;(2)由(1)知,y =12x 2,求导可得y =x ,设A (x 1,y 1),B (x 2,y 2),则切线PA 的方程为y -x 122=x 1(x -x 1),即y =x 1x -x 122①,同理可得切线PB 的方程为y =x 2x -x 222②,联立①②,解得点P 的坐标为x 1+x 22,x 1x 22,因为点P 在直线x -y -2=0上,所以x 1+x 22-x 1x 22-2=0,即x 1x 2=x 1+x 2-4,又直线AB 的斜率k =x 222-x 122x 2-x 1=x 1+x 22,所以直线AB 的方程为:y -x 122=x 1+x 22(x -x 1),即y =(x 1+x 2)x -x 1x 22,又x 1x 2=x 1+x 2-4,代入可得y =(x 1+x 2)(x -1)2+2,所以直线AB 过定点(1,2).【点评】利用直接法求曲线的轨迹方程一般是根据题中的一个等量关系式,将其坐标化,即可得到曲线的轨迹方程.(三)定义法求曲线轨迹方程1.运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.2.定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.3.平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数:(1)若a >c ,则集合P 为椭圆;(2)若a =c ,则集合P 为线段;(3)若a <c ,则集合P 为空集.4.平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当2a <|F 1F 2|时,P 点的轨迹是双曲线;(2)当2a =|F 1F 2|时,P 点的轨迹是以F 1,F 2为端点的两条射线;(3)当2a >|F 1F 2|时,P 点不存在.5.平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.注意:(1)定直线l 不经过定点F .(2)定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.【例5】(2023届河北省示范性高中高三上学期调研)已知圆A :x 2+y 2+6x +5=0,直线l (与x 轴不重合)过点B (3,0)交圆A 于C 、D 两点,过点B 作直线AC 的平行线交直线DA 于点E .(1)证明||EB |-|EA ||为定值,并求点E 的轨迹方程;(2)设点E 的轨迹方程为C 1,直线l 与曲线C 1交于M 、N 两点,线段MN 的垂直平分线交x 轴于点P ,是否存在实常数入,使得|MN |=λ|PB |,若存在,求出λ的值;若不存在,请说明理由.【解析】(1)x 2+y 2+6x +5=0⇒x +3 2+y 2=4,得A (-3,0),当|BD |>|BC |时,如图1所示,因为D ,C 都在圆A 上所以|AD |=|AC |,即∠ADC =∠ACD 又因为BE ∥AC ,所以∠ACD =∠EBD ,所以∠EDB =∠EBD ,∴|ED |=|EB |,所以|EB |-|EA |=|ED |-|EA |=|AD |=2当|BD |<|BC |时,如图2所示,同理可得,|EB |-|EA |=|ED |-|EA |=-|AD |=-2因此|EB |-|EA |=2<|AB |=6,所以点E 的轨迹是以A ,B 为焦点的双曲线,故2a =2,2c =6,即a =1,c =3,所以b 2=c 2-a 2=9-1=8,∴||EB |-|EA ||为定值2,且点E 的轨迹方程为x 2-y 28=1.(2)由题知,直线l 的斜率不为0,设l :x =my +3,联立x =my +38x 2-y 2=8消去x 得,8m 2-1 y 2+48my +64=0,于是Δ=(48m )2-4×648m 2-1 =256m 2+1 >0,设M x 1,y 1 ,N x 2,y 2 ,则有y 1+y 2=-48m 8m 2-1,y 1y 2=648m 2-1,故x 1+x 2=my 1+3+my 2+3=m y 1+y 2 +6=-48m 2+48m 2-68m 2-1=68m 2-1,所以线段MN 的中点为-38m 2-1,-24m8m 2-1,从而线段MN 的中垂线的方程为y +24m 8m 2-1=-m x +38m 2-1 令y =0得,x =-278m 2-1,∴|PB |=3--278m 2-1 =3+278m 2-1=24m 2+1 8m 2-1又|MN |=1+m 2y 1+y 2 2-4y 1y 2=1+m 2-48m 8m 2-1 2-4×648m 2-1=16m 2+1 8m 2-1故|MN ||PB |=16m 2+1 8m 2-1×8m 2-1 24m 2+1 =23,于是λ=23即存在λ=23使得|MN |=λ|PB |.【点评】利用双曲线定义求轨迹方程,关键是利用题中条件,确定动点到两定点距离之差的绝对值为定值.【例6】已知一定点F (0,1),及一定直线l :y =-1,以动点M 为圆心的圆M 过点F ,且与直线l 相切.(1)求动点M 的轨迹C 的方程;(2)设P 在直线l 上,直线PA ,PB 分别与曲线C 相切于A ,B ,N 为线段AB 的中点.求证:|AB |=2|NP |,且直线AB 恒过定点.【解析】(1)动点M 为圆心的圆M 过点F ,且与直线l 相切,动圆圆心到定点F (0,1)与定直线y =-1的距离相等,∴动圆圆心的轨迹为抛物线,其中F (0,1)为焦点,y =-1为准线,∴p2=1⇒p =2,∴动圆圆心轨迹方程为x 2=4y .(2)依题意可设P x 0,-1 ,A x 1,x 214 ,B x 2,x 224,又x 2=4y ,∴y =14x 2∴y =12x故切线PA 的斜率为k 1=12x 1,故切线PA :y -14x 21=12x 1x -x 1 ⇒2x 1x -4y -x 21=0同理可得到切线PB :2x 2x -4y -x 22=0又P x 0,-1 ,∴2x 1x 0+4-x 12=0且2x 2x 0+4-x 22=0,故方程x 2-2x 0x -4=0有两根x 1,x 2∴x 1x 2=-4,∴k 1k 2=12x 1×12x 2=14x 1x 2=-1∴PA ⊥PB又N 为线段AB 的中点,∴|AB |=2|NP |又由2x 1x 0+4-x 21=0得到:12x 1x 0+1-x 214=0即12x 1x 0+1-y 1=0同理可得到12x 2x 0+1-y 2=0,故直线AB 方程为:12x 0x -y +1=0,故直线过定点F 0,1 .【点评】利用抛物线定义求轨迹方程关键是确定动点到一定点与定直线距离相等.(四)相关点法求曲线轨迹方程“相关点法”求轨迹方程的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式x 1=f x ,y ,y 1=g x ,y ;(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.【例7】(2023届广东省揭阳市高三上学期调研)已知F 1、F 2是椭圆C :x 24+y 23=1的左、右焦点,点P m ,n n ≠0 是椭圆上的动点.(1)求△PF1F 2的重心G 的轨迹方程;(2)设点Q s ,t 是△PF 1F 2的内切圆圆心,求证:m =2s .【解析】(1)连接PO ,由三角形重心性质知G 在PO 的三等分点处(靠近原点)设G (x ,y ),则有m =3x ,n =3y又m 24+n 23=1,所以9x 24+9y 23=1,即9x 24+3y 2=1△PF 1F 2的重心G 的轨迹方程为9x24+3y 2=1(y ≠0);(2)根据对称性,不妨设点P 在第一象限内,易知圆Q 的半径为等于t ,利用等面积法有:S △PF 1F 2=12|PF 1|⋅t +12|PF 2|⋅t +12|F 1F 2|⋅t =12|F 1F 2|⋅n结合椭圆定义:|PF 1|+|PF 2|=4,|F 1F 2|=2有12⋅4⋅t +12⋅2⋅t =12⋅2⋅n ,解得t =n 3由P (m ,n )、F 1(-1,0)两点的坐标可知直线PF 1的方程为nx -(m +1)y +n =0根据圆心Q 到直线PF 1的距离等于半径,有ns -(m +1)n3+n n 2+(m +1)2=n3∴3s -m +2 n 2+(m +1)2=1,∴9s 2-6sm +12s -6m +3-n 2=0∴3s 2-2sm +4s -2m +1-n 23=0,又m 24+n 23=1化简得12s 2-8sm +16s -8m +m 2=0,即12s 2-8sm +m 2 +16s -8m =0∴2s -m 6s -m +82s -m =0,即2s -m 6s -m +8 =0由已知得-2<m <2,-1<s <1,则6s -m +8>0所以2s -m =0,即m =2s .(五)交轨法求曲线轨迹方程求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的轨迹方程,也可以解方程组先求出交点坐标的参数方程,再化为普通方程.【例8】(2022届重庆市第八中学高三上学期月考)已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【分析】(1)联立直线与抛物线,根据韦达定理及中点求出k 即可;(2)写出圆的切线方程,根据P 是交点可得x 1,x 2是方程x 2-2x 0x +y 0=0的两根,由(1)中x 1+x 2=k ,x 1x 2=k -2代入化简即可求出.【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2,可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.【点评】求两条动直线交点轨迹方程一般用交轨法三、跟踪检测1.(2023届广东省广东广雅中学高三上学期9月阶段测试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22.圆O (O 为坐标原点)在椭圆C 的内部,半径为63.P ,Q 分别为椭圆C 和圆O 上的动点,且P ,Q 两点的最小距离为1-63.(1)求椭圆C 的方程;(2)A ,B 是椭圆C 上不同的两点,且直线AB 与以OA 为直径的圆的一个交点在圆O 上.求证:以AB 为直径的圆过定点.【解析】(1)设椭圆的长半轴为a ,短半轴为b ,半焦距为c ,由圆的性质,|PQ |≥|PO |-63当点P 在椭圆上运动时,当P 处于上下顶点时|PO |最小,故|PQ |≥|PO |-63≥b -63,即b -63=1-63依题意得c a =22b -63=1-63a 2=b 2+c 2,解得a =2b =1c =1,所以C 的方程为x 22+y 2=1.(2)因为直线AB 与以OA 为直径的圆的一个交点在圆O 上,所以直线AB 与圆O 相切.(i )当直线AB 垂直于x 轴时,不妨设A 63,63 ,B 63,-63,此时OA ⋅OB=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .(ii )当直线AB 不垂直于x 轴时,设直线AB 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .因为AB 与圆O 相切,所以O 到直线AB 的距离|m |k 2+1=63,即3m 2-2k 2-2=0.由y =kx +m ,x 22+y 2=1,得2k 2+1 x 2+4km x +2m 2-2=0,所以x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1,OA ⋅OB=x 1x 2+y 1y 2=x 1x 2+kx 1+m kx 2+m =1+k 2 x 1x 2+km x 1+x 2 +m 2,=1+k 22m 2-22k 2+1 +km -4km 2k 2+1+m 2,=1+k 2 2m 2-2 +km (-4km )+m 22k 2+1 2k 2+1,=3m 2-2k 2-22k 2+1=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .综上,以AB 为直径的圆过点O .2.(2023届山西省忻州市高三上学期联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率是5,点F 是双曲线C 的一个焦点,且点F 到双曲线C 的一条渐近线的距离是2.(1)求双曲线C 的标准方程.(2)设点M 在直线x =14上,过点M 作两条直线l 1,l 2,直线l 1与双曲线C 交于A ,B 两点,直线l 2与双曲线C 交于D ,E 两点.若直线AB 与直线DE 的倾斜角互补,证明:MA MD =MEMB.【解析】(1)根据双曲线的对称性,不妨设F c ,0 ,其渐近线方程为bx ±ay =0,因为焦点F 到双曲线C 的一条渐近线的距离是2.所以2=bcb 2+a 2,因为双曲线C 的离心率是5,所以,c a =52=bc b 2+a 2c 2=a 2+b 2,解得a =1,b =2.所以,双曲线C 的标准方程为x 2-y 24=1.(2)证明:由题意可知直线l 1的斜率存在,设M 14,t ,直线l 1:y =k x -14+t ,A x 1,y 1 ,B x 2,y 2 .联立y =k x -14 +tx 2-y 24=1整理得k 2-4 x 2+2kt -12k 2 x +116k 2-12kt +t 2+4=0,所以,x 1+x 2=-2kt -12k 2k 2-4,x 1x 2=116k 2-12kt +t 2+4k 2-4.故MA ⋅MB =k 2+1 x 1-14 x 2-14 =k 2+1 x 1x 2-14x 1+x 2 +116 =k 2+1 4t 2+15 4k 2-4.设直线l 2的斜率为k,同理可得MD ⋅ME =k2+1 4t 2+154k 2-4.因为直线AB 与直线DE 的倾斜角互补,所以k =-k ,所以k 2=k 2,则k 2+1 4t 2+15 4k 2-4 =k 2+1 4t 2+15 4k 2-4 ,即MA ⋅MB =MD ⋅ME ,所以MA MD =MEMB.3.(2023届广东省茂名市高三上学期9月大联考)如图,平面直角坐标系xOy 中,点Q 为x 轴上的一个动点,动点P 满足PO =PQ =32,又点E 满足PE =12EQ .(1)求动点E 的轨迹Γ的方程;(2)过曲线Γ上的点A x 0,y 0 (x 0y 0≠0)的直线l 与x ,y 轴的交点分别为M 和N ,且NA =2AM,过原点O 的直线与l 平行,且与曲线Γ交于B 、D 两点,求△ABD 面积的最大值.【解析】(1)法一:由题意,设E x ,y ,P 12x ,y ,由PO =PQ =32得Q x ,0 ,且x 24+y 2=94,由PE =12EQ 得E 23x ,23y ,则x =23x y =23y ,得x =32x y=32y,代入x 24+y 2=94整理得x 24+y 2=1,故动点E 的轨迹Γ的方程为x 24+y 2=1.法二:设∠POQ =α,P 32cos α,32sin α ,Q 3cos α,0 ,设E x ,y ,则由PE =12EQ 得x =23×3cos α=2cos αy =23×32sin α=sin α,消去α得x 24+y 2=1,故动点E 的轨迹Γ的方程为x 24+y 2=1.(2)如图,设A x 0,y 0 (x 0y 0≠0),又直线l 的斜率存在且k ≠0,∴设直线l 为:y -y 0=k x -x 0 ,可得:M x 0-y 0k,0 ,N0,y 0-kx 0 ,由NA =2AM ,则x 0,kx 0 =2-y 0k ,-y 0 ,故x 0=-2y 0k,kx 0=-2y 0,联立x 204+y 20=1x 0=-2y 0k,可得:y 20=k 21+k 2,即y 0 =k 1+k 2,又BD ⎳l ,故直线BD 的方程为y =kx ,联立x 24+y 2=1y =kx,得:x 2=41+4k 2,即B 、D 的横坐标为±21+4k 2,∴BD =1+k 2x B -x D =41+k 21+4k 2,∵点A 到直线BD 的距离d =kx 0-y 0 1+k 2=3y 01+k 2=3k 1+k 2,∴S △ABD =12BD ⋅d =6k 1+4k 21+k 2=61+k 2 1+4k 2k2=64k 2+1k2+5≤624k 2×1k2+5=2,当且仅当4k 2=1k2,即k =±22时等号成立,∴△ABD 面积的最大值为2.4.(2023届湖南省永州市高三上学期适应性考试)点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72.(1)求双曲线C 的方程;(2)A ,B 是双曲线C 上的两个动点(异于点P ),k 1,k 2分别表示直线PA ,PB 的斜率,满足k 1k 2=32,求证:直线AB 恒过一个定点,并求出该定点的坐标.【解析】(1)由题意点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72可得;16a 2-9b 2=1a 2+b 2a =72,解出,a =2,b =3,所以,双曲线C 的方程是x 24-y 23=1(2)①当直线AB 的斜率不存在时,则可设A n ,y 0 ,B n ,-y 0 ,代入x 24-y 23=1,得y 02=34n 2-3,则k 1k 2=y 0-3n -4⋅-y 0-3n -4=9-y 20(n -4)2=12-34n 2(n -4)2=32,即9n 2-48n +48=0,解得n =43或n =4,当n =4时,y 0=±3,A ,B 其中一个与点P 4,3 重合,不合题意;当n =43时,直线AB 的方程为x =43,它与双曲线C 不相交,故直线AB 的斜率存在;②当直线AB 的斜率存在时,设直线AB 的方程y =kx +m 代入x 24-y 23=1,整理得,3-4k 2 x 2-8km x -4m 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=8km 3-4k 2,x 1x 2=-4m 2+123-4k 2,由Δ=(-8km )2-43-4k 2 -4m 2-12 >0,∴m 2+3>4k 2,所以k 1k 2=y 1-3x 1-4⋅y 2-3x 2-4=kx 1+m -3x 1-4⋅kx 2+m -3x 2-4=k 2x 1x 2+k m -3 x 1+x 2 +(m -3)2x 1x 2-4x 1+x 2 +16=32所以,2k 2-3 x 1x 2+2km -6k +12 x 1+x 2 +2m 2-12m -30=0,即2k 2-3 ⋅-4m 2-123-4k 2+2km -6k +12 ⋅8km 3-4k2+2m 2-12m -30=0,整理得3m 2+16k -6 m +16k 2-9=0,即3m +4k +3 m +4k -3 =0,所以3m +4k +3=0或m +4k -3=0,若3m +4k +3=0,则m =-4k +33,直线AB 化为y =k x -43 -1,过定点43,-1 ;若m +4k -3=0,则m =-4k +3,直线AB 化为y =k x -4 +3,它过点P 4,3 ,舍去综上,直线AB 恒过定点43,-1 5.(2023届福建师范大学附属中学高三上学期月考)在平面直角坐标系xOy 中, 设点P -13,0 ,Q 13,0 ,点G 与P ,Q 两点的距离之和为43,N 为一动点, 点N 满足向量关系式:GN +GP +GQ =0 .(1)求点N 的轨迹方程C ;(2)设C 与x 轴交于点A ,B (A 在B 的左侧), 点M 为C 上一动点(且不与A ,B 重合).设直线AM ,x 轴与直线x =4分别交于点R ,S ,取E (1,0),连接ER ,证明:ER 为∠MES 的角平分线.【解析】(1)设点N (x ,y ),G (x ,y ),则由点G 与P ,Q 两点的距离之和为43>|PQ |=23,可得点G 的轨迹是以P ,Q 为焦点且长轴长为43的椭圆,其轨迹方程为94x 2+3y 2=1,由GN +GP +GQ =0 ,可得x =x 3,y =y 3,代入点G 的轨迹方程,可得:94x 3 2+3y 32=1,所以点N 的轨迹方程C :x 24+y 23=1;(2)设点M (x 0,y 0),则ME :y =y 0x 0-1(x -1),即y 0x -(x 0-1)y -y 0=0,MA :y =y 0x 0+2(x +2),令x =4,得y =6y 0x 0+2,∴R 4,6y 0x 0+2,则点R 到直线ME 的距离为:d =4y 0-6y 0(x 0-1)x 0+2-y 0y 20+(x 0-1)2=|3y 0(4-x 0)|(x 0+2)y 20+(x 0-1)2=(12-3x 0)|y 0|(x 0+2)y 20+(x 0-1)2,要证ER 为∠MES 的角平分线,只需证d =|RS |,又|RS |=|y R |=6|y 0|x 0+2,∵y 0≠0,所以d =|RS |,当且仅当4-x 0y 20+(x 0-1)2=2,即(4-x 0)2=4[y 20+(x 0-1)2]时,又(x 0,y 0)在C 上,则x 204+y 203=1,即4y 20=12-3x 20,代入上式可得16-8x 0+x 20=12-3x 20+4x 20-8x 0+4恒成立,∴ER 为∠MES 的角平分线.6.(2023届云南省大理市辖区高三统一检测)已知F 1,F 2为椭圆C 的左、右焦点,点M 1,32为其上一点,且MF 1 +MF 2 =4.(1)求椭圆C 的标准方程;(2)过点F 1的直线l 与椭圆C 相交于P ,Q 两点,点P 关于坐标原点O 的对称点R ,试问△PQR 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【解析】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),则2a =4,1a 2+94b2=1,解之得:{a 2=4,b 2=3,所以椭圆的标准方程为x 24+y 23=1.(2)如图所示,设直线l :x =my -1,则{x =my -1,3x 2+4y 2=12,消去x 整理得3m 2+4 y 2-6my -9=0,设P x 1,y 1 ,Q x 2,y 2 ,△PQR 的面积为S ,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4又Δ=36m 2+363m 2+4 =36×4m 2+1 >0,则S =2S △POQ =2×12×OF 1 ×y 1-y 2 =y 1-y 2 =(y 1+y 2)2-4y 1y 2=36×4m 2+13m 2+4=12m 2+13m 2+4,令m 2+1=t (t ≥1),则S =12t 3t 2+1=123t +1t(t ≥1),又设f (t )=3t +1t ,则f (t )=3-1t2>0,∴f (t )在[1,+∞)上为增函数,f (t )min =f (1)=4,∴S max =3,所以,存在当m =0时,即直线l 的方程为x =-1,△PQR 的面积有最大值,其最大值为37.(2022届福建省福州第十八中学高三上学期考试)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ =9QF,求直线OQ 斜率的最大值.【解析】(1)抛物线C :y 2=2px (p >0)的焦点F p 2,0 ,准线方程为x =-p2,由题意,该抛物线焦点到准线的距离为p 2--p2=p =2,所以该抛物线的方程为y 2=4x ;(2)设Q x 0,y 0 ,则PQ =9QF=9-9x 0,-9y 0 ,所以P 10x 0-9,10y 0 ,由P 在抛物线上可得10y 0 2=410x 0-9 ,即x 0=25y 20+910,据此整理可得点Q 的轨迹方程为y 2=25x -925,所以直线OQ 的斜率k OQ =y 0x 0=y 025y 20+910=10y 025y 20+9,当y 0=0时,k OQ =0;当y 0≠0时,k OQ =1025y 0+9y 0,当y 0>0时,因为25y 0+9y 0≥225y 0⋅9y 0=30,此时0<k OQ ≤13,当且仅当25y 0=9y 0,即y 0=35时,等号成立;当y 0<0时,k OQ <0;综上,直线OQ 的斜率的最大值为13.8.(2023届陕西师范大学附属中学、渭北中学等高三上学期联考)已知抛物线C :y 2=2px (p >0),O 是坐标原点,F 是C 的焦点,M 是C 上一点,|FM |=4,∠OFM =120°.(1)求抛物线C 的标准方程;(2)设点Q x 0,2 在C 上,过Q 作两条互相垂直的直线QA ,QB ,分别交C 于A ,B 两点(异于Q 点).证明:直线AB 恒过定点.【解析】(1)由|FM |=4,∠OFM =120°,可得M p2+2,±23 ,代入C :12=2p p2+2=p 2+4p .解得p =2或p =-6(舍),所以抛物线的方程为:y 2=4x .(2)由题意可得Q (1,2),直线AB 的斜率不为0,设直线AB 的方程为x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,由y 2=4x x =my +n ,得y 2-4my -4n =0,从而Δ=16m 2+16n >0,则y 1+y 2=4m y 1y 2=-4n .所以x 1+x 2=m y 1+y 2 +2n =4m 2+2n ,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=n 2,∵QA ⊥QB ,∴QA ⋅QB=x 1-1 x 2-1 +y 1-2 y 2-2 =0,故x 1x 2-x 1+x 2 +1+y 1y 2-2y 1+y 2 +4=0,整理得n 2-4m 2-6n -8m +5=0.即(n -3)2=4(m +1)2,从而n -3=2(m +1)或n -3=-2(m +1),即n =2m +5或n =-2m +1.若n =-2m +1,则x =my +n =my -2m +1=m (y -2)+1,过定点(1,2),与Q 点重合,不符合;若n =2m +5,则x =my +n =my +2m +5=m (y +2)+5,过定点(5,-2).综上,直线AB 过异于Q 点的定点(5,-2).9.(2023届广东省潮阳实验、湛江一中、深圳实验三校高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,椭圆上一动点P 与左、右焦点构成的三角形面积最大值为 3.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,直线PQ 交椭圆C 于P ,Q 两点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,已知k 1=3k 2.①求证:直线PQ 恒过定点;②设△APQ 和△BPQ 的面积分别为S 1,S 2,求S 1-S 2 的最大值.【解析】(1)由题意c a =32bc =3a 2=b 2+c2 ,解得a 2=4b 2=1 ,所以椭圆C 的方程为x 24+y 2=1.(2)①依题意A (-2,0),B (2,0),设P x 1,y 1 ,Q x 2,y 2 ,若直线PQ 的斜率为0则P ,Q 关于y 轴对称,必有k AP =-k BQ ,不合题意.所以直线PQ 斜率必不为0,设其方程为x =ty +n (n ≠±2),与椭圆C 联立x 2+4y 2=4x =ty +n,整理得:t 2+4 y 2+2tny +n 2-4=0,所以Δ=16t 2+4-n 2 >0,且y 1+y 2=-2tn t 2+4,y 1y 2=n 2-4t 2+4.因为P x 1,y 1 是椭圆上一点,即x 214+y 21=1,所以k AP ⋅k BP =y 1x 1+2⋅y 1x 1-2=y 21x 21-4=1-x 214x 21-4=-14,则k AP =-14k BP =3k BQ ,即12k BP ⋅k BQ =-1因为12k BP ⋅k BQ =12y 1y 2x 1-2 x 2-2 =12y 1y 2ty 1+n -2 ty 2+n -2=12y 1y 2t 2y 1y 2+t (n -2)y 1+y 2 +(n -2)2=12n 2-4t 2+4t 2n 2-4 t 2+4-2t 2n (n -2)t 2+4+(n -2)2=12(n +2)t 2(n +2)-2t 2n +(n -2)t 2+4 =3(n +2)n -2=-1,所以n =-1,此时Δ=16t 2+4-n 2 =16t 2+3 >0,故直线PQ 恒过x 轴上一定点D -1,0 .②由①得:y 1+y 2=2t t 2+4,y 1y 2=-3t 2+4,所以S 1-S 2 =12⋅y 1-y 2 ⋅2--1 -12⋅y 1-y 2 ⋅-2--1 =y 1-y 2=y 1+y 2 2-4y 1y 2=4t 2+3t 2+4=4t 2+4 -1t 2+4 2=41t 2+4-1t 2+42=4-1t 2+4-12 2+14,而1t 2+4∈0,14 ,当1t 2+4=14时S 1-S 2 的最大值为3.10.(2022届云南省红河州高三检测)在平面直角坐标系xOy 中,点M 是以原点O 为圆心,半径为a 的圆上的一个动点.以原点O 为圆心,半径为b a >b >0 的圆与线段OM 交于点N ,作MD ⊥x 轴于点D ,作NQ ⊥MD 于点Q .(1)令∠MOD =α,若a =4,b =1,α=π3,求点Q 的坐标;(2)若点Q 的轨迹为曲线C ,求曲线C 的方程;(3)设(2)中的曲线C 与x 轴的正半轴交于点A ,与y 轴的正负半轴分别交于点B 1,B 2,若点E 、F 分别满足AE =-3OE ,4AF =3OB 2,证明直线B 1E 和B 2F 的交点K 在曲线C 上.【解析】(1)设Q x ,y ,则由题知x =x M =4cos π3=2y =y D =sin π3=32,因此Q 2,32 ;(2)设∠MOD =α及Q x ,y ,则由题知x =a cos αy =b sin α ,则点Q 的轨迹C 为椭圆,方程为:x2a 2+y 2b 2=1a >b >0 ;(3)设K x ,y ,由知,B 10,b ,E a 4,0 ,B 20,-b ,F a ,-34b ,l B 1E :xa 4+y b =1,即4bx +ay =ab ,l B 2F :y +b -34b +b=x a ,即bx -4ay =4ab ,联列上述直线方程,解得x =817ay =-1517bx 2a 2+y 2b 2=82172+152172=1,因此交点K 在椭圆C 上.11.(2022届广东省六校高三上学期联考)在平面直角坐标系xoy 中,已知圆A :x +2 2+y 2=8,B 2,0 ,动圆P 经过点B 且与圆A 相外切,记动圆的圆点P 的轨迹为C .(1)求C 的方程;(2)试问,在x 轴上是否存在点M ,使得过点M 的动直线l 交C 于E ,F 两点时,恒有∠EAM =∠FAM ?若存在,求出点M 的坐标;若不存在,请说明理由.【解析】(1)设动圆P 的半径长为r ,则PB =r ,PA =r +22,∴PB -PA =2 2.因此,圆心P 的轨迹为以A -2,0 、B 2,0 为焦点,实轴长为22的双曲线的右支,设C 的方程为x 2a 2-y 2b2=1(x >0),则根据双曲线定义a =2,c =2,∴b 2=c 2-a 2=2,因此C 的方程为x 22-y 22=1(x >0).(说明:没写x 的范围扣1分)(2)不存在满足条件的点M ,理由如下:假设存在满足条件的点M ,设点M 的坐标为m ,0 ,直线l 的斜率为k ,则直线l 的方程为y =k x -m ,由y =k x -m ,x 22-y 22=1,消去y 并整理,得k 2-1 x 2-2mk 2x +k 2m 2+2=0,设E x 1,y 1 、F x 2,y 2 ,则x 1+x 2=2mk 2k 2-1,x 1x 2=k 2m 2+2k 2-1,(*)由∠EAM =∠FAM ,得k AE +k AF =0,即y 1x 1+2+y 2x 1+2=0,将y 1=k x 1-m ,y 2=k x 2-m 代入上式并化简,得2x 1x 2+2-m x 1+x 2 -4m =0.将(*)式代入上式,有2⋅k 2m 2+2k 2-1+2-m ⋅2mk 2k 2-1-4m =0,解得m =-1.而当直线l 交C 于E ,F 两点时,必须有x 1+x 2>0且x 1x 2>0.当m =-1时,x 1+x 2=-2k 2k 2-1,x 1x 2=k 2+2k 2-1,由-2k 2k 2-1>0,k 2+2k 2-1>0,⇒k 2<1,k 2>1, k 无解,则当m =-1时,不符合条件.因此,不存在满足条件的点M .12.(2022届广东省高三上学期12月大联考)已知圆(x +1)2+y 2=16的圆心为A ,点P 是圆A 上的动点,点B 是抛物线y 2=4x 的焦点,点G 在线段AP 上,且满足GP =GB .(1)求点G 的轨迹E 的方程;(2)不过原点的直线l 与(1)中轨迹E 交于M ,N 两点,若线段MN 的中点Q 在抛物线y 2=4x 上,求直线l 的斜率k 的取值范围.【解析】(1)易知A -1,0 ,∵点B 是抛物线y 2=4x 的焦点,∴B 1,0 ,依题意GA +GB =AP =4>2=AB ,所以点G 轨迹是一个椭圆,其焦点分别为A ,B ,长轴长为4,设该椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则2a =4,2c =2,∴a =2,c =1,∴b 2=a 2-c 2=3,故点G 的轨迹E 的方程为x 24+y 23=1.(2)易知直线1的斜率存在,设直线1:y =kx +t t ≠0 ,M x 1,y 1 ,N x 2,y 2 ,Q x 0,y 0 ,由y =kx +t 3x 2+4y 2=12得:4k 2+3 x 2+8ktx +4t 2-12=0,∵Δ=(8kt )2-43+4k 2 4t 2-12 >0,即4k 2-t 2+3>0①又x 1+x2=-8kt 4k 2+3,x 1⋅x 2=4t 2-124k 2+3故Q -4kt 4k 2+3,3t 4k 2+3 ,将Q -4kt 4k 2+3,3t4k 2+3,代λy 2=4x ,得t =-16k 4k 2+39②,k ≠0 ,将②代入①,得:162k 24k 2+3 <81,4×162k 4+3×162k 2-81<0,即k 4+34k 2-932 2<0,即k 2-332 k 2+2732 <0,即k 2-332<0,∴-68<k <68且k ≠0,即k 的取值范围为:-68<k <0或0<k <68.。
圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上 ∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。
第六讲 求轨迹方程的六种常用技法1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ∆的重心轨迹方程是_______________。
练习:4.方程|2|x y ++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线3.点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程。
例3.椭圆22142x y +=中,过(1,1)P 的弦恰被P 点平分,则该弦所在直线方程为_________________。
2020上学期期末复习专题1 圆锥曲线的定点、定值问题(教师版)一.知识梳理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.定点问题(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );②利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.4.定值问题(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.二.题型归纳题型1 “设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线2y =2px (p >0)的焦点坐标为F (1,0),所以p2=1,所以p =2.所以抛物线C 的方程为2y =4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎪⎪⎭⎫ ⎝⎛t t ,42,B ⎪⎪⎭⎫⎝⎛-t t ,42. 因为直线OA ,OB 的斜率之积为-12,所以214422-=-⋅t t t t ,化简得2t =32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A ()A A ,y x ,B ()B B ,y x ,联立⎩⎨⎧+==bkx y x y 42,消去x ,化简得ky 2-4y +4b =0.所以B A y y =4bk ,因为直线OA ,OB 的斜率之积为-12,所以21-=⋅B B A A x y x y ,整理得B A x x +2B A y y =0.即024422=+⋅B A B A y y yy ,解得B A y y =0(舍去)或B A y y =-32.所以B A y y =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).【跟踪训练1-1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明:直线l 过定点,并求出该定点的坐标.【解】(1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1, ∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立⎩⎨⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1) =(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎪⎭⎫ ⎝⎛-530,.【总结归纳】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:题型2 “设参→用参→消参”三步解决圆锥曲线中的定值问题【例2-1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与 点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.[解] (1)设P(x ,y),M(x 0,y 0),则N(x 0,0).∵NP ―→= 2 NM ―→,∴(x -x 0,y)=2(0,y 0),∴x 0=x ,y 0=y 2.又点M 在椭圆上,∴142922=⎪⎭⎫ ⎝⎛+y x ,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:由(1)知F 为椭圆x 29+y 28=1的右焦点,当直线l 1与x 轴重合时,|AB|=6,|CD|=2b 2a =163,∴1|AB|+1|CD|=1748.当直线l 1与x 轴垂直时,|AB|=163,|CD|=6,∴1|AB|+1|CD|=1748. 当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k(x -1)(k ≠0), 则直线l 2的方程为y =-1k(x -1),设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y =k x -1,x 29+y28=1消去y ,得(8+9k 2)x 2-18k 2x +9k 2-72=0,则Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)=2 304(k 2+1)>0, x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,∴|AB|= 1+k 2·x 1+x 22-4x 1x 2=481+k 28+9k 2.同理可得|CD|=481+k 29+8k 2.∴1|AB|+1|CD|=8+9k 248k 2+1+9+8k 248k 2+1=1748.综上可得1|AB|+1|CD|为定值. 【跟踪训练2-1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.【解】(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,b 2+c 2=a 2,解得⎩⎨⎧b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)法一:设D (x 0,0),M (x 0,y 0),N (x 0,-y 0),-2<x 0<2,所以k AM =y 0x 0+2,因为AM ⊥DE ,所以k DE =-2+x 0y 0,所以直线DE 的方程为y =-2+x 0y 0(x -x 0). 因为k BN =-y 0x 0-2,所以直线BN 的方程为y =-y 0x 0-2(x -2).由⎩⎨⎧y =-2+x0y(x -x 0),y =-y0x 0-2(x -2),解得E ⎝⎛⎭⎫45x 0+25,-45y 0, 所以S △BDE S △BDN =12|BD |·|y E |12|BD |·|y N |=⎪⎪⎪⎪-45y 0|-y 0|=45.故△BDE 与△BDN 的面积之比为定值45.法二:设M (2cos θ,sin θ)(θ≠k π,k ∈Z ),则D (2cos θ,0),N (2cos θ,-sin θ), 设BE ―→=λBN ―→,则DE ―→=DB ―→+BE ―→=DB ―→+λBN ―→=(2-2cos θ,0)+λ(2cos θ-2,-sin θ) =(2-2cos θ+2λcos θ-2λ,-λsin θ).又AM ―→=(2cos θ+2,sin θ),由AM ―→⊥DE ―→,得AM ―→·DE ―→=0,从而[(2-2cos θ)+λ(2cos θ-2)](2cos θ+2)-λsin 2θ=0,整理得4sin 2θ-4λsin 2θ-λsin 2θ=0, 即5λsin 2θ=4sin 2θ.,所以λ=45,所以S △BDE S △BDN =|BE ||BN |=45.故△BDE 与△BDN 的面积之比为定值45.【总结归纳】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:题型三 探索性问题例3.已知圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1). (1) 求圆M 的方程;(2) 设P 为圆M 上任一点,过点P 向圆O :x 2+y 2=1引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值.若存在,求出点R 的坐标;若不存在,请说明理由. 解析:(1) 因为圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1), 所以设圆心坐标为(m,2m -6),半径为r , 则圆的标准方程为(x -m )2+(y -2m +6)2=r 2.则(1-m )2+(2-2m +6)2=r 2且(4-m )2+(-1-2m +6)2=r 2, 即(m -1)2+(8-2m )2=r 2且(m -4)2+(5-2m )2=r 2, 解得m =4,r =3.所以圆M :(x -4)2+(y -2)2=9.(2) 设P (x ,y ),R (a ,b ),则(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11. 又PQ 2=x 2+y 2-1,PR 2=(x -a )2+(y -b )2=x 2+y 2-2ax -2by +a 2+b 2, 故PQ 2=8x +4y -12,PR 2=(8-2a )x +(4-2b )y +a 2+b 2-11.又设PQPR =t 为定值,故8x +4y -12=t 2[(8-2a )x +(4-2b )y +a 2+b 2-11]. 因为上式对圆M 上任意点P (x ,y )都成立,可得⎩⎪⎨⎪⎧8=(8-2a )t 2,4=(4-2b )t 2,-12=(a 2+b 2-11)t 2,解得⎩⎪⎨⎪⎧a 1=2,b 1=1,t 1=2或⎩⎪⎪⎪⎨⎪⎪⎪⎧a 2=25,b 2=15,t 2=103.综上,存在点R (2,1)或R ⎝ ⎛⎭⎪⎫25,15满足题意.跟踪训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎫1,32,离心率为32. (1) 求椭圆C 的方程;(2) 直线y =k (x -1)(k ≠0)与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问:以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,请说明理由.解析:(1) 由题意得⎩⎪⎨⎪⎧ca =32,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程是x 24+y 2=1.(2) 以线段PQ 为直径的圆过x 轴上的定点. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.又因为点M 是椭圆C 的右顶点,所以点M (2,0).由题意可知直线AM 的方程为y =y 1x 1-2(x -2),故点P ⎝ ⎛⎭⎪⎪⎫0,-2y 1x 1-2. 直线BM 的方程为y =y 2x 2-2(x -2),故点Q ⎝ ⎛⎭⎪⎪⎫0,-2y 2x 2-2. 若以线段PQ 为直径的圆过x 轴上的定点N (x 0,0),则等价于PN →·QN →=0恒成立.又因为PN →=⎝⎛⎭⎪⎪⎫x 0,2y 1x 1-2,QN →=⎝⎛⎭⎪⎪⎫x 0,2y 2x 2-2,所以PN →·QN →=x 20+2y 1x 1-2·2y 2x 2-2=x 20+4y 1y 2(x 1-2)(x 2-2)=0恒成立. 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=4k 2-41+4k 2-28k 21+4k 2+4=4k 21+4k 2,y 1y 2=k (x 1-1)k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎪⎫4k2-41+4k 2-8k 21+4k 2+1=-3k 21+4k2,所以x 20+4y 1y 2(x 1-2)(x 2-2)=x 20+-12k 21+4k 24k 21+4k 2=x 20-3=0,解得x 0=±3. 故以线段PQ 为直径的圆过x 轴上的定点(±3,0).圆锥曲线定点定值问题作业1. 如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0). (1) 求点A ,B 所在的曲线L 的方程;(2) 过L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l ∥OA .求证:CD ·CEOA 2为定值.解析:(1) 因为四边形AMBN 是平行四边形,周长为8,所以A ,B 两点到M ,N 的距离之和均为4>23,可知所求曲线为椭圆. 由椭圆定义可知,a =2,c =3,b =1.曲线L 的方程为x24+y 2=1(y ≠0).(2) 由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为点C (-2,0)在曲线L 上,则D ⎝ ⎛⎭⎪⎪⎫-8k 2+21+4k2,4k 1+4k 2,E (0,2k ), 所以CD =41+k 21+4k2,CE =21+k 2. 因为OA ∥l ,所以设OA 的方程为y =kx ,代入曲线L 的方程,并整理得(1+4k 2)x 2=4. 所以x 2A =41+4k 2,y 2A =4k 21+4k 2,所以OA 2=4+4k 21+4k2,化简得CD ·CE OA 2=2,所以CD ·CE OA 2为定值.说明:本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的两倍,点A ⎝ ⎛⎭⎪⎫3,12在椭圆C 上.不过原点的直线l 与椭圆C 相交于A ,B 两点,设直线OA ,l ,OB 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2恰好构成等比数列. (1) 求椭圆C 的方程;(2) 试判断OA 2+OB 2是否为定值.若是,求出这个值;若不是,请说明理由.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. (2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.此时Δ=16(2-m 2)>0,即m ∈(-2,2),所以⎩⎪⎨⎪⎧x 1+x 2=±2m ,x 1x 2=2m 2-2.又OA 2+OB 2=x 21+y 21+x 22+y 22=34(x 21+x 22)+2=34[(x 1+x 2)2-2x 1x 2]+2=5, 所以OA 2+OB 2是定值,且为5.3.过椭圆x 2a 2+y 2b 2=1的右焦点F 作斜率k =-1的直线交椭圆于A ,B 两点,且OA →+OB →与a =⎝ ⎛⎭⎪⎫1,13共线.(1)求椭圆的离心率;(2)设P 为椭圆上任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),证明:m 2+n 2为定值. 解 (1)设AB :y =-x +c ,直线AB 交椭圆于两点,A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b2y =-x +c⇒b 2x 2+a 2(-x +c )2=a 2b 2,(b 2+a 2)x 2-2a 2cx +a 2c 2-a 2b 2=0x 1+x 2=2a 2c a 2+b 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2, OA →+OB →=(x 1+x 2,y 1+y 2)与a =⎝ ⎛⎭⎪⎫1,13共线,3(y 1+y 2)-(x 1+x 2)=0,3(-x 1+c -x 2+c )-(x 1+x 2)=0,即 x 1+x 2=3c 2,a 2=3b 2,c =a 2-b 2=6a 3,e =c a =63.(2)证明:a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,设M (x ,y )为椭圆上任意一点,OM →=(x ,y ),OM →=mOA →+nOB →,(x ,y )=(mx 1+nx 2,my 1+ny 2),点M (x ,y )在椭圆上,(mx 1+nx 2)2+3(my 1+ny 2)2=3b 2,即m 2(x 21+3y 21)+n 2(x 22+3y 22)+2mn (x 1x 2+3y 1y 2)=3b 2. ∴x 1+x 2=3c 2,a 2=32c 2,b 2=12c 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2=38c 2,∴x 1x 2+3y 1y 2=x 1x 2+3(-x 1+c )(-x 2+c )=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,将x 21+3y 21=3b 2,x 22+3y 22=3b 2代入得 3b 2m 2+3b 2n 2=3b 2,即m 2+n 2=1.3.在直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →=mAM →,NB →=nBM →,求证:m +n 为定值,并求出此定值. 解 (1)因为长轴长为8,所以2a =8,a =4, 又因为两个焦点与短轴的一个顶点构成等边三角形, 所以b =32a =23,由于椭圆焦点在x 轴上, 所以椭圆的标准方程为x 216+y 212=1. (2)设A (x 1,y 1),B (x 2,y 2),N ⎝⎛⎭⎫x 0,-14x 0, 由NA →=mAM →,得⎝⎛⎭⎫x 1-x 0,y 1+14x 0=m (1-x 1,3-y 1),所以x 1=m +x 0m +1,y 1=3m -14x 0m +1,所以A ⎝ ⎛⎭⎪⎪⎫m +x 0m +1,3m -14x 0m +1, 因为点A 在椭圆x 216+y 212=1上,所以得到⎝ ⎛⎭⎪⎫m +x 0m +1216+⎝ ⎛⎭⎪⎪⎫3m -14x 0m +1212=1,得到9m 2+96m +48-134x 20=0;同理,由NB →=nBM →,可得9n 2+96n +48-134x 20=0, 所以m ,n 可看作是关于x 的方程9x 2+96x +48-134x 20=0的两个根, 所以m +n =-969=-323,为定值.4. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,-3),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1) 求椭圆C 的标准方程;(2) 若直线l 上存在点P 满足PM ·PN =PF 2,且点P 在椭圆外,证明:点P 在定直线上.解析:(1) 设椭圆的焦距为2c .由椭圆经过点(0,-3)得b = 3. ①由点F 到左顶点的距离和到右准线的距离相等,得a +c =a 2c -c . ② 又a 2=b 2+c 2, ③由①②③可得a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2) 法一:当直线l 的斜率为0时,则M (2,0),N (-2,0),设P (x 0,y 0),则PM ·PN =|(x 0-2)(x 0+2)|.因为点P 在椭圆外,所以x 0-2,x 0+2同号,又PF 2=(x 0-1)2,所以|(x 0-2)(x 0+2)|=(x 0-1)2,解得x 0=52. 当直线l 的斜率不为0时,因为y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,PM =1+m 2|y 1-y 0|,PN =1+m 2|y 2-y 0|,PF =1+m 2|y 0|.因为点P 在椭圆外,所以y 1-y 0,y 2-y 0同号,所以PM ·PN =(1+m 2)(y 1-y 0)(y 2-y 0)=(1+m 2)[y 1y 2-y 0(y 1+y 2)+y 20]=(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4, 代入PM ·PN =PF 2得(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4=(1+m 2)y 20,整理得y 0=32m ,代入直线方程得x 0=52.所以点P 在定直线x =52上.法二:当直线l ⊥x 轴,则M ⎝ ⎛⎭⎪⎫1,32,N ⎝ ⎛⎭⎪⎫1,-32,则PM ·PN =⎪⎪⎪⎪⎪⎪y 0-32⎪⎪⎪⎪⎪⎪y 0+32.又PF 2=y 20,所以PM ·PN =PF 2不成立,不合题意. 当直线l 与x 轴不垂直时,设P (x 0,y 0),M (x 1,y 1),N (x 2,y 2).设直线l 的方程为y =k (x -1),与椭圆x 24+y 23=1联立并消去y 得 (3+4k 2)x 2-8k 2x +4k 2-12=0.因为Δ=64k 4-4(3+4k 2)(4k 2-12)=16k 4+108k 2+108>0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以PM =1+k 2|x 1-x 0|,PN =1+k 2|x 2-x 0|,PF =1+k 2|x 0-1|. 因为点P 在椭圆外,所以x 1-x 0,x 2-x 0同号,所以PM ·PN =(1+k 2)(x 1-x 0)(x 2-x 0)=(1+k 2)[x 1x 2-x 0(x 1+x 2)+x 20] =(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2.代入PM ·PN =PF 2得(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2=(1+k 2)(x 20)(x 20-2x 0+1), 整理得x 0=52,所以点P 在定直线x =52上.。
一、 用直接法求轨迹方程利用动点运动的条件作出等量关系,表示成x,y 的等式。
例:已知点A(-2,0),B(3,0).动点P(x,y)满足 PA · PB =x 2,则点P 的轨迹是( ).A 、圆B 、椭圆C 、双曲线D 、抛物线 解: PA=(-2-x,-y ), PB=(3-x,-y), P A · PB=x 2 则(-2-x )(3-x )+(-y)(-y)=x 2 整理得:y 2=x+6 所以P 点的轨迹为抛物线。
答案:D.二、 有定义法求轨迹方程 根据圆锥曲线的基本定义解题。
例:如图,已知圆O 的方程为x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上的任意一点,AM 的垂直平分线交OM 于点P,则点P 的轨迹方程( )A.x 225 +y 216 =1 B. x 225 -y 216 =1 C.(x+3)225 + y 216 =1D. (x+3)225 - y 216 =1解:由于P 为AM 的垂直平分线上的点,|PA|=|PM| 所以|PA|+|PO|=|PM|+|PO|=|OM|=R=10>|OA|=6 根据椭圆的定义知:P 点轨迹方程为x 225 +y 216 =1. 解答:A三、 用相关点法求轨迹方程当动点M 随着已知方程的曲线上另一动点C (x 0,y 0)运动时,找出点M 与点C 之间的坐标关系式,用(x,y )表示(x 0,y 0)再将x 0,y 0代入已知曲线方程,即可得到点M 的轨迹方程。
例:如图所示从双曲线x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设动点P 的坐标为(x,y),点Q 的坐标为(x 1,y 1),则N 点的坐标为(2x-x 1,2y-y 1).∵N 点在直线x+y=2上,∴2x-x 1+2y-y 1=2 ① 又∵PQ 垂直于直线x+y=2,∴y-y 1x-x 1=1即x-y+y 1-x 1=0 ②①②联立得:x 1=32 x+12 y-1,x 2=12 x+32 y-1 又∵点Q 在双曲线上,∴x 12-y 12=1 ③ 将x1,x2代入③中,得动点P 的轨迹方程式为 2x 2-2y 2-2x+2y-1=0 四、 用参数法求轨迹方程选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程.例:(04.成都)过抛物线y 2=2px(p>0)的顶点O 作两条互相垂直的弦OA,OB,再以OA,OB 为邻边作矩形AOBM,如图,求点M 的轨迹方程.解:设M(x,y),A(x 1,y 1),B(x 2,y 2)OA 的斜率为k(显然k ≠0),则OB 的斜率为-1k . OA 所在直线方程为y=kx.代入y 2=2px 得x 1=2p k 2 ,y 1=2pkOB 所在直线方程为y=-1k x,代入y 2=2px 得x 2= 2pk 2,y 2=-2pk 即B(2pk 2, -2pk) ∴OB=(2pk 2, -2pk),OA=(2p k 2 , 2pk )OM= OA+ OB =(2p k 2 +2pk 2, 2pk -2pk)所以有x=2p(1k -k)2+4p, y=2p(1k -k) 消去(1k -k)得:y 2=2p(x-4p)(p>0) 即求得M 点的轨迹方程。
解析几何一.复习目标:1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二.考试要求:(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
第81讲圆锥曲线拓展题型一必考题型全归纳题型一:定比点差法例1.已知椭圆2222:1x y C a b+=(0a b >>)的离心率为2,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k【解析】由e =,可设椭圆为2224x y m +=(0m >),设11(,)A x y ,22(,)B x y,,0)F ,由3AF FB =,所以12123133013x x y y +=+⎨+⎪=⎪+⎩,1212330x x y y ⎧+=⎪⇒⎨+=⎪⎩.又2221122222(1)4(2)4x y m x y m ⎧+=⎪⎪⎨⎪+=⎪⎩2221122222(1)4(2)9999(3)4x y m x y m λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型由(1)-(3)得212121212(3)(3)(3)(3)84x x x x y y y y m +-++-=-128333x x ⇒-=-,又123x x +=1233x m ⇒=236(,33A ⇒±.又,0)Fk ⇒=.例2.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.【解析】设11(,)A x y ,22(,)B x y ,(0,3)P ,由AP PB λ=,所以12120131x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩121203(1)x x y y λλλ+=⎧⇒⎨+=+⎩.由221122224936(1)4936(2)x y x y ⎧+=⎪⎨+=⎪⎩221122222224936(1)4)936()2(3x y x y λλλ⎧+=⎪⎨+=⎪⨯⎩配比由(1)-(3)得:()()()()()21212121249361x x x x y y y y λλλλλ⇒+-++-=-()()12413y y λλ-⇒-=,又()1231y y λλ+=+11356y λ+⇒=,又[]12,2y ∈-15,5λ⎡⎤⇒∈--⎢⎣⎦,从而1,55PA PB λ⎡⎤=∈⎢⎥⎣⎦.例3.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ= ,22PF F B μ=若2λ=,求μ的值.【解析】设()00,P x y ,11(,)A x y ,22(,)B x y ,,由11PF F A λ= ,22PF F B μ=得①()1,0F c -满足()0101010111001x x c x x c y y y y λλλλλλλ+⎧-=⎪⎧+=-+⎪⎪+⇒⎨⎨++=⎪⎩⎪=⎪+⎩()2,0F c 满足()0202020211001x x c x x c y y y y μμμμμμμ+⎧=⎪⎧+=-++⎪⎪⇒⎨⎨++=⎪⎩⎪=⎪+⎩②由2200222211221(1)1(2)x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩⇒2200222222211221(1)(3)x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩③由(1)-(3)得:()()()()010101012221x x x x y y y yx a b λλλλ-+-++=-()()()()()()2010*******x x x x a a x x c λλλλλλ-+⇒=⇒-=---+,又()()011x x c λλ+=-+222202a c a c x c c λ-+⇒=-,同理可得222202a c a c x c c μ-+=-+()()2222222222108a c a c a c c c a c λμλμμ-++⇒+=⋅⇒+=⋅=⇒=-.变式1.设1F ,2F 分别为椭圆2213x y +=的左、右焦点,点A ,B 在椭圆上,若125F A F B = ,求点A 的坐标【解析】记直线1F A 反向延长交椭圆于1B ,由125F A F B = 及椭圆对称性得1115AF F B =,设11(,)A x y ,22(,)B x y,(F .①由定比分点公式得12125155015x x y y +⎧=⎪⎪+⎨+⎪=⎪+⎩1212550x x y y ⎧+=-⎪⇒⎨+=⎪⎩②又221122221(1)31(2)3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩221122221(1)4(2)25252525(3)3x y x y λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型③由(1)-(3)得12121212(5)(5)(5)(5)243x x x x y y y y +-++-=-125x x ⇒-=,又125x x +=-10x ⇒=(0,1)A ⇒±.变式2.已知椭圆22:12C x y +=,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112PA PB PQ+=,求点Q的轨迹方程.【解析】设11(,)A x y ,22(,)B x y ,()00,Q x y 由112PA PB PQ +=22PQ PQ PA AQ PB QB PA PB PA PB-+⇒+=⇒+=0AQ QB PA AQPA PB PB QB -⇒+=⇒=,记()0AP AQ PB QBλλ==> ,即AP PB λ=- ,AQ QB λ=.①AP PB λ=- ,由定比分点得:()()1212121222112121x x x x y y y y λλλλλλλλ-⎧=⎪⎧-=-⎪⎪-⇒⎨⎨--=-⎪⎪⎩=⎪-⎩AQ QB λ= ,由定比分点得()()121201212001111x x x x x x y y y y y y λλλλλλλλ+⎧=⎪⎧+=+⎪⎪+⇒⎨⎨++=+⎪⎪⎩=⎪+⎩②又2211222222(1)22(2)x y x y ⎧+=⎪⎨⎪+=⎩22112222222222(1)22(23())x y x y λλλλ⎧+=⎪⎨⎪⨯+=⎩配比③由(1)-(3)得:()()()()()212121212221x x x x y y y y λλλλλ+⋅-+⋅+⋅-=-()()()()()20021141121x y λλλλλ⇒+⋅-+⋅+⋅-=-00242x y ⇒+=,即()2200002122x y x y +=+<.题型二:齐次化例4.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.【解析】直线()()1122:4,,,,PQ x my P x y Q x y =+由4x my =+,得14x my-=则由244x my y x =+⎧⎨=⎩,得:244x my y x -=⋅,整理得:210y y m x x ⎛⎫+-= ⎪⎝⎭,即:12121y y x x ⋅=-.所以12121OP OQ y y k k x x ⋅==-,则OP OQ ⊥,即:90POQ ︒∠=.例5.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.【解析】设直线()()1122:(1)1,,,,PQ mx n y P x y Q x y ++=则21m n +=.由22(1)112mx n y x y ++=⎧⎪⎨+=⎪⎩,得:22[(1)1]12x y ++-=.则22(1)2(1)[(1)]02x y y mx n y ++-+++=,故2111(12)202y y n m x x ++⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭.所以1212112221y y m x x n +++==-.即1212112AP AQ y y k k x x +++=+=.例6.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.【解析】设直线:(1)1l mx n y +-=......(1)由22:14x C y +=,得22[(1)1]14x y +-+=即:22(1)2(1)04x y y +-+-=......(2)由(1)(2)得:22(1)2(1)[(1)]04x y y mx n y +-+-+-=整理得:2111(12)204y y n m x x --⎛⎫++⋅+= ⎪⎝⎭则221212112112P A P B y y mk k x x n--+=+=-=-+,则221m n =+,代入直线:(1)1l mx n y +-=,得::(21)2(1)2l n x n y ++-=显然,直线过定点(2,1)-.变式3.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ过定点.【解析】设直线PQ 方程为:y kx b =+则()2222213163303x y k x kbx b y kx b ⎧+=⎪⇒+++-=⎨⎪=+⎩即12221226133313kb x x k b x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,又因为()()()21212121212121211111123BP BQkx x k b x x b y y kx b kx b k k x x x x x x +-++---+-+-=⋅===化简得()221223b b b -=-⇒=-或1b =(舍去).即PQ 直线为3y kx =-,即直线PQ 过定点()0,3-.题型三:极点极线问题例7.(2024·全国·高三专题练习)椭圆方程2222:1(0)x y a b a b Γ+=>>,平面上有一点00(,)P x y .定义直线方程0022:1x x y y l a b +=是椭圆Γ在点00(,)P x y 处的极线.已知椭圆方程22:143x y C +=.(1)若0(1,)P y 在椭圆C 上,求椭圆C 在点P 处的极线方程;(2)若00(,)P x y 在椭圆C 上,证明:椭圆C 在点P 处的极线就是过点P 的切线;(3)若过点(4,0)P -分别作椭圆C 的两条切线和一条割线,切点为X ,Y ,割线交椭圆C 于M ,N 两点,过点M ,N 分别作椭圆C 的两条切线,且相交于点Q .证明:Q ,X ,Y 三点共线.【解析】(1)由题意知,当01x =时,032y =±,所以3(1,2P 或3(1,2P -.由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,所以椭圆C 在点3(1,)2P 处的极线方程为142x y+=,即240x y +-=点3(1,2P -处的极线方程为142x y -=,即240x y --=(2)因为00(,)P x y 在椭圆C 上,所以2222000013434120x y x y ++=⇒-=,由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,当00y =时,02x =±,此时极线方程为2x =±,所以P 处的极线就是过点P 的切线.当00y ≠时,极线方程为00000331434+=⇒=-+x x y y x y x y y .联立00022334143x y x y y x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得20220002021836312094x x x y y x y ⎛⎫-++-= ⎪⎝⎭.()222002002222000036318936()4(3)(12)04142x y x x y y y y ∴⋅--+-=-∆==+.综上所述,椭圆C 在点P 处的极线就是过点P 的切线;(3)设点00(,)Q x y ,11(,)M x y ,22(,)N x y ,由(2)可知,过点M 的切线方程为111:143x x y yl +=,过点N 的切线方程为222:143x x y yl +=.因为1l ,2l 都过点00(,)Q x y ,所以有10102020143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,则割线MN 的方程为000:143x x y yl +=;同理可得过点(4,0)P -的两条切线的切点弦XY 的方程为34:114xl x -=⇒=-.又因为割线MN 过点(4,0)P -,代入割线方程得04114x x -=⇒=-.所以Q ,X ,Y 三点共线,都在直线1x =-上.例8.(2024·全国·高三专题练习)阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.(二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线);③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹.结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P 对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【解析】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又2c e a ==,所以c =,所以2224b a c =-=,所以椭圆C 的方程为221164x y +=.根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=;(2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=,将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上.当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-,所以当MT TN = 时,直线MN 的方程为()1122y x -=--,即240x y +-=.例9.(2024秋·北京·高三中关村中学校考开学考试)已知椭圆M :22221x y a b+=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.【解析】(1)因为点(2,0)A -,(0,1)B 都在椭圆M 上,所以2a =,1b =.所以c ==所以椭圆M的离心率2c e a ==.(2)由(1)知椭圆M 的方程为2214x y +=,(2,0)C .由题意知:直线AB 的方程为22x y =-.设00(,)P x y (00y ≠,01y ≠±),(22,)Q Q Q y y -,(,0)S S x .因为,,C P Q 三点共线,所以有//CP CQ ,00(2,),(222,)Q Q CP x y CQ y y =-=--,所以00(2)(24)Q Q x y y y -=-.所以000422Q y y y x =-+.所以00000004244(,2222y x y Q y x y x +--+-+.因为,,B S P 三点共线,所以0011s y x x -=-,即001s x x y =-.所以0(,0)1x S y -.所以直线QS 的方程为000000000004242214122y x xy x y xx y y y y x +---+-=+--+,即2200000000044844(1)1x y x y y xx y y y --+-=+--.又因为点P 在椭圆M 上,所以220044x y =-.所以直线QS 的方程为0022(1)21y x x y y --=-+-.所以直线QS 过定点(2,1).变式4.(2024·全国·高三专题练习)若双曲线229x y -=与椭圆2222:1(0)x y C a b a b+=>>共顶点,且它们的离心率之积为43.(1)求椭圆C 的标准方程;(2)若椭圆C 的左、右顶点分别为1A ,2A ,直线l 与椭圆C 交于P 、Q 两点,设直线1A P 与2A Q 的斜率分别为1k ,2k ,且12105k k -=.试问,直线l 是否过定点?若是,求出定点的坐标;若不是,请说明理由.【解析】(1,又两曲线离心率之积为43,所以椭圆的离心;由题意知3a =,所以c =1b =.所以椭圆的标准万程为2219x y +=.(2)当直线l 的斜率为零时,由对称性可知:120k k =-≠,不满足12105k k -=,故直线l 的斜率不为零.设直线l 的方程为x ty n =+,由2219x ty n x y =+⎧⎪⎨+=⎪⎩,得:()2229290t y tny n +++-=,因为直线l 与椭圆C 交于P 、Q 两点,所以()()222244990t n t n ∆=-+->,整理得:2290t n -+>,设()11,P x y 、()22,Q x y ,则12229tn y y t +=-+,212299n y y t -=+,1113y k x =+,2223y k x =-.因为12105k k -=,所以()()()()1121211222121233315333y y x y ty n k x y k y x y ty n x -+-+====+++-,整理得:121245(3)(3)0ty y n y n y +--+=,()1212245(3)(612)ty y n y y n y +-+=-,将12229tn y y t +=-+,212299n y y t -=+代入整理得:()22(2)(3)(2)9t n n n t y --=-+要使上式恒成立,只需2n =,此时满足2290t n -+>,因此,直线l 恒过定点()2,0.变式5.(2024·全国·高三专题练习)已知椭圆2222:1(0)x y E a b a b +=>>且过点⎛ ⎝⎭,A ,B 分别为椭圆E 的左,右顶点,P 为直线3x =上的动点(不在x 轴上),PA 与椭圆E 的另一交点为C ,PB 与椭圆E 的另一交点为D ,记直线PA 与PB 的斜率分别为1k ,2k.(Ⅰ)求椭圆E 的方程;(Ⅱ)求12k k 的值;(Ⅲ)证明:直线CD 过一个定点,并求出此定点的坐标.【解析】(1)由条件可知:221314c e a a b ⎧==⎪⎪⎨⎪+=⎪⎩且222a b c =+,解得2241a b ⎧=⎨=⎩,所以椭圆E 的方程为2214x y +=;(2)因为()()2,0,2,0A B -,设()()3,0P t t ≠,所以()12,32532tt t k k t ====---,所以12155tk k t ==;(3)设()()3,0P t t ≠,所以()():2,:25tPB y t x PA y x =-=+,因为()222544t y x x y ⎧=+⎪⎨⎪+=⎩,所以()222242516161000t x t x t +++-=,所以22164+25C A t x x t +=-,所以22221650824+254+25C t t x t t -=-+=,所以()22025425C C t t y x t =+=+,所以22250820,4+25425t t C t t ⎛⎫- ⎪+⎝⎭,又因为()22244y t x x y ⎧=-⎨+=⎩,所以()2222214161640t x t x t +-+-=,所以221614B D t x x t +=+,所以2222168221414D t t x t t-=-=++,所以()24214D D t y t x t =-=-+,所以222824,1414t t D tt ⎛⎫-- ⎪++⎝⎭,所以222222222508828244+2514:204141442514t t t t t t CD x y t t t t t t ----⎛⎫+-=+ ⎪++⎛⎫⎝⎭--⎪++⎝⎭,所以222282544:14614t t t CD x y t t t --⎛⎫-=+ ⎪++⎝⎭,所以222225454482:661414t t t t CD x y t t t t ---=+⋅+++,所以2544:63t CD x y t -=+,所以直线CD 过定点4,03⎛⎫⎪⎝⎭.题型四:蝴蝶问题例10.(2003·全国·高考真题)如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x 轴的情形)【解析】(1) 椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心(0,)M r ,∴椭圆方程为2222()1x y r a b -+=焦点坐标为1()F r,2)F r离心率e =(2)证明:将直线CD 的方程1y k x =代入椭圆方程2222()1x y r ab-+=,得2222221()b x a k x r a b +-=整理得22222222211()2()0b a k x k a rx a r a b +-+-=根据韦达定理,得211222212k a r x x b a k +=+,2222122221a r a b x x b a k -=+,所以22121212x x r b x x k r-=+①将直线GH 的方程2y k x =代入椭圆方程2222()1x y r a b -+=,同理可得22343422x x r b x x k r -=+②由①、②得2223411212342k x x k x x r b x x r x x -==++所以结论成立.(3)证明:设点(,0)P p ,点(,0)Q q 由C 、P 、H 共线,得111424x p k x x p k x -=-解得12141124()k k x x p k x k x -=-由D 、Q 、G 共线,同理可得212323x p k x x p k x -=-∴12231223()k k x x q k x k x -=-由1122341234k x x k x x x x x x =++变形得1223121411241223()()k k x x k k x x k x k x k x k x ---=--所以p q =即||||OP OQ =例11.(2024·全国·高三专题练习)已知椭圆2222:1x y C a b +=(0a b >>),四点()11,1P ,()20,1P,31,2P ⎛- ⎝⎭,31,2P ⎛⎫- ⎪ ⎪⎝⎭,41,2P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)蝴蝶定理:如图1,AB 为圆O 的一条弦,M 是AB 的中点,过M 作圆O 的两条弦CD ,EF .若CF ,ED 分别与直线AB 交于点P ,Q ,则MP MQ =.该结论可推广到椭圆.如图2所示,假定在椭圆C 中,弦AB 的中点M 的坐标为10,2⎛⎫⎪⎝⎭,且两条弦CD ,EF 所在直线斜率存在,证明:MP MQ =.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点,又由222211134a b a b +>+知,C 不过点1P ,所以点2P 在C 上,因此222111314b a b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩,故椭圆C 的方程为2214x y +=;(2)因点M 的坐标10,2⎛⎫⎪⎝⎭在y 轴上,且M 为AB 的中点,所以直线AB 平行于x 轴,设()11,C x y ,()22,D x y ,()33,E x y ,()44,F x y ,设直线CD 的方程为112y k x =+,代入椭圆22:14x C y +=,得:221113044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:11221441k x x k +=-+,1221341x x k =-+,①同理,设直线EF 的方程为212y k x =+,代入椭圆22:14x C y +=,得:222213044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:23422441k x x k +=-+,3422341x x k =-+,②由于C 、P 、F 三点共线,得111142441212P P y x x k x x x k x y --==--,()12141124P k k x x x k x k x -=-,同理,由于E 、Q 、D 三点共线,得:()12231223Q k k x x x k x k x -=-,结合①和②可得:()()1214122311241223P Q k k x x k k x x x x k x k x k x k x --+=--()()()()()()121412231223112411241223k k x x k x k x k k x x k x k x k x k x k x k x --+--=--()()()()12112421341123223411241223k k k x x x k x x x k x x x k x x x k x k x k x k x --+-=--()()()()()12112342341211241223k k k x x x x k x x x x k x k x k x k x -+-+⎡⎤⎣⎦=--()()()1221122222122111241223343441414141k k k k k k k k k k k x k x k x k x ⎛⎫-----⋅-⋅⎪++++⎝⎭=--()()()()()()()12121222221212112412231212414141410k k k k k k k k k k k x k x k x k x ⎛⎫ ⎪-- ⎪++++⎝⎭==--即P Q x x =-,所以P Q x x =,即MP MQ =.例12.(2021·全国·高三专题练习)(蝴蝶定理)过圆AB 弦的中点M ,任意作两弦CD 和EF ,CF 与ED 交弦AB 于P 、Q ,求证:PM QM =.【解析】如图所示,以M 为原点,AB 所在直线为x 轴建立直角坐标系,设圆方程为222()(||)x y b r b r +-=<设直线CD 、EF 的方程分别为1y k x =,2y k x =.将它们合并为()()120y k x y k x --=,于是过点C 、D 、E 、F 的曲线系方程为()()22212()0x y b r y k x y k x λ+--+--=.令0y =,得()2221210k k x b r λ++-=,即过点C 、D 、E 、F 的曲线系与AB 交于点P 、Q 的横坐标是方程()2221210k k x b r λ++-=的两根.由韦达定理得0P Q x x +=,即M 是PQ 的中点,故PM QM =.变式6.(2024·全国·高三专题练习)蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.(1)求证:34121234y y y y y y y y ++=.(2)设CF 交x 轴于点P ,ED 交x 轴于点Q .求证:OP OQ =.【解析】(1)已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,联立()222x y b r x my ⎧+-=⎪⎨=⎪⎩,化简得2222(1)20m y by b r +-+-=,则12221b y y m +=+,221221b r y y m -=+,所以1222122y y b y y b r +=-,同理线x ny =与圆M 交于()33,E x y ,()44,F x y ,联立()222x y b r x ny⎧+-=⎪⎨=⎪⎩化简得2222(1)20n y by b r +-+-=,则12221b y y n +=+,221221b r y y n -=+,所以3422342y y b y y b r +=-,故有34122212342y y y y b y y b r y y ++==-,所以34121234y y y y y y y y ++=成立;(2)不妨设点(,0)P p ,点(,0)Q q ,因为C 、P 、F 三点共线,所以414100y y x p x p --=--,化简得411414x y x y p y y -=-,因为点C 在直线x my =上,所以11x my =,点F 在直线x ny =上,所以44x ny =,则4114141414()ny y my y y y n m p y y y y --==--,同理因为E 、Q 、D 三点共线,所以322300y y x q x q --=--,化简得233232x y x y q y y -=-,因为点D 在直线x my =上,所以22x my =,点E 在直线x ny =上,所以33x ny =,则2332233232()my y ny y y y m n q y y y y --==--,又由34121234y y y y y y y y ++=,可得12341111y y y y +=+,41231111y y y y ∴-=-,即32141423y y y y y y y y --=,所以23141432y y y y y y y y =--,则23141432()()y y m n y y n m y y y y --=---,所以p q =-,所以OP OQ =成立.变式7.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【解析】(1)因为AB 4=,椭圆C 离心率为12,所以2222412a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120k x k x k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k-⋅=+.所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+y y x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+-()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦.()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭.所以点Q 在直线4x =上.变式8.(2024·全国·高三专题练习)已知椭圆C :22x a +22y b=1(a >b >0)的左、右顶点分别为A ,B ,离心率为12,点P 31,2⎛⎫⎪⎝⎭为椭圆上一点.(1)求椭圆C 的标准方程;(2)如图,过点C (0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.【解析】(1)因为椭圆的离心率为12,所以a =2c .又因为a 2=b 2+c 2,所以b.所以椭圆的标准方程为224x c +223y c=1.又因为点P 31,2⎛⎫ ⎪⎝⎭为椭圆上一点,所以214c +2943c=1,解得c =1.所以椭圆的标准方程为24x +23y =1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1.设M (x 1,y 1),N (x 2,y 2).联立方程组消去y 可得(3+4k 2)x 2+8kx -8=0.所以由根与系数关系可知x 1+x 2=-2834k k +,x 1x 2=-2834k +.因为k 1=112y x +,k 2=222y x -,且k 1=2k 2,所以112y x +=2222y x -.即()21212y x +=()222242y x -.①又因为M (x 1,y 1),N (x 2,y 2)在椭圆上,所以21y =34(4-21x ),22y =34(4-22x ).②将②代入①可得:1122x x -+=()22422x x +-,即3x 1x 2+10(x 1+x 2)+12=0.所以32834k ⎛⎫- ⎪+⎝⎭+102834k k ⎛⎫- ⎪+⎝⎭+12=0,即12k 2-20k +3=0.解得k =16或k =32,又因为k >1,所以k =32.变式9.(2021秋·广东深圳·高二校考期中)已知椭圆()222210x y C a b a b+=>>:的右焦点是()0F ,过点F 的直线交椭圆C 于A ,B 两点,若线段AB 中点Q的坐标为67⎫-⎪⎪⎝⎭.(1)求椭圆C 的方程;(2)已知()0,P b -是椭圆C 的下顶点,如果直线y =kx +1(k ≠0)交椭圆C 于不同的两点M ,N ,且M ,N 都在以P 为圆心的圆上,求k 的值;(3)过点02a D ⎛⎫ ⎪⎝⎭,作一条非水平直线交椭圆C 于R 、S 两点,若A ,B 为椭圆的左右顶点,记直线AR 、BS 的斜率分别为k 1、k 2,则12k k 是否为定值,若是,求出该定值,若不是,请说明理由.【解析】(1)设11(,)A x y ,22(,)B x y ,直线AB 的斜率显然存在,则12x x ≠,因为线段AB 中点Q的坐标为677⎛⎫- ⎪ ⎪⎝⎭,所以12x x +=,12127y y +=-,直线AB的斜率12126073AB QF y y k k x x ---===-,A ,B 两点在椭圆椭圆C 上,所以2211221x y a b +=,2222221x y a b +=,两式相减得22221212121212122222()()()()0x x y y x x x x y y y y a b a b --+-+-+=+=,即1212122212()0x x y y y y a b x x ++-+⋅=-,21207b =,整理得224a b =,①又c =且222a b c =+,②由①②可解得4a =,2b =,所以椭圆C 的方程为221164x y +=.(2)由2211164y kx x y =+⎧⎪⎨+=⎪⎩得22(14)8120k x kx ++-=,则2814M N k x x k +=-+,21214M N x x k=-+,226448(14)0k k ∆=++>,设M ,N 中点为00(,)E x y ,则024214E F x x k x k +==-+,0021114y kx k =+=+,因为M ,N 都在以P 为圆心的圆上,所以PM PN =,则点P 在线段MN 的垂直平分线上,依题意(0,2)P -,所以线段MN 的垂直平分线方程为12y x k=--,M ,N 中点为00(,)E x y 在此直线上,所以有0012y x k =--,即2211421414k k k k =⋅-++,解得4k =±.所以k的值为4±.(3)依题意有()20D ,,(4,0)A -,(4,0)B ,设直线RS 的方程为2(0)x ty t =+≠,由2221164x ty x y =+⎧⎪⎨+=⎪⎩得22(4)4120t y ty ++-=,则244R S t y y t +=-+,2124R S y y t =-+,124(2)22()24(6)66S R S R S R R S R S S R R S S R R S S R S Sx y ty ty y y ty y y y y k y k x y y ty ty y y ty y y ----++=⋅==++++22222124()2242(4)14412126(4)3()64S S S S t t y t y t t t t y t t y t⋅-+⋅+-+⋅+++===-+⋅+⋅-++,所以12k k 为定值13.变式10.(2024·全国·高三专题练习)如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,A ,B 分别是椭圆C 的左、右顶点,右焦点F ,1BF =,过F 且斜率为(0)k k >的直线l 与椭圆C 相交于M ,N 两点,M 在x轴上方.(1)求椭圆C 的标准方程;(2)记AFM △,BFN 的面积分别为1S ,2S ,若1232S S =,求k 的值;(3)设线段MN 的中点为D ,直线OD 与直线4x =相交于点E ,记直线AM ,BN ,FE 的斜率分别为1k ,2k ,3k ,求213()k k k ⋅-的值.【解析】(1)设椭圆的焦距为2(0)c c >.依题意可得12c e a ==,1a c -=,解得2a =,1c =.故2223b a c =-=.所以椭圆C 的标准方程为22143x y +=.(2)设点1(M x ,1)y ,2(N x ,2)y .若1232S S =,则121||||3212||||2AF y BF y = ,即有212y y =-,①设直线MN 的方程为1(0)x my m =+>,与椭圆方程223412x y +=,可得22(43)690m y my ++-=,则122643m y y m +=-+,122943y y m =-+,②将①代入②可得22843m m =+,解得m =则k =;(3)由(2)得1223243D y y m y m +==-+,24143D D x my m =+=+,所以直线OD 的方程为34m y x =-,令4x =,得3E y m =-,即(4,3)E m -.所以3341m k m -==--.所以2121321211()()()22y y k k k k k m k x x ⋅-=⋅+=⋅+-+,122112211212(2)(3)(2)(2)(3)(1)y y my x y y my my x x my my ++++==+-+-,212221212(1)333m y y my m y y my my ++=-+-2122212122(1)3()34m y y my m y y m y y my ++=-+-+,222222222222229(1)9(1)33343439612(1)4344434343m m my my m m m m m my my m m m++-+-+++===+-+-+-++++.变式11.(2024秋·福建莆田·高二莆田华侨中学校考期末)已知点(1,2-A 在椭圆C :22221(0)x y a b a b +=>>上,O 为坐标原点,直线l:21x a =的斜率与直线OA 的斜率乘积为14-(1)求椭圆C 的方程;(2)不经过点A 的直线l:y x t +(0t ≠且t R ∈)与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:AM AN =.【解析】(Ⅰ)由题意,2212124OA b k k a ⋅=-=-=-,即224a b =①又221314a b+=②联立①①解得21a b =⎧⎨=⎩所以,椭圆C 的方程为:2214x y +=.(Ⅱ)设()11,P x y ,()22,Q x y ,()11,R x y --,由22214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2210x t +-=,所以240t ∆=->,即22t -<<,又因为0t ≠,所以,()()2,00,2t ∈-⋃,12x x +=,2121x x t ⋅=-,解法一:要证明AM AN =,可转化为证明直线AQ ,AR 的斜率互为相反数,只需证明0AM AN k k +=,即证明0AQ AR k k +=.12122211AQ ARy y k k x x -++=++-()()()()1221121111y x y x x x ⎛⎛-+++ ⎝⎭⎝⎭=+-∴()()()()1221121111x t x x t x x x +-+++⎝⎭⎝⎭=+-()()()12121211x t x x x x +++=+-)()()()2121011t t x x -+==+-∴0AM AN k k +=,∴AM AN =.解法二:要证明AM AN =,可转化为证明直线AQ ,AR 与y 轴交点M 、N 连线中点S 的纵坐标为2-,即AS 垂直平分MN 即可.直线AQ 与AR 的方程分别为:()222:121AQ y l y x x ++=--,()112:121AR y l y x x -+=---,分别令0x =,得2221M y y x -=-1121N y y x -+=-+而21212211M Ny y y y x x --+=+-+,同解法一,可得M N y y +=2M N S y y y +==,即AS 垂直平分MN .所以,AM AN =.变式12.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b+=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.【答案】103ty x -+-=(或330x ty -+=);7.【解析】(1)由题得AB :4143x ty -+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t →=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉=sin PMB∠==47=,即()minsin PMB∠故答案为:103tyx-+-=;7。
专题17 圆锥曲线中的轨迹问题1.(浙江省杭州市八县市区2021-2022学年高二下学期期末数学试题)已知椭圆C的离心率为2,其焦点是双曲线2213y x -=的顶点.(1)写出椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 有唯一的公共点M ,过点M 作直线l 的垂线分别交x 轴、y 轴于(),0A x ,()0,B y 两点,当点M 运动时,求点(),P x y 的轨迹方程,并说明轨迹是什么曲线.【答案】(1)2212x y +=(2)轨迹方程()2221,0,0x y x y +=≠≠,为椭圆2221x y +=除去4个顶点【解析】 【分析】(1)根据双曲线的顶点,结合椭圆离心率的公式与基本量的关系求解即可;(2)根据题意可得直线l 与椭圆C 相切,故联立直线与椭圆的方程,利用判别式为0可得,k m 的关系,再得到点M 坐标的表达式,从而得到过点M 作直线l 的垂线的方程,求得(),P x y ,结合椭圆的方程求解即可 (1)设椭圆C 的方程为()22221,0x y a b a b +=>>,()222,0a b c c =+>,由题意,双曲线2213y x -=的顶点为()1,0±,故1c =.又c a =,故a =2211b =-=,故椭圆C 的方程为2212x y +=(2)由题意,直线l 与椭圆C 相切,联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩得()222124220k x kmx m +++-=,故()()222216412220k m k m ∆=-+-=,即2221m k =+.设(),M M M x y ,则22212M km kx k m-==-+,故22221M k m k y k m m m m -⎛⎫=-+== ⎪⎝⎭,故21,k M m m ⎛⎫- ⎪⎝⎭.所以直线AB 的方程为112k y x m k m ⎛⎫-=-+ ⎪⎝⎭,即11y x k m =--,当0y =时,k x m =-,故,0k A m ⎛⎫- ⎪⎝⎭,当0x =时,1x m =-,故10,B m ⎛⎫- ⎪⎝⎭,故1,kP m m ⎛⎫-- ⎪⎝⎭.又21,k M m m ⎛⎫- ⎪⎝⎭,故(),P x y 则()2,M x y -,又()2,M x y -在2212x y +=上,故()()22212x y +-=,即2221x y +=,由题意可得0,0x y ≠≠,故点(),P x y 的轨迹方程为()2221,0,0x y x y +=≠≠,为椭圆2221x y +=除去4个顶点2.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等. 【答案】(1)24y x = (2)证明见解析 【解析】 【分析】(1)设(),E x y ,由圆的弦长公式列式可得;(2)设()11,A x y ,()22,B x y ,设():2l y k x =-,直线方程代入抛物线方程,应用韦达定理得12x x +,12x x ,计算0AM BM k k +=,得直线PM 平分AMB ∠,从而得结论,再说明直线l 斜率不存在时也满足. (1)设(),E x y ,圆E 的半径r =E 到y 轴的距离d x =,由题意得224r d =+,化简得24y x =,经检验,符合题意. (2)设():2l y k x =-,与E 的方程联立,消去y 得,()22224440k x k x k -++=.设()11,A x y ,()22,B x y ,则1221244,4x x k x x ⎧+=+⎪⎨⎪=⎩, ()()()()()()()()12122112121212222222222222AM BM k x k x k x x k x x y yk k x x x x x x ---++-++=+=+=++++++∵()()()()()1221122222240k x x k x x k x x -++-+=-=,∵0AM BM k k +=,则直线PM 平分AMB ∠,当直线l 与x 轴垂直时,显然直线PM 平分AMB ∠. 综上,点P 到直线AM , BM 的距离相等.3.(2022·江西·上高二中模拟预测(理))已知圆心在y 轴上移动的圆经过点()0,4A -,且与x 轴、y 轴分别交于点()0,0B x ,()00,C y 两个动点,记点()00,D x y 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点()0,1F 的直线l 与曲线Γ交于P ,Q 两点,直线OP ,OQ 与圆E :()2224x y +-=的另一交点分别为M ,N (其中O 为坐标原点),求OMN 与OPQ △的面积之比的最大值. 【答案】(1)24x y = (2)6425【解析】(1)设动圆的圆心为H ,则040,2y H -⎛⎫ ⎪⎝⎭ ,半径为042y +,所以22220004422y y BH x -+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,化简整理即可;(2)分析可知直线斜率存在,设1y kx =+,()11,P x y ,()22,Q x y ,联立得124x x k +=,124x x =-,再求出直线OP 的方程为14x y x = ,直线OQ 的方程为24xy x =,分别与圆联立求出216416M x x =+,226416N x x =+,所以()()221210241616OMN OPQ OM ON S S OP OQ x x ⨯==⨯++△△,展开再代入韦达定理,分析求解即可.(1)设动圆的圆心为H ,则040,2y H -⎛⎫⎪⎝⎭ ,半径为042y +, 22220004422y y BH x -+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,化简得:0204x y = ,即Γ的方程为24x y = ; (2)当直线l 的斜率不存在时,直线l 为:0x =,此时与抛物线只有一个交点,不符合题意;当直线l 的斜率存在时,设过()0,1F 的直线方程为1y kx =+ , ()11,P x y ,()22,Q x y ,联立方程:241x yy kx ⎧=⎨=+⎩ ,得2440x kx --= ,124x x k +=,124x x =-, 则直线OP 的方程为1114y x y x x x == ,直线OQ 的方程为2224y xy x x x == , 联立方程:()221244x y x y x ⎧-+=⎪⎨=⎪⎩,解得216416M x x =+ ,同理226416N x x =+ ,OP x,OQ x ===,1OM ==2ON ==()()221210241616OMN OPQ OM ONS S OP OQx x ⨯===⨯++△△ ()()2222222121212121024102410246425640025162561625616216k k x x x x x x x x ====++⎡⎤+++++-+⎣⎦显然当0k =时最大,最大值为6425; 综上,Γ的方程为24y x =,OMN 与OPQ △ 的面积之比的最大值为:6425.4.(2022·河南省兰考县第一高级中学模拟预测(理))已知点)F ,平面上的动点S 到F 的距离是S40+=S 的轨迹为曲线C . (1)求曲线C 的方程;(2)过直线:2l y =上的动点()(),22P s s >向曲线C 作两条切线1l ,2l ,1l 交x 轴于M ,交y 轴于N ,2l 交x 轴于T ,交y 轴于Q ,记PNQ 的面积为1S ,PMT △的面积为2S ,求12S S ⋅的最小值.【答案】(1)2214x y +=(2)48 【解析】 【分析】(1)设(),S x y 是所求轨迹C 上的任意一点,根据题意列出方程,即可求解;(2)设直线12,l l 的方程分别为12()2,()2y k x s y k x s =-+=-+,求得,,,M N T Q 的坐标,求得22112122k k S S s k k ⋅=⋅+-,联立方程组求得0∆=,得到12122243,44s k k k k s s +==--,化简得到221224(12)3(4)s s S S s +⋅=-,令24(0)s t t -=>,结合基本不等式,即可求解. (1)解:设(),S x y 是所求轨迹C 上的任意一点, 由题意知动点S到)F的距离是S40+=x =,整理得2214x y +=, 即曲线C 的方程为2214x y +=.(2)解:设直线12,l l 的方程分别为12()2,()2y k x s y k x s =-+=-+,可得()()1212220,2,0,2,,0,,0N k s Q k s M s T s k k ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,所以12212111122=2224P P S S NQ x y MT s k s k s k k ⋅⋅⋅=⋅-⋅-22221211212()2k k k ks s k k k k -=⋅=⋅+-,联立方程组22()214y k x s x y =-+⎧⎪⎨+=⎪⎩,整理得222(41)8(2)4(2)40k x k ks x ks +--+--=,则222264(2)4(41)[4(2)4]0ks k k ks ∆=--+--=,整理得()224430s k ks --+=,所以12122243,44s k k k k s s +==--, 所以2221212()163(4)k k s k k s +=-,所以2212121623(4)k k s k k s +=--, 代入上式,可得22221222164(12)43(4)3(4)s s s S S s s s +⋅=-=--,令24(0)s t t -=>,124(4)(16)46442020)48333t t S S t t t ++⋅==++≥⋅=,当且仅当64t t=时,即8t =时,即s =12S S 的最小值为48.5.(2022·重庆南开中学模拟预测)已知点)F,动点(),M x y到直线:l x =d,且d =,记M 的轨迹为曲线C .(1)求C 的方程; (2)过M 作圆221:43O x y +=的两条切线MP 、MQ (其中P 、Q 为切点),直线MP 、MQ 分别交C 的另一点为A 、B .从下面∵和∵两个结论中任选其一进行证明. ∵PA PM ⋅为定值; ∵MA MB =.【答案】(1)22142x y += (2)条件选择见解析,证明见解析 【解析】 【分析】(1)根据已知条件可得出关于x 、y 的等式,化简后可得出曲线C 的方程;(2)设()00,M x y 、()11,A x y 、()22,B x y ,分2043x =、2043x ≠两种情况讨论,在第一种情况下,直接验证OM OA ⊥;在第二种情况下,设直线MA 的方程为y kx m =+,由直线与圆相切结合韦达定理可得出OM OA ⊥.选∵,分析出Rt Rt MOP AOP ∽,利用三角形相似可求得PA PM ⋅的值; 选∵,分析可知OA OB =,结合勾股定理可证得结论成立. (1)解:由题意知x =2224x y +=,所以,曲线C 的方程为22142x y +=.(2)证明:设()00,M x y 、()11,A x y 、()22,B x y ,当2043x =时,2043y =,则不妨设点M ⎝⎭,则点A ⎝⎭或A ⎛ ⎝⎭, 此时0OM OA ⋅=,则OM OA ⊥;当2043x ≠时,设直线:MA y kx m =+,由直线MA 与圆224:3O x y +=()22341m k =+, 联立2224y kx m x y =+⎧⎨+=⎩可得()222214240k x kmx m +++-=, ()()()()22222221616421248424103k m k m k m k ∆=-+-=+-=+>, 由韦达定理可得012421km x x k +=-+,21222421-=+m x x k ,则()()()()220101000101011OM OA x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++()()()()222222222212441234101212k m k m m k m k kk+--++-+===++,所以,OM OA ⊥,同理可得OM OB ⊥.选∵,由OM OA ⊥及OP AM ⊥可得Rt Rt MOP AOP ∽, 则PM OP OPPA=,所以,243PM PA OP =⋅=; 选∵,出OM OA ⊥及OM OB ⊥可得:A 、O 、B 三点共线,则OA OB =, 又222222MA OA OM OB OM MB =+=+=,因此,MA MB =.6.(2022·河南郑州·三模(理))在直角坐标系xOy 中,曲线1C 的方程为()2211x y +-=.P 为曲线1C 上一动点,且2OQ OP =,点Q 的轨迹为曲线2C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线1C ,2C 的极坐标方程;(2)曲线3C 的极坐标方程为2221sin ρθ=+,点M 为曲线3C 上一动点,求MQ 的最大值.【答案】(1)2sin ρθ=;4sin ρθ= (2)5 【解析】 【分析】(1)利用直角坐标和极坐标的互化关系求1C 的极坐标方程,利用代入法求2C 的极坐标方程;(2)M 为2212x y +=上一点,Q 为()2224x y +-=上一点,可知max max 2MQ MN =+,即可求解.(1)由题意可知,将cos sin x y ρθρθ=⎧⎨=⎩代入()2211x y +-=得2sin ρθ=,则曲线1C 的极坐标方程为2sin ρθ=, 设点P 的极坐标为()00,ρθ,则002sin ρθ=,点Q 的极坐标为(),ρθ,由2OQ OP =得002ρρθθ=⎧⎨=⎩,即0012ρρθθ⎧=⎪⎨⎪=⎩, 将012ρρθθ⎧=⎪⎨⎪=⎩代入002sin ρθ=得4sin ρθ=, 所以点Q 轨迹曲线2C 的极坐标方程为4sin ρθ=;(2)曲线3C 直角坐标方程为2212x y +=,设点),sin Mϕϕ,曲线2C 的直角坐标方程为()2224x y +-=,则圆心为()0,2N ,max max 2MQ MN =+,即MN =当sin 1ϕ=-时,max 3MN = ,所以max 325MQ =+=.7.(2022·山东·肥城市教学研究中心模拟预测)在平面直角坐标系xOy 中,已知12,A A两点的坐标分别是(,直线,A B A B 12相交于点B ,且它们的斜率之积为13. (1)求点B 的轨迹方程;(2)记点B 的轨迹为曲线C ,,,,M N P Q 是曲线C 上的点,若直线MN ,PQ 均过曲线C 的右焦点F 且互相垂直,线段MN 的中点为R ,线段PQ 的中点为T . 是否存在点G ,使直线RT 恒过点G ,若存在,求出点G 的坐标,若不存在,说明理由. 【答案】(1)(2213x y x -=≠;(2)存在,()3,0. 【解析】 【分析】(1)根据直线斜率公式,结合已知等式进行求解即可;(2)设出直线方程与双曲线方程联立,根据一元二次方程根的判别式、根与系数关系、直线斜率公式进行求解即可. (1)设(,)M x y ,因为直线,A B A B 12相交于点B ,且它们的斜率之积为13,13=, 整理可得2213x y -=,所以点B的轨迹方程为(2213x y x -=≠.(2)因为曲线C的方程为(2213x y x -=≠,所以直线,MN PQ 的斜率都存在且不为0.设直线MN :(2)y k x =-,则直线PQ :1(2)y x k=--,设()()1122,,,,M x y N x y由()(22233y k x x y x ⎧=-⎪⎨-=≠⎪⎩可得:()222231121230k x k x k --++=, 当2310k -=时,即213k =,方程为470x -+=,此时只有一解,不符合题意,当2310k -≠时,42221444(31)(123)12(1)0k k k k ∆=--+=+>,由韦达定理可得:21221231k x x k +=-,所以点R 的横坐标为()212216231R k x x x k =+=-,代入直线MN :(2)y k x =-可得:()22262223131R Rk ky k x k k k ⎛⎫=-=-= ⎪--⎝⎭, 所以线段MN 的中点22262,3131k k R k k ⎛⎫⎪--⎝⎭, 用1k -替换k 可得22266331T k x k k ==--,2222331T k k y k k --==--,所以线段PQ 的中点2262,33k T k k -⎛⎫ ⎪--⎝⎭,当1k ≠±时,()()()()()2222222222222232312313666363131313RTk k k k k k k k k k k k k k k k k ---+---===-------, 直线RT 的方程为:222226()33(1)3k k y x k k k+=----, 整理可得:222222623(1)3(1)33k k k y x k k k k =-⋅-----2222222222622932(1)(3)3(1)33(1)3(1)33(1)3(1)k k k k k kx x x k k k k k k k -=-+=-=--------, 此时直线RT 过定点G ()3,0, 若1k =±时,则()3,1R , ()3,1T -,或()3,1R -,()31T ,,直线RT 的方程为3x =, 此时直线RT 也过点G ()3,0, 综上所述:直线RT 过定点G ()3,08.(2022·河北张家口·三模)已知0b a >>,点)A,B ⎛⎫⎪ ⎪⎝⎭,动点P满足|||PA PB =,点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线y kx m =+与曲线C 相切,与曲线2222:1x yE a b-=交于M 、N 两点,且π2MON ∠=(O 为坐标原点),求曲线E 的离心率. 【答案】(1)222x y b +=;【解析】 【分析】(1)根据两点间距离距离公式,结合已知等式进行求解即可;(2)根据曲线切线的性质,结合一元二次方程根的判别式、根与系数关系、平面向量垂直的性质、双曲线的离心率公式进行求解即可. (1)设(,)P x y,由|||PA PB ==222x y b +=即为曲线C ; (2)y kx m =+与曲线C相切,b ∴=2221m b k=+.设()11,M x y ,()22,N x y ,将y kx m =+代入曲线E 整理得:222222222()2(0)b a k x a kmx a m a b ---+=,2220b a k -≠,222222()40a b m b a k ∆=+->,2122222a km x x a k b -∴+=-,222212222a m a b x x a k b +=-.π2MON ∠=,0OM ON ∴⋅=,即12120x x y y +=. 222222212121212222()()()k a b m b y y kx m kx m k x x km x x m a k b -=++=+++=-, 2222222222222220a m a b k a b m b a k b a k b +-∴+=--,整理得2222221m a b k b a =+-, 22222a b b b a∴=-,即222b a =,223c a =,e 故曲线E9.(2022·河南·南阳中学三模(文))已知点D 为圆O :221x y +=上一动点,过点D 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,连接BA 并延长至点P ,使得1PA =,点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)设直线l 与曲线C 交于不同于右顶点Q 的M ,N 两点,且QM QN ⊥,求QM QN ⋅的最大值.【答案】(1)2214x y +=(2)3225【解析】 【分析】(1) 注意到A 为BP 的中点,由相关点法,即可求得曲线C 的方程;(2) 先判断直线l 恒过点6,05T ⎛⎫⎪⎝⎭,而QM QN ⋅即为∵QMN 面积的两倍,故将问题转化为求∵QMN 面积的最大值. (1)设点P (x ,y ),D 00(,)x y ,则A 0(,0)x 、B 0(0,)y ,由题意的1AB =,因为1PA =, 所以BA AP = 而00(,)BA x y =-,0(,)AP x x y =-,所以002x x y y ⎧=⎪⎨⎪=-⎩代入圆O :221x y +=得曲线C 的方程为2214x y += . (2)由题意知,直线l 的斜率不为0,则不妨设直线l 的方程为()2x ky m m =+≠.联立得2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=,()()222244440k m k m ∆=-+->,化简整理,得224k m +>.设()11,M x y ,()22,N x y ,则12224km y y k -+=+,212244m y y k -=+.因为QM QN ⊥,所以0QM QN ⋅=.因为()2,0Q ,所以()112,QM x y =-,()222,QN x y =-,得()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式,得()()()()2212121220k y y k m y y m ++-++-=,得()()()2222242122044m km k k m m k k --+⋅+-⋅+-=++,解得65m =或2m =(舍去), 所以直线l 的方程为65x ky =+,则直线l 恒过点6,05T ⎛⎫⎪⎝⎭,所以12114822525QMNS QT y y =⋅-=⨯△ 设214t k =+,则14t <≤,825QMN S =△ 易知825y =10,4⎛⎤⎥⎝⎦上单调递增,所以当14t =时,QMNS取得最大值为1625. 又12PMN S QM QN =⋅△,所以()()maxmax32225QMN QM QN S ⋅==△. 10.(2022·河南·宝丰县第一高级中学模拟预测(理))已知点1,0A ,动点M 到直线4x =的距离与到点A 的距离的比为2,设动点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)若点()1,0B -,点P ,Q 为曲线C 上位于x 轴上方的两点,且PA QB ∥,求四边形PABQ 的面积的最大值.【答案】(1)22143x y += (2)3 【解析】 【分析】(1)直接法求点的轨迹方程 ;(2) 由已知得A ,B 为所求椭圆C 的焦点,通过计算=PE QF ,可得四边形PEFQ 为平行四边形,将所求四边形PABQ 的面积转化为求三角形POE的面积,从而得到2POEPABQS S ==四边形△,利用换元法及导数法即可求出面积的最大值. (1)设(),M x y2=,所以4x -=两边平方,得()()2224414x x y -=-+,化简,得22143x y +=,即曲线C 的方程为22143x y +=.(2)如图,由(1)知曲线C 为椭圆,A ,B 为其焦点,延长PA 与椭圆相交于另一点E ,延长QB 与椭圆相交于另一点.F设直线PE 的方程为1x my =+,()11,P x y ,()22,E x y ,联立方程221,431x y x my ⎧+=⎪⎨⎪=+⎩消去x 并化简,得()2234690,m y my ++-=, 所以122634m y y m +=-+,122934y y m =-+,所以PE()22121.34m m +=+ 因为//PA QB ,所以//PE QF ,设QF 的方程为1x my =-, 同理可求()2212134m QF m +=+,所以PE QF =,所以四边形PEFQ 为平行四边形,所以四边形PABQ 的面积 2PQE POE PABQ S S S ==四边形△△. 点O 到直线PE的距离d ==所以()22121112234POEm S PE d m +=⋅=⨯=+△所以2POEPABQ S S ==四边形△()1t t ≥,所以212121313PABQ t S t t t==++四边形,令13y t t =+,则2221313t y t t -=-=',显然当1t ≥时,0y '>,所以13y t t=+在[)1,+∞上单调递增,所以当1t =,即0m =时,y 取得最小值,且min 4y =, 所以()max3PABQS =四边形,即四边形PABQ 的最大值为3.11.(2022·全国·模拟预测(理))已知(2,0)A -,(2,0)B ,动点(,)M x y 满足AM 与BM 的斜率之积为14-,记M 的轨迹为曲线C . (1)求点M 的轨迹方程;(2)点P ,Q 在C 上,且AP AQ ⊥,求APQ 面积的取值范围.【答案】(1)221(2)4x y x +=≠±(2)160,25⎛⎤ ⎥⎝⎦【解析】 【分析】(1)设点(),M x y ,由坐标分别求出直线AM 、BM 的斜率,结合斜率之积为14-,得到关于x ,y 得方程,化简即可,注意考虑斜率不存在,得到取值范围;(2)直线AP 的斜率为k ,,由点斜式得到直线AP 的方程,联立椭圆C 消去y 得到关于x 的一元二次方程,联立韦达定理求得P x ,再由弦长公式求得AP ,因为AP AQ ⊥,则直线AQ 的斜率为1k-,同理可得AQ ,代入12APQ S AP AQ =△化简得到关于k 的式子,利用换元法和对勾函数得到取值范围. (1)直线AM 的斜率为(2)2AM y k x x =≠-+,直线BM 的斜率为(2)2BM y k x x =≠-, 由题意可知:22144224AM BM y y k k x y x x ⋅=⋅=-⇒+=+-(2)x ≠±, 故曲线C 的方程为:221(2)4x y x +=≠±.(2)不妨设P 在x 轴的上方,直线AP 的斜率为k ,则0k >.则直线AP 的方程为:()2y k x =+,联立椭圆22:14x C y +=,得2222(14)161640k x k x k +++-=,即()()()222216414164160k k k ∆=-+-=>,则由韦达定理得:22221648221414p p k k x x k k --+-=⇒=++,所以,2p AP +==由于AP AQ ⊥,所以AQ 的斜率为1k -,直线AQ 的方程为:1(2)y x k=-+,以1k -代替2||14()k AQ k⇒==+-,所以222218()118(1)||122(14)(4)4()9APQk k k k S AP AQ k k k k++====++++△‖, 令1t k k=+,由于0k >,所以2t ≥,2889494APQ t S t t t==++△.由于94t t+在2t ≥时单调递增,所以2t =时面积最大,此时1625APQ S =△. 综上:160,25APQ S ⎛⎤∈ ⎥⎝⎦△,故APQ 面积的取值范围为160,25⎛⎤⎥⎝⎦.12.(2022·四川·石室中学三模(理))已知点(0,M,(0,N -,(4,R ,(4,0)Q ,动点S ,T 满足RS RQ λ→→=,2()MT MR λλ→→=∈R ,直线MS 与NT 交于一点P .设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线1:320l x y -=与曲线C 交于A ,B 两点,G 为线段AB 上任意一点(不与端点重合),倾斜角为α的直线2l 经过点G ,与曲线C 交于E ,F 两点.若2||||||EF GA GB ⋅的值与点G 的位置无关,求证:||||GE GF =.【答案】(1)2211612x y +=;(2)证明见解析. 【解析】 【分析】(1)设(),P x y ,由M ,P ,S 三点共线,得(4y x -=-,由N ,P ,T 三点共线,得8(y λ+=,消去λ即得解;(2)不妨设点A 在第一象限,设点(2,3)G m m ,其中11m -<<,若直线2l 的斜率不存在,则直线2l 的方程为2x m =,故2||||||EF GA GB ⋅不为定值. 若直线2l 的斜率存在,设直线2l 的斜率为k ,则直线2l 的方程为(23)y kx k m =--.将直线2l 的方程代入曲线C 的方程化简、整理得到韦达定理计算即得证.(1)解:由题意,知(0,RQ →=-,从而)()4,1S λ-,则()4,MS →=-. 设(),P x y,则(,M x P y →=-,(,N x P y →=+. 由M ,P ,S三点共线,得(4y x -=-. 由()4,0MR →=,得(8,T λ,从而(8NT λ→=.由N ,P ,T三点共线,得8(y λ+=,消去λ得()22321224y x -=-,整理得2211612x y +=,即曲线C 的方程为2211612x y +=.(2)证明:由题意并结合(1)易知(不妨设点A 在第一象限),(2,3)A ,(2,3)B --. 设点(2,3)G m m ,其中11m -<<,则||)GA m =-,||)GB m =+,所以()2||||131GA GB m ⋅=-.若直线2l 的斜率不存在,则直线2l 的方程为2x m =,此时(2E m,(2,F m ,故()()222124||||||131m EF GA GB m -=⋅-不为定值.若直线2l 的斜率存在,设直线2l 的斜率为k ,则直线2l 的方程为(23)y kx k m =--.将直线2l 的方程代入曲线C 的方程化简、整理,得()2222438(23)4(23)480k x km k x k m +--+--=.设()11,E x y ,()22,F x y ,则1228(23)43km k x x k -+=+,221224(23)4843k m x x k --=+, 所以()()22212||1EF kx x =+-()(){}()222222222164(23)1643(23)1243k k m k k k m k ⎡⎤+--+--⎣⎦=+()()()222222481(23)161243k k m k k⎡⎤+--+⎣⎦=-+,故()()()()22222222481(23)1612||||||13431k k m k EF GA GB k m ⎡⎤+--+⎣⎦=⋅+-. 因为2||||||EF GA GB ⋅的值与m 的值无关,所以22(23)1612k k -=+,解得12k =-,所以1224(23)2243x x km k m k +-==+, 所以G 是EF 的中点,即||||GE GF =.13.(2022·福建三明·模拟预测)如图,在平面直角坐标系中,O 为原点,()1,0F ,过直线l :4x =左侧且不在x 轴上的动点P ,作PH l ⊥于点H ,HPF ∠的角平分线交x 轴于点M ,且2PH MF =,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知曲线C 与x 轴正半轴交于点1A ,过点()4,0S -的直线1l 交C 于A ,B 两点,AS BS λ=,点T 满足AT TB λ=,其中1λ<,证明:12ATB TSO ∠=∠. 【答案】(1)()221043x y y +=≠(2)证明见解析 【解析】 【分析】(1)根据条件,代入动点()(),0P x y y ≠的坐标,化简即可; (2)注意到S 点在x 轴上,所以12y y λ=,将λ作为桥梁,合理利用,即可求解. (1)设()(),0P x y y ≠,因为PH x ∥轴,所以HPM PMF ∠=∠, 因为PM 为HPF ∠的角平分线,所以HPM FPM ∠=∠, 所以FPM PMF ∠=∠,即MF PF =,所以12PF MF PHPH==.12=,化简整理得22143x y +=,因为P 不在x 轴上,即曲线C 的方程为()221043x y y +=≠(2)易知直线1l 的斜率存在且不为0,设1l 的方程为()40x my m =-≠.联立方程组221434x y x my ⎧+=⎪⎨⎪=-⎩,消x 整理得()223424360m y my +-+=, 所以()()2224434360m m ∆=--⨯+⨯>,得2m >或2m <-,设()11,A x y ,()22,B x y ,则1222434m y y m +=+,1223634y y m =+. 由AS BS λ=得12y y λ-=-,所以12y y λ=, 设()00,T x y ,由AT TB λ=,得()0120y y y y λ-=-,所以21211201122236222334241134y y y y y m y y m y y my m λλ⨯++=====++++, 所以003441x my m m=-=⨯-=-, 所以点31,T m ⎛⎫- ⎪⎝⎭在直线1x =-上,且00y ≠,又因为()4,0S -与()12,0A 关于直线1x =-对称,所以1TSA △是等腰三角形, (或者证明直线TS 与直线1TA 的斜率互为相反数)所以11TSA TA S ∠=∠,因为111ATB TSA TA S ∠=∠+∠,所以12ATB TSO ∠=∠, 综上所述,12ATB TSO ∠=∠.14.(2022·江苏·南京市宁海中学模拟预测)已知平面上一动点P 到定点()1,0F 的距离与它到定直线1x =-的距离相等,设动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程(2)已知点(2,B ,过点B 引圆()()222:402M x y r r -+=<<的两条切线BP ;BQ ,切线BP 、BQ 与曲线C 的另一交点分别为P 、Q ,线段PQ 中点N 的纵坐标记为λ,求λ的取值范围.【答案】(1)24y x =;(2)λ的取值范围为(--. 【解析】 【分析】(1)根据曲线轨迹方程的定义求解;(2) 设切线BP的方程为12y k x +=(﹣)BQ的方程为22y k x +=(﹣)1224k k r +=-, 212284r k k r =--,再求出12228y y t r +==--,即得解.(1)设(,)P x y ,|1|x =+, 化简得()222(1)1x y x -+=+, 所以24y x =,所以曲线C 的方程为24y x =, (2)由已知2B(,所以切线,BP BQ 的斜率存在, 设切线BP的方程为12y k x -+=() 则圆心40M (,)到切线AP的距离d r ==,所以22211480r k r -++()﹣=, 设切线BQ的方程为22y k x -+=()同理可得22222480r k r -++()﹣=,所以12k k ,是方程222480r k r -++()﹣=的两根,所以12k k += 212284r k k r =--,设1122(,),(,)P x y Q x y ,联立12(2)4y k x y x ⎧=-+⎪⎨=⎪⎩211048k y y k =+﹣﹣,所以11=所以114y k =-,同理224y k =-,所以121244(=22y y k k λ-+-++=12112k k ⎛⎫⋅+ ⎪⎝⎭=﹣12122k k k k +⋅=﹣224284r r r -=-⋅--=- 因为02r <<,所以2111884r <<-所以--<- 所以λ的取值范围为(--.15.(2022·四川·内江市教育科学研究所三模(文))已知点()2,0A -,()2,0B ,直线PA 与直线PB 的斜率之积为12-,记动点P 的轨迹为曲线C(1)求曲线C 的方程;(2)设D 为曲线C 上的一点,线段AD 的垂直平分线交y 轴于点E ,若ADE 为等边三角形,求点D 的坐标﹒【答案】(1)()220421x y y +=≠;(2)25⎛- ⎝⎭或2,5⎛-⎝⎭﹒ 【解析】 【分析】(1)设P (x ,y )(y ≠0),根据12PA PB k k ⋅=-即可求C 的方程;(2)设()00,D x y (00y ≠),根据D 在C 上列出一个方程,用D 表示出E ,根据ADE 为等边三角形的AD AE =,由此可得第二个方程,两根方程联立即可求出D 的坐标. (1)设点P 的坐标为()(),0x y y ≠,∵直线PA 与直线PB 的斜率之积为12-,∵12PA PBk k ⋅=-,即1222y y x x ⨯=-+-,化简得22142x y +=, ∵曲线C 的方程为()220421x y y +=≠;(2)设()00,D x y (00y ≠),()0,E t ,线段AD 的中点为002,22x y Q -⎛⎫⎪⎝⎭, 则直线AD 的斜率002AD y k x =+,直线QE 的斜率00222QEy t k x -=-, 由题可知1AD QEk k ⋅=-,∵000021222y t y x x -⨯=--+,整理得2000422y x y t -⎛⎫-= ⎪⎝⎭,又∵2200142x y +=,∵20002y y t y ⎛⎫-=- ⎪⎝⎭,得02y t =-,故00,2y E ⎛⎫- ⎪⎝⎭.又∵ADE 为等边三角形,有AD AE =,220003404y x x ++=,∵20532120x x ++=,解得025x =-或06x =-(舍去), 将025x =-代入2200142x y+=,解得0y0y = ∵点D的坐标为25⎛- ⎝⎭或2,5⎛-⎝⎭. 16.(2022·河南平顶山·模拟预测(理))在平面直角坐标系xOy 中,一动圆经过点F (2,0)且与直线2x =-相切,设该动圆圆心的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点M (m ,0)(m >0)作两条互相垂直的直线12,l l ,且1l 与曲线Γ交于A ,B 两点,2l 与曲线Γ交于C ,D 两点,点P ,Q 分别为AB ,CD 的中点,求△MPQ 面积的最小值. 【答案】(1)28y x = (2)16 【解析】 【分析】(1)设出圆心坐标,列出等量关系,整理得到轨迹方程;(2)设出直线方程,与第一问求出的抛物线联立,得到两根之和,两根之积,从而表达出点P ,Q 的坐标,表达出△MPQ 面积,利用基本不等式求出面积的最小值. (1)设圆心为(),A x y ,2=+x ,两边平方,整理得:28y x =,故曲线Γ的方程为28y x =.(2)显然直线12,l l 斜率均存在,不妨设1:l x ky m =+,(0k >)与28y x =联立得:2880y ky m --=,设()()1122,,,A x y B x y ,则12128,8y y k y y m +==-,则()21212282x x k y y m k m +=++=+,故21242x x k m +=+,1242y y k +=,所以()24,4P k m k +,由于直线12,l l 互相垂直,故244,Q m kk ⎛⎫+- ⎪⎝⎭,所以2MPQSk m m m m =+--1816k k ⎛⎫=+≥= ⎪⎝⎭,当且仅当1k k ,即1k =时等号成立,所以△MPQ 面积的最小值为16.17.(2021·福建省德化第一中学三模)在平面直角坐标系中,∵ABC 的两个顶点A ,B 的坐标分别为()1,0-,()1,0,平面内两点G ,M 同时满足以下3个条件:∵G 是∵ABC 三条边中线的交点:∵M 是∵ABC 的外心;∵//GM AB(1)求∵ABC 的顶点C 的轨迹方程;(2)若点P (2,0)与(1)中轨迹上的点E ,F 三点共线,求||PE PF ⋅的取值范围【答案】(1)221(0)3y x y +=≠;(2)93,2⎛⎫ ⎪⎝⎭. 【解析】 【分析】(1)设出点的坐标,利用两点间的距离公式即可求得轨迹方程;(2)设出三点所在的直线方程,与(1)中的轨迹方程联立,由判别式大于0求出2k 的范围,利用韦达定理得到E ,F 两点横坐标的和与积,将PE PF ⋅表示为k 的关系式,进一步得到PE PF ⋅的取值范围. (1)设C (x ,y ),G (0x ,0y ),M (M x ,M y ), 因为M 是∵ABC 的外心,所以MA MB = 所以M 在线段AB 的中垂线上,所以1102M x -+==, 因为/GM AB ,所以0M y y =,又G 是∵ABC 三条边中线的交点,所以G 是∵ABC 的重心, 所以0011003333x x y yx y -++++====,, 所以03M yy y ==, 又MA MC =,=化简得()22103y x y +=≠,所以顶点C 的轨迹方程为()22103y x y +=≠;(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0, 设所在直线的方程为()2y k x =-,联立()222,1,3y k x y x ⎧=-⎪⎨+=⎪⎩得()222234430k x k x k +-+-=.由()()()2222443430k k k ∆=-+->,得21k <.设()11,E x y ,()22,F x y ,则212221224,343.3k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩所以()()2121212142PE PF x x k x x x x ⋅=--=+⋅-++⋅()()()222224384313k k k k k +-+-=+⋅+()2229118933k k k +==-++.又201k <<,所以2334k <+<, 所以932PE PF <⋅<. 故PE PF ⋅的取值范围为93,2⎛⎫⎪⎝⎭.18.(2022·广西柳州·三模(理))已知点(A ,点(2,B -,点M 与y 轴的距离记为d ,且点M 满足:214d MA MB ⋅=-,记点M 的轨迹为曲线W . (1)求曲线W 的方程;(2)设点P 为x 轴上除原点O 外的一点,过点P 作直线1l ,2l ,1l 交曲线W 于点C ,D ,2l 交曲线W 于点E ,F ,G ,H 分别为CD ,EF 的中点,过点P 作x 轴的垂线交GH 于点N ,设CD ,EF ,ON 的斜率分别为1k ,2k ,3k 的,求证:()312k k k +为定值.【答案】(1)22186x y +(2)证明见解析 【解析】 【分析】(1)设(),M x y ,则d x =,根据平面向量数量积的坐标表示化简计算即可;(2)设()0,0P x 和直线GH 的方程,进而求出点G 的坐标,设(,)C C C x y 、(,)D D D x y ,利用点差法和弦中点坐标公式计算化简可得()2401014330k x m k x k m +++=,同理可得()2402024330k x m k x k m +++=,根据韦达定理可得()124034x k k k x m +=-+,代入()312k k k +计算化简即可. (1)设(),M x y ,由题意得d x =,()2MA x y =-,()2,MB x y =--由214d MA MB ⋅=-,∵()()222,14d x y x y -⋅--=-∵2224314x x y -+-=-.∵22364x y +=, 即M 的轨迹方程为22186x y +;(2)显然GH 斜率存在,设()0,0P x ,设GH 的方程为:4y k x m =+ 由题意知CD 的方程为:()10y k x x =-联立方程()104y k x x y k x m⎧=-⎨=+⎩ 解得:()101414014k x m x k k k k x m y k k +⎧=⎪-⎪⎨+⎪=⎪-⎩ 可得:()140101414,k k x m k x m G k k k k +⎛⎫+ ⎪--⎝⎭设(,)C C C x y ,(,)D D D x y ,C ,D 都在曲线W 上,则有22186C Cx y +=∵22186D D x y +=∵ ∵-∵得:2222086C D C D x x y y --+=则有:134C D C DC D C Dy y x x k x x y y -+==-⋅-+又G 为CD 中点,则有;()10114034C D C D y y k x m k x x k k x m -+==-⋅-+可得:()2401014330k x m k x k m +++= 同理可得:()2402024330k x m k x k m +++=故1k ,2k 为关于k 的方程()24004330k x m k x k m +++=的两实根由韦达定理得:()124034x k k k x m +=-+,将0x x =代入直线GH 中得:40y k x m =+ 可得:()040,N x k x m +故有:4030k x mk x += 则()()4003120403344k x m x k k k x k x m ⎡⎤++=⋅-=-⎢⎥+⎣⎦,故()312k k k +为定值34- 19.(2022·全国·模拟预测(理))已知圆22:2O x y +=与x 轴交于A ,B 两点,动点P 满足直线AP 与直线BP 的斜率之乘积为12-.(1)求动点P 的轨迹E 的方程;(2)过点()1,0的直线l 与曲线E 交于M ,N 两点,则在x 轴上是否存在定点Q ,使得QM QN ⋅的值为定值?若存在,求出点Q 的坐标和该定值;若不存在,请说明理由.【答案】(1)2212x y +=,(x ≠;(2)存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-,理由见解析;【解析】 【分析】(1)设出动点(),P xy (x ≠,利用直接法求解轨迹方程;(2)先求出直线l 斜率为0时不合题意,得到直线斜率不等于0,从而设出直线l 的方程1x ky =+,联立第一问求出的轨迹方程,利用韦达定理得到两根之和,两根之积,设出(),0Q m ,求解QM QN ⋅,化简整理得到QM QN ⋅()224522m m k -=--+,从而得到存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-.(1)令0y =得:x =()),A B ,(),P x y (x ≠,则12PA PB k k ⋅==-,整理得:2212x y +=,(x ≠;动点P 的轨迹方程E 为2212x y +=,(x ≠;(2)存在点(),0Q m ,使得QM QN ⋅为定值,理由如下:当直线l 斜率为0时,则直线l 为0y =,此时与2212xy +=,(x ≠无交点,故不合题意,舍去,即直线l 斜率不为0设(),0Q m ,直线l 设为1x ky =+,则与2212x y +=,(x ≠联立得:()222210k y ky ++-=,设()()1122,,,M x y M x y ,则12122221,22k y y y y k k +=-=-++,所以()()()()11221212,,QM QN x m y x m y x m x m y y ⋅=-⋅-=--+()()()()221212121212121111x x m x x m y y ky ky m ky ky m y y =-+++=++-+++++()()()()22121211k y y k mk y y m =++-++-()224522m m k -=--+ 当450m -=即54m =时,QM QN ⋅为定值,即存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-; 综上:存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-.20.(2022·全国·高考真题)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面∵∵∵中选取两个作为条件,证明另外一个成立:∵M 在AB 上;∵PQ AB ∥;∵||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)2213y x -= (2)见解析 【解析】 【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k , M (x 0,y 0),由∵|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由∵//PQ AB 等价转化为003ky x =,由∵M 在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可. (1)右焦点为(2,0)F ,∵2c =,∵渐近线方程为y =,∵ba=∵b =,∵222244c a b a =+==,∵1a =,∵b =∵C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由∵∵推∵或选由∵∵推∵:由∵成立可知直线AB 的斜率存在且不为零;若选∵∵推∵,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符; 总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件∵M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--, 设()00,M x y ,则条件∵AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM的斜率为直线QM∵由))10102020,y y x x y y x x -=--=-,∵)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==---,直线)00:PM y x x y =-+,即00y y =, 代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦, 解得P的横坐标:100x y ⎛⎫=⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∵0012012002222000033,2,33y x x x y x x x x y x y x ⎫-++-=--⎪--⎭∵03x m y =, ∵条件∵//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件∵M 在AB 上,等价于()2002ky k x =-;条件∵//PQ AB 等价于003ky x =;条件∵AM BM =等价于200283k x ky k +=-;选∵∵推∵:由∵∵解得:2200002228,433k k x x ky x k k =∴+==--,∵∵成立; 选∵∵推∵:由∵∵解得:20223k x k =-,20263k ky k =-,∵003ky x =,∵∵成立; 选∵∵推∵:由∵∵解得:20223k x k =-,20263k ky k =-,∵02623x k -=-,∵()2002ky k x =-,∵∵成立.。
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
第四讲 有关圆锥曲线轨迹问题(教师版)根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。
该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。
求轨迹方程的的基本步骤:建设现代化(检验)建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”)求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数)0(>λλ,求动点M 的轨迹。
【解析】设MN 切圆C 于N ,则222ONMO MN -=。
),(y x M ,则2222)2(1y x y x +-=-+λ化简得0)41(4))(1(22222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。
当1≠λ时,方程化为2222222)1(31)12(-+=+--λλλλy x 表示一个圆。
【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程.【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=)y xQMNO证明可以省略,但要注意“挖”与“补”。
2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程;解析】如图,设M 为动圆圆心,,02p ⎛⎫⎪⎝⎭为记为F ,过点M 作直线2p x =-的垂线,垂足为N ,由题意知:MF MN =即动点M 到定点F 与定直线2px =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,轨迹方程为22(0)y px P =>;【练习】 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM的垂直平分线交OM 于点P ,求点P 的方程。
【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、O 为焦点的椭圆,中心为(-3,0),故P 点的方程为1251625)3(22=++y x ◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.【解析】设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点, 两切线交于点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知, 点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为:2218172x y += 评析:定义法的关键是条件的转化——转化成某一基本轨迹的定义条件。
三、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。
,02p ⎛⎫ ⎪⎝⎭2p x =-lO 'P E DC BA例3、如图,从双曲线x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为N 。
求线段QN 的中点P 的轨迹方程。
【解析】设动点P 的坐标为(x,y ),点Q 的坐标为(x 1,y 1) 则N ( 2x-x 1,2y-y 1)代入x+y=2,得2x-x 1+2y-y 1=2①又PQ 垂直于直线x+y=2,故111=--x x y y ,即x-y+y 1-x 1=0② 由①②解方程组得12321,1212311-+=-+=y x y y x x , 代入双曲线方程即可得P 点的轨迹方程是2x 2-2y 2-2x+2y-1=0【练习】已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT求点T 的轨迹C 的方程;【解析】解法一:(相关点法)设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y cx x 因此⎩⎨⎧='-='.2,2y y c x x ① 由a Q F 2||1=得.4)(222a y c x ='++' ②将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+ 解法二:(几何法)设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥.又||||2PF PQ =,所以T 为线段F 2Q 的中点.在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+四、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
例4、在平面直角坐标系x Oy 中,抛物线y=x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO (如图4所示).求△AOB 的重心G (即三角形三条中线的交点)的轨迹方程;【解析】解法一:以OA 的斜率k 为参数由{2y kx y x==解得A (k ,k 2) ∵OA ⊥OB ,∴OB :1y x k =-由21y x k y x⎧⎪=-⎨⎪=⎩解得B 211,k k ⎛⎫- ⎪⎝⎭ 设△AOB 的重心G (x ,y ),则22113113x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩ 消去参数k 得重心G 的轨迹方程为2233y x =+解法二:设△AOB 的重心为G(x,y),A(x 1,y 1),B(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧+=+=332121y y y x x x ...(1) ∵OA ⊥OB ∴1-=⋅OB OA k k ,即12121-=+y y x x , (2)又点A ,B 在抛物线上,有222211,x y x y ==,代入(2)化简得121-=x x∴32332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y 所以重心为G 的轨迹方程为3232+=x y 。
【练习】如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求△APB 的重心G 的轨迹方程.O G B Ayx P l【解析】设切点A 、B 坐标分别为))((,(),(012112x x x x x x ≠和, ∴切线AP 的方程为:;0220=--x y x x 切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P P G x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即评析:1.用参数法求轨迹是高考中常考的重要题型,由于选参灵活,技巧性强,也是学生较难掌握的一类问题。
2.选用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
3.要特别注意消参前后保持范围的等价性。
4.多参问题中,根据方程的观点,引入 n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
五、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。