第三章 紫外吸收光谱分析
- 格式:ppt
- 大小:744.00 KB
- 文档页数:54
第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。
◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。
◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。
2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。
◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。
◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。
◆准确:近紫外-可见分光光度法(200-780 nm)。
3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。
4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。
2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。
◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。
◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。
2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。
◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。
◆电子能级能量差:1~20 eV。
电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。
7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。
◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。
一填空1.紫外吸收光谱研究的是分子的(电子)能级跃迁,它还包括了(振动)和(转动)能级跃迁。
2朗伯-比尔定律适用于(平行单色光)对(均匀非散射性)溶液的测定3 .在朗伯—比尔定律I/I o = 10-abc中, I o是入射光的强度, I是透射光的强度, a是吸光系数, b是光通过透明物的距离, 即吸收池的厚度, c是被测物的浓度, 则透射比T =_I/I o________, 百分透过率T% =_I/I o ×100%_____, 吸光度A与透射比T的关系为____-logT___。
4 .振动能级间跃迁产生的光谱叫振动光谱,又叫红外光谱。
5紫外-可见光光谱中(最大吸收峰)所对应的波长称最大吸收波长。
二选择1不需要选择的吸光度测量条件为(D)A入射光波长B参比溶液C吸收光读数范围D测定温度2某溶液的渗透率为30%,其吸光度为(A)A-lg0.3 B-lg7.0 C3-lg30 D-lg0.73指出下列化合物中,哪个化合物的紫外吸收波长最大( A )。
A. CH3CH2CH3B. CH3CH2OHC. CH2=CHCH2CH=CH2D. CH3CH=CHCH=CHCH 34电磁辐射的微粒性表现在哪种性质上(B )。
A. 能量B. 频率C. 波长D. 波数5测量某样品,如何测量时吸收池透光面有污渍没有擦干净,对测量结果有何影响(D) A影响不确定B无影响C偏高D偏低三判断1溶液的透射比越大,表示物质对光的吸收越小(正确)2在符合朗波比尔定律的范围内,有色物质的浓度增加,最大吸收波长不变,则透光度减小(正确)3分光光度法既可以用于单组份测定,也可以用于多组分测定。
(正确)4不同物质吸收光谱的形状以及波长都不同。
(正确)5分子内部三种运动形式能量大小比较为电子能级>振动能级>转动能级。
(正确)四名词解释1吸光度A:物质对光的吸收程度。
2透光率T:透射光的强度与入射光强度之比称为透射比与透光率。
紫外吸收光谱分析原理
紫外吸收光谱分析是一种常用的分析方法,用于测定物质在紫外光波段的吸收特性。
其原理基于分子在紫外光波长的辐射下,会吸收特定波长的光能,而波长较短的紫外光可以提供充分的能量,使得分子的电子跃迁至能级更高的激发态。
在紫外吸收光谱分析中,常用的仪器是紫外可见分光光度计。
该仪器通过使用一束连续可见光谱范围的光源,并将光分成几种不同波长的组分。
这束光线经过样品后,会发生吸收作用,被吸收的光能量与样品中存在的物质量成正比。
未被吸收的光线则通过光谱仪,最终转化为一个电子信号。
在分析过程中,将样品和参比物(一般是纯溶剂)分别放入两个
光路,并测量它们的吸收谱线。
通过比较两者的吸收度差异,可以得到样品物质在不同波长下的吸收特性。
这种减法方法可以排除溶剂本身的吸收对结果的影响,提高测量的准确性。
紫外吸收光谱分析在许多领域中都有广泛的应用,特别是在药学、生物化学和环境监测等领域。
通过测定样品的吸收谱线,可以定量测定物质的浓度、检测它们的组分以及判断样品的纯度。
同时,该分析方法快速、灵敏度高,无损伤性,不需要特殊样品处理,是一种非常有效的分析手段。