高三数学导数的概念及运算
- 格式:pdf
- 大小:640.49 KB
- 文档页数:10
第三章 导数及其应用1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义.3.能根据导数的定义求函数y =C (C 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数.4.能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数. ①常见的基本初等函数的导数公式: (C )′=0(C 为常数); (x n )′=nx n -1(n ∈N +); (sin x )′=cos x; (cos x )′=-sin x ; (e x )′=e x;(a x )′=a x ln a (a >0,且a ≠1);(ln x )′=1x ;(log a x )′=1x log a e(a >0,且a ≠1).②常用的导数运算法则: 法则1:[u (x )±v (x )]′=u ′(x )±v ′(x ). 法则2:[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ).法则3:⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )v 2(x )(v (x )≠0).5.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次). 7.会用导数解决实际问题.8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 9.了解微积分基本定理的含义.3.1 导数的概念及运算1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx就叫函数y =f (x )从x 0到x 0+Δx 之间的平均变化率,即Δy Δx =f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处 ,并把这个极限叫做f (x )在点x 0处的导数,记作 或y ′|0|x x =,即f ′(x 0)=0lim →∆x Δy Δx =0lim →∆x f (x 0+Δx )-f (x 0)Δx .(2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=0lim →∆x f (x +Δx )-f (x )Δx .(3)用定义求函数y =f (x )在点x 0处导数的方法 ①求函数的增量Δy = ;②求平均变化率ΔyΔx= ;③取极限,得导数f ′(x 0)=0lim →∆x ΔyΔx .2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 . 3.基本初等函数的导数公式(1)c ′=(c 为常数), (x α)′=(α∈Q *); (2)(sin x )′=____________, (cos x )′=____________; (3)(ln x )′=____________, (log a x )′=____________; (4)(e x )′=____________, (a x )′=____________. 4.导数运算法则(1)[f (x )±g (x )]′=__________________. (2)[f (x )g (x )]′=____________________;当g (x )=c (c 为常数)时,即[cf (x )]′=____________. (3)⎣⎢⎡⎦⎥⎤f (x )g (x ) ′=___________________ (g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为______________.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.自查自纠1.(1)可导 f ′(x 0)(3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.f ′(x 0) y -y 0=f ′(x 0)(x -x 0) 3.(1)0 αxα-1(2)cos x -sin x (3)1x 1x ln a(4)e x a x ln a4.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x )(3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解:因为y ′=a -1x +1,所以切线的斜率为a -1=2,解得a =3.故选D .(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)解:对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x(x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以P 的坐标为(1,1).故选A .(2015·陕西)函数y =x e x 在其极值点处的切线方程为( ) A .y =e x B .y =(1+e)xC .y =1eD .y =-1e解:记y =f (x )=x e x ,则f ′(x )=(1+x )e x ,令f ′(x )=0,得x =-1,此时f (-1)=-1e.故函数y =x e x 在其极值点处的切线方程为y =-1e .故选D .(2016·天津)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 解:f ′(x )=2e x +(2x +1)e x =(2x +3)e x ,所以f ′(0)=3e 0=3.故填3.(教材习题改编)若函数f (x )=x 2+2x -3,则曲线y =f (x )在点P (2,5)处的切线的斜率是________. 解:f ′(x )=2x +2,f ′(2)=6.故填6.类型一 导数的概念用定义法求函数f (x )=x 2-2x -1在x =1处的导数. 解法一:Δy =f (x +Δx )-f (x )=(x +Δx )2-2(x +Δx )-1-(x 2-2x -1) =x 2+2x ·Δx +Δx 2-2x -2Δx -1-x 2+2x +1 =(2x -2)Δx +Δx 2,所以0lim →∆x Δy Δx =0lim →∆x (2x -2)Δx +Δx 2Δx=0lim →∆x [(2x -2)+Δx ]=2x -2.所以函数f (x )=x 2-2x -1在x =1处的导数为 f ′(x )|x =1=2×1-2=0.解法二:Δy =f (1+Δx )-f (1)=(1+Δx )2-2(1+Δx )-1-(12-2×1-1) =1+2Δx +Δx 2-2-2Δx -1+2=Δx 2,所以0lim →∆x Δy Δx =0lim →∆x Δx 2Δx =0lim →∆x Δx =0.故f ′(x )|x =1=0.【点拨】利用导数定义求函数在某一点处的导数,首先写出函数在该点处的平均变化率ΔyΔx,再化简平均变化率,最后判断当Δx →0时,ΔyΔx 无限趋近于哪一常数,该常数即为所求导数,这是定义法求导数的一般过程.航天飞机发射后的一段时间内,第t s 时的高度h (t )=5t 3+30t 2+45t +4(单位:m). (1)求航天飞机在第1 s 内的平均速度;(2)用定义方法求航天飞机在第1 s 末的瞬时速度. 解:(1)航天飞机在第1 s 内的平均速度为 h (1)-h (0)1=5+30+45+4-41=80 m/s.(2)航天飞机第1 s 末高度的平均变化率为h (1+Δt )-h (1)Δt=5(1+Δt )3+30(1+Δt )2+45(1+Δt )+4-84Δt=5Δt 3+45Δt 2+120ΔtΔt=5Δt 2+45Δt +120,当Δt →0时,5Δt 2+45Δt +120→120, 所以航天飞机在第1 s 末的瞬时速度为120 m/s.类型二 求导运算求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x +e ;(4)y =ln xx 2+1;(5)y =ln(2x -5).解:(1)因为y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′ =(3x )′e x +3x (e x )′-(2x )′ =3x e x ln3+3x e x -2x ln2 =(ln3+1)(3e)x -2x ln2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.【点拨】求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有: (1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导.求下列函数的导数: (1)y =e x cos x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (3)y =ln x ex ;(4)y =ln 1+2x ;(5)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2;解:(1)y ′=(e x )′cos x +e x (cos x )′=e x (cos x -sin x ). (2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x3.(3)y ′=(ln x )′e x -(e x )′ln x (e x )2=1x e x -e x ln x (e x )2=1x -ln x e x =1-x ln x x e x .(4)y =ln 1+2x =12ln(1+2x ),所以y ′=12·11+2x (1+2x )′=12·11+2x ·2=11+2x.(5)因为y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π) =-12x sin4x .所以y ′=-12sin4x -12x ·4cos4x =-12sin4x -2x cos4x .类型三 导数的几何意义(2016·广州模拟)f (x )=2x+3x 的图象在点(1,f (1))处的切线方程为________.解:f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.故填x -y +4=0. 【点拨】曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤: ①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.(2016·广州模拟)曲线y =14x 2过点⎝⎛⎭⎫4,74 的切线方程为________. 解:设所求切线与曲线相切于点P ⎝⎛⎭⎫x 0,14x 20.易知y ′=12x ,则y ′|x =x 0=12x 0.故74-14x 204-x 0= 12x 0,整理得x 20-8x 0 + 7 = 0,解得x 0=7或x 0=1,所以点P ⎝⎛⎭⎫7,494或P ⎝⎛⎭⎫1,14,由两点式得切线方程为14x -4y -49=0或2x -4y -1=0.故填14x -4y -49=0或2x -4y -1=0.(2016·兰州诊断)已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .-3 D.12解:y ′=x 2-3x ,令y ′=-12,得x 2+x -6=0,解得x =2或x =-3(舍去),所以所求切点的横坐标为2.故选B .【点拨】求切点坐标问题,一般通过解方程或方程组求得,要注意其取值范围.(2016·无锡一模)曲线y =x -1x(x >0)上点P (x 0,y 0)处的切线分别与x 轴,y 轴交于点A ,B ,O 是坐标原点,若△OAB 的面积为13,则点P 的坐标为________.解:由题意可得y 0=x 0-1x 0,x 0>0,因为y ′=1+1x2,所以过点P 的切线的斜率为1+1x 20,则切线的方程为y -x 0+1x 0=⎝⎛⎭⎫1+1x 20(x -x 0), 令x =0得y =-2x 0,令y =0得x =2x 01+x 20,所以△OAB 的面积S =12·2x 0·2x 01+x 20=13,解得x 0=5(舍去负根),所以点P 的坐标为⎝⎛⎭⎫5,455. 故填⎝⎛⎭⎫5,455.(2016·柳州模拟)曲线g (x )=x 3+52x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b =( )A.72B.52C.32D.12解:g ′(x )=3x 2+5x +3x ,则g ′(1)=11,又g (1)=72+b ,故曲线y =g (x )在x =1处的切线方程为y -⎝⎛⎭⎫72+b =11(x -1),由该切线过点(0,-5),得b =52.故选B .【点拨】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2 解:设切点坐标为(x 0,y 0),对曲线方程求导得y ′=1x +a ,故切线方程为y -ln(x 0+a )=1x 0+a (x -x 0),即y =1x 0+ax -x 0x 0+a +ln(x 0+a ),据题意得1x 0+a =1且-x 0x 0+a +ln(x 0+a )=1,解得x 0=-1,a =2.故选B .1.“函数在点x 0处的导数”“导函数”“导数”的区别与联系 (1)函数在点x 0处的导数f ′(x 0)是一个常数,不是变量.(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x ).(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值. 2.函数y =f (x )在x =x 0处的导数f ′(x 0)的两种常用求法 (1)利用导数的定义,即求0lim →∆x f (x 0+Δx )-f (x 0)Δx 的值;(2)求导函数在x 0处的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.关于用导数求曲线的切线问题(1)圆是一种特殊的封闭曲线,注意圆的切线的定义并不适用于一般的曲线.(2)求曲线在某一点处的切线方程,这里的某一点即是切点,求解步骤为先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.(3)求过某点的曲线的切线方程,这里的某点可能是切点(点在曲线上的情形),也可能不是切点,即便点在曲线上,切线也不一定唯一.1.(2016·郑州一检)曲线f (x )=e x sin x 在点(0,f (0))处的切线斜率为( )A .0B .-1C .1 D.22解:f ′(x )=e x sin x +e x cos x ,所以k =f ′(0)=1.故选C .2.P 0(x 0,y 0)是曲线y =3ln x +x +k (k ∈R )上的一点,曲线在点P 0处的切线方程为4x -y -1=0,则实数k 的值为( )A .2B .-2C .-1D .-4解:y ′=3x +1,令其等于4得x =1,代入切线方程得y =3,即切点坐标为(1,3),代入曲线方程得3=1+k ,k =2.故选A .3.(2016·淄博质检)已知f ′(x )是函数f (x )的导函数,如果f ′(x )是二次函数,f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点处的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎤0,π3B.⎣⎡⎭⎫π3,π2C.⎝⎛⎦⎤π2,2π3D.⎣⎡⎭⎫π3,π解:依题意得f ′(x )≥3,即曲线y =f (x )在任意一点处的切线斜率不小于3,故其倾斜角的取值范围是⎣⎡⎭⎫π3,π2.故选B .4.(2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3) D .(1,-3)解:f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上.故选C .5.(2017·石家庄调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( )A .eB .-e C.1e D .-1e解:y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e .故选C .6.(2016·郑州二测)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解:l 与y 轴交点为(0,2),可知曲线y =f (x )在x =3处切线的斜率k 等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0.故选B . 7.(2016·江西师大附中三模)如图所示,直线l 是曲线y =f (x )在x =4处的切线,则f (4)+f ′(4)的值为________.解:由图可知f (4)=5,f ′(4)的几何意义是曲线y =f (x )在x =4处切线的斜率,故f ′(4)=5-34-0=12,故f (4)+f ′(4)=5.5.故填5.5.8.已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.解:由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x =m -1e 有解,故只要m -1e >0,即m >1e即可.故填⎝⎛⎭⎫1e ,+∞. 9.求函数f (x )=x 3-4x +4图象上斜率为-1的切线方程. 解:设切点坐标为(x 0,y 0),因为f ′(x 0)=3x 20-4=-1,所以x 0=±1. 所以切点为(1,1)或(-1,7). 切线方程为x +y -2=0或x +y -6=0.10.(2017·长沙调研)已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围.解:(1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝⎛⎭⎫2,53,斜率k =-1, 所以所求切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,又因为α∈[0,π),所以α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.11.已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程. 解:(1)y ′=x 2,设切点为(x 0,y 0),故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝⎛⎭⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)因为y ′=x 2,且P (2,4)在曲线y =13x 3+43上,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4. 所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,又因为切线的斜率k =y ′|x =x 0=x 20, 所以切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43. 因为点P (2,4)在切线上,所以4=2x 20-23x 30+43, 即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x -y -4=0或x -y +2=0.(2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解:设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1.故选A .。
新高三数学导数知识点总结高三数学导数知识点总结导数是高中数学中非常重要的一个概念,它在微积分中起着至关重要的作用。
在高三学习数学的过程中,导数是一个必需掌握的知识点。
本文将对高三数学导数知识点进行总结和归纳,帮助同学们更好地掌握该知识。
一、导数的定义及基本性质导数的定义:设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处取得增量Δx时,相应的函数增量Δy=f(x0+Δx)-f(x0),若极限lim (Δx→0) [Δy/Δx] 存在,那么称该极限为函数y=f(x)在点x0处的导数,记作f'(x0),即f'(x0)=lim (Δx→0) [Δy/Δx]。
导数具有以下基本性质:1. 可导性:如果函数f(x)在某点x0处存在导数f'(x0),那么称函数f(x)在点x0处可导。
2. 可导性与连续性的关系:如果函数f(x)在某点x0处可导,则函数f(x)在点x0处一定连续。
3. 常数函数导数为零:对于常数c,有f'(x)=0。
4. 导数的四则运算法则:设函数u(x)和v(x)都在点x处可导,那么有:(1) (u ± v)' = u' ± v';(2) (cu)' = cu',其中c为常数;(3) (uv)' = u'v + uv';(4) 当v(x)≠0时,(u/v)'= (u'v - uv')/v^2。
二、常见函数的导数公式1. 幂函数的导数:设f(x) = x^n,其中n为正整数,则有f'(x) = nx^(n-1)。
特殊情况:当n=1时,f'(x) = 1。
2. 指数函数的导数:设f(x)=e^x,则有f'(x) = e^x。
3. 对数函数的导数:设f(x) = ln(x),则有f'(x) = 1/x。
4. 三角函数的导数:(1) 设f(x) = sin(x),则有f'(x) = cos(x)。
科 目数学 年级 高三 备课人 高三数学组 第 课时 3.1导数的概念及运算考纲定位 能识记基本初等函数的导数公式;能理解导数的几何意义;会求简单的函数及一些复合函数的导数.【考点整合】1、导数的概念(1)一般地,函数()y f x =在0x x =处的导数是 ;(2)函数()y f x =在0x x =处的导数的几何意义是 ; 函数()y f x =在00(,())P x f x 处的切线方程是 .2、导数公式:(1)=C ' (2)()=n x ' (3)(sin )=x ' (4)(cos )=x '(5)()=x e ' (6)()=x a ' (7)(ln )=x ' (8)(log )=a x '(9)[()()]=f x g x '± (10)[()()]=f x g x '∙(11)()[]=()f xg x ' (12)(),(),=x y f g x y μμ'==则3、判断下列语句的真假性:(1)若函数()y f x =在1x =-处的导数为1,则()y f x =在(1,(1))P f --处的切线的斜率为-1;( )(2)若函数()y f x =在(1,(1))P f --处的切线的倾斜角为45°,则(1)1f '-=;( )(3)函数2y x =在点(1,1)的切线的斜率为1.( )(4)函数2y x =在点(1,1)的切线的斜率为2.( )4、函数2y x =在点(1,1)的切线方程为【典型例题】一、求简单函数的导数1、求下列函数的导数:(1)232y x x =- (2)2log y x = (3)1x y e =- (4)sin y x x =+(5)cos3x y = (6)1y x =- (7)33log y x x =+ (8)ln y x x =(9)sin x y x=(10)99(1)y x =+ (11)2x y e -= (12)sin(25)y x =+(13)22ln 1x y x =+ (14)2sin()x x y a e =+二、求函数的切线方程2、已知曲线232y x x =-,则(1)曲线在点1x =处的切线方程为 ;(2)曲线在点(1,0)P 处的切线方程为 .3、已知sin ()x f x x=,则其在点(,0)P π处的切线方程为 ;三、高考真题演练4、(2010 全国)曲线2x y x =+在点(1,1)--处的切线方程是( ) A.21y x =+ B.21y x =- C. 23y x =-- D. 22y x =--5、(2012 广东)曲线33y x x =-+在点(1,3)处的切线方程为 .【作业】《胜券在握》P24页 第1,2,3题【课后反思】。
新高三数学导数知识点归纳导数是高等数学中的重要概念,是微积分中的基础内容。
在高三数学学习中,导数知识点是必学的内容之一。
本文将对新高三数学导数知识点进行归纳和总结,帮助同学们更好地掌握这一知识。
一、导数的定义导数是函数在某一点上的变化率,用数学符号表示为f'(x),读作"f关于x的导数",也可以读作"f的导数"。
导数的定义如下:若函数f(x)在点x处有极限lim┬(△x→0)〖(f(x+△x)-f(x) )/△x=lim┬(△x→0)(△f(x)/△x=f'(x)〗其中Δf(x)表示函数f(x)在点x处的增量,Δx表示自变量的增量。
二、常用函数的导数1. 常数函数的导数:对于常数函数f(x)=c (c为常数),其导数为0,即f'(x)=0。
2. 幂函数的导数:对于幂函数f(x)=x^n (n为正整数),其导数为f'(x)=n*x^(n-1)。
3. 指数函数的导数:对于指数函数f(x)=a^x (a>0,a≠1),其导数为f'(x)=a^x*lna。
4. 对数函数的导数:对于对数函数f(x)=logₐx (a>0,a≠1),其导数为f'(x)=1/(x*lna)。
5. 三角函数的导数:常见的三角函数(sin、cos、tan等)的导数如下:sinx的导数为cosx;cosx的导数为-sinx;tanx的导数为sec^2x。
三、导数的运算法则1. 基本运算法则:(1)常数的导数为0;(2)导数的线性性,即导数与常数的乘积等于常数乘以导数。
2. 加减法法则:(1)两个函数的和(差)的导数等于两个函数的导数的和(差);(2)即(f(x)±g(x))' = f'(x)±g'(x)。
3. 乘积法则:(1)两个函数的乘积的导数等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数;(2)即(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)。
高三数学导数和函数知识点一、导数的定义及性质导数是函数在某一点上的斜率,表示函数在该点的变化率。
具体来说,如果函数f(x)在点x0处的导数存在,那么导数可以通过以下公式计算:f'(x)=lim[x→x0](f(x)-f(x0))/(x-x0)导数具有以下性质:1. 导数存在的条件:函数在某一点处的导数存在,意味着该点是函数的可导点。
函数可导的必要条件是在该点上函数的左右导数存在且相等。
2. 导数与函数的关系:如果函数f(x)在点x0处可导,则在该点上函数是连续的。
但是函数在某一点处连续并不意味着导数存在。
3. 导数的几何意义:导数表示函数图像在某一点上的切线的斜率,切线的方程为y=f'(x0)(x-x0)+f(x0)。
4. 导数的运算法则:导数满足加减乘除的运算法则,例如导数的和的导数等于各个导数的和,导数的乘积的导数等于各个因子的导数之积等。
5. 高阶导数:一个函数的导数的导数称为高阶导数,记作f''(x),依此类推。
二、常见函数的导数1. 常数函数的导数:常数函数的导数为0,即f'(x)=0。
2. 幂函数的导数:幂函数f(x)=x^n的导数为f'(x)=nx^(n-1)。
3. 指数函数的导数:指数函数f(x)=a^x的导数为f'(x)=a^x *ln(a),其中ln(a)表示以自然对数为底的a的对数。
4. 对数函数的导数:对数函数f(x)=log_a(x)的导数为f'(x)=1/(xln(a)),其中ln(a)表示以自然对数为底的a的对数。
5. 三角函数的导数:常见的三角函数正弦函数f(x)=sin(x)、余弦函数f(x)=cos(x)和正切函数f(x)=tan(x)的导数分别为f'(x)=cos(x)、f'(x)=-sin(x)和f'(x)=sec^2(x)。
三、导数应用导数在数学中有广泛的应用,以下是几个常见的应用领域:1. 极值问题:通过求解导数为零的方程,可以找到函数的极值点。
目录4.1 导数的概念及运算..................................................................................................................... 1 4.2 导数的几何意义 .. (14)4.1 导数的概念及运算【知识点一】一、导数的基本概念 1.函数的平均变化率:2.函数的瞬时变化率、函数的导数:3.设函数的图象如图所示.为过点与的一条割线.由此割线的斜率是,可知曲线割线的斜率就是函数的平均变化率.当点沿曲线趋近于点时,割线绕点转动,它的最终位置为直线,这条直线叫做此曲线过点的切线,即切线的斜率.由导数意义可知,曲线过点的切线的斜率等于.()y f x =AB 00(,())A x f x 00(,())B x x f x x +∆+∆00()()f x x f x y x x+∆-∆=∆∆B A AB A AD AD A 000()()limx f x x f x x∆→+∆-=∆AD ()y f x =00(,())x f x 0()f x '二:导数公式,为正整数(0,)αα≠∈Q ,为有理数注:,称为的自然对数,其底为,是一个和一样重要的无理数.注意.()y f x =()y f x ''=y c =0y '=n y x =()n +∈N 1n y nx -'=n y x α=1y x αα-'=αx y a =(0,1)a a >≠ln x y a a '=log a y x =(0,1,0)a a x >≠>1ln y x a'=sin y x =cos y x '=cos y x =sin y x '=-e a e e π2.7182818284e =()x x e e '=【典型例题】考点一: 导数的基本概念例1.如图,函数()f x 的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则((0))f f =_____;函数()f x 在1x =处的导数'(1)f =_____.练1.已知函数()f x 在0x x =处可导,则000(3)()lim x f x x f x x∆→+∆-=∆_____0'()f x .练2.设函数2()24f x x =-的图像上一点(1,2)以及邻近一点(1,2)x y +∆+∆,则yx∆∆等于__________.考点二: 导数公式及其应用例1.求下列函数的导数: 3x ,13x ,21x练1.求下列函数的导数: x ,3log x ,cos x练2.下列结论不正确的是 A .若3y =,则'0y = B .若3x y =,则1'3x y x -=-⋅C .若y x =-则'2y x=D .若3y x =,则'3y =【知识点二:导数的四则运算法则】(1)函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即两个函数的和(或差)的导数,等于这两个函数的导数和(或差). (2)函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即常数与函数之积的导数,等于常数乘以函数的导数.(3)函数的商的求导法则: 设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()[]()()f xg x f x f x g x g x g x ''-'=. 特别是当()1f x ≡时,有21()[]()()g x g x g x ''=-.【典型例题】例1.求下列函数的导数:(1)()3sin=;f x x x(2)()ln x=;f x e x(3)()sin xf x=;x(4)()tanf x x=.例2.2=+-的导数为()(2)()f x x a x aA.22x a2()+ 2()x a-B.22 C.22x a+3() 3()x a-D.22练习1.求下列函数的导数:2xx e 1ln x211x x ++练习2.求下列函数的导数: (1)()e sin x f x x -=;(2)2()()ln f x x x x =-; (3)2()()e x f x x ax a -=-+⋅;(4)()3ln x f x x =.【知识点三:复合函数求导】一般地,对于两个函数()y f u =和()u g x =,如果通过变量,u y 可以表示成x 的函数.那么称这个函数为函数()y f u =和()u g x =的复合函数,记(())y f g x =.复合函数(())y f g x =的导数和函数(),y f u =()u g x =的导数间的关系为'''x u x y y u =⋅ (注:'x y 表示y 对x 的导数,'u y 表示y 对u 的导数)【典型例题】例1.(1)函数2sin y x =的导数是_____.(2)函数2412x y e +=的导数是_____.(3)函数2(1cos )y x =-的导数是_____.(4)设3121y x =+,则y '=_____.2'2cos y x x =练习1.求下列复合函数的导数:(1)2()ln(5)f x x =+;(2)10(35)()x f x x +=;(3)1()ln()1xf x x+=-.【小试牛刀】1.已知函数()f x 在1x =处可导,则0(1)(1)__________lim3x f x f x∆→+∆-=∆.2.求下列函数的导数: (1)ln y x = (2)53y x = (3)2x y =3.求下列函数导数值: (1)()f x x =,求(1)f ',1()2f '(2)()sin f x x =,求π()4f '(3)2()log f x x =,求1()2f '4.求下列函数的导数: (1)2()2ln f x x x =+(2)3()x f x x e =+【巩固练习——基础篇】1.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在13t t ==到的平均速度为v ,在2t =的舒适速度为2v ,2v v 和关系为A .2v v >B .2v v <C .2v v =D .不能确定2. 已知函数()f x 和()g x 在区间[]a b ,上的图像如图所示,纳闷下列说法正确的是A .()f x 在a 到b 之间的平均变化率大于()g x 在a 到b 之间的平均变化率B .()f x 在a 到b 之间的平均变化率小于()g x 在a 到b之间的平均变化率C .对于任意0()x a b ∈,,函数()f x 在0x x =处的瞬时变化率总大于函数()g x 在0x x =处的瞬时变化率D .存在0()x a b ∈,,使得函数()f x 在0x x =处的瞬时变化率总小于函数()g x 在0x x =处的瞬时变化率3.求下列函数在给定点的导数 (1)34=16y x x =, (2) sin =2y x x π=, (3)cos =2y x x π=,4.已知函数,则的最小正周期是;如果的导函数是,则________.21()sin 23cos 2f x x x =+()f x ()f x ()f x '()6f π'=t 4t 3t 2100t 1tOV5.求下列函数的导数:(1)()sin cos 22x xf x x =-(2)()sin(21)x f x e x =+6.求下列函数的导数: (1)()sin(ln )f x x =;(2)43()(21)f x x +【巩固练习——提高篇】1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为3(m /)v h .那么瞬时融化速度等于3(m /)v h 的时刻是图中的A .1tB .2tC .3tD .4t2.已知函数,则A .B .C .D .03.设函数,其中,则导数的取值范围是A .B .C .D .4.设、是上的可导函数,、分别是、的导函数,且,则当时,有A .B .C .D .5.已知是定义在(0,+∞)上的非负可导函数,且满足,对任意正数、,若<,则,的大小关系为A .<B .=C .≤D .≥6.求下列函数的导数:()(1)(2)(3)(100)f x x x x x =----(1)f '=99!-100!-98!-()32sin 3cos tan 3f x x x θθθ=++5π012θ⎡⎤∈⎢⎥⎣⎦,()1f '[]22-,23⎡⎤⎣⎦,32⎡⎤⎣⎦22⎡⎤⎣⎦()f x ()g x R ()f x '()g x '()f x ()g x ()()()()0f x g x f x g x ''+<a x b <<()()()()f x g x f b g b >()()()()f x g a f a g x >()()()()f x g b f b g x >()()()()f x g x f a g a >()f x '()()0xf x f x ->a b a b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b(1)1()sin tan ln cos f x x x x x=++; (2)2()cos(ln(1))f x x =+;(3)121()()xf x e x a x=++.7.已知1()sin cos f x x x =+,记21()'()f x f x =,32()'()f x f x =,…,1()'()(,2)n n f x f x n N n *-=∈≥,则122018()()()_________222f f f πππ+++=.4.2 导数的几何意义【课前诊断】成绩(满分10分):_____ 完成情况: 优/中/差1.曲线在处切线的倾斜角为A .B .C .D .2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.3. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;4.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;313y x =1=x 1π4-π45π4【知识点一:切线的求法】1、曲线的切线的求法:若已知曲线过点00(,)P x y ,求曲线过点P 的切线,则需分点00(,)P x y 是切点和不是切点两种情况求解.(1)当点00(,)P x y 是切点时,切线方程为000()()y y f x x x '-=-; (2)当点00(,)P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11(,())P x f x ';第二步:写出过11(,())P x f x '的切线方程为111()()()y f x f x x x '-=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()()()y f x f x x x '-=-,可得切线方程. 2、求曲线=()y f x 的切线方程的类型及方法(1)已知切点00(,)P x y ,求=()y f x 过点P 的切线方程:求出切线的斜率0()f x ',由点斜式写出方程;(2)已知切线的斜率为k ,求=()y f x 的切线方程:设切点00(,)P x y ,通过方程0()k f x '=解得0x ,再由点斜式写出方程;(3)已知切线上一点(非切点),求=()y f x 的切线方程:设切点00(,)P x y ,利用导数求得切线斜率0()f x ',再由斜率公式求得切线斜率,列方程(组)解得0x ,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由0()k f x '=求出切点坐标00(,)x y ,最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典型例题】考点一:导数的几何意义例1.若过曲线上的点的切线的斜率为, 则点的坐标是.例2. 已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;练习1.已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值;练习2. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;()ln f x x x =P 2P ______例1.曲线在处的切线方程为A .B .C .D .例2.曲线在处切线的倾斜角为A .B .C .D .练习1.曲线在点处的切线方程是 A . B . C . D .练习2.已知函数()(sin )ln f x x a x =+,a ∈R .若0a =,求曲线()y f x =在点(,())22f ππ处的切线方程;练习3.已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值;e ()1xf x x =-0=x 10--=x y 10++=x y 210--=x y 210++=x y 313y x =1=x 1π4-π45π42()1xf x x =+(1,(1))f 1x =12y =1+=x y 1-=x y例1.曲线在点处的切线经过点,则.例2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.练习1. 已知函数ln ()xf x ax x=-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;考点四: 切线证明例1.已知函数()e (sin cos )x f x x x =+.(切线斜率)(Ⅱ)求证:曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线.练1.已知函数()3(0)ax f x e ax a =--≠.()e x f x =00(,())x f x (1,0)P 0=x ______(Ⅱ)当0a >时,设211()32ax g x e ax x a =--,求证:曲线()y g x =存在两条斜率为1-且不重合的切线.例2.已知函数32()f x x ax =-.(3a >)(切线个数) (Ⅱ)求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切.练2.已知函数321()3()3f x x x ax a =--∈R .(Ⅱ)在直线1x =上是否存在点P ,使得过点P 至少有两条直线与曲线()y f x =相切?若存在,求出P 点坐标;若不存在,说明理由.例3.已知函数()1e 1x x x f x --+=.(公切线问题)(Ⅲ)设0x 是()f x 的一个零点,证明曲线e x y =在点00(,e )x x 处的切线也是曲线ln y x =练3.已知函数()ln,()x==.f x xg x e(Ⅲ)判断曲线()f x与()g x是否存在公切线,若存在,说明有几条,若不存在,说明理由.【小试牛刀】1.若曲线的某一切线与直线垂直,则切线坐标为.2.已知函数()e cos x f x x x =-. (Ⅰ)求曲线在点处的切线方程; 23122y x x =+-134y x =-+______()y f x =(0,(0))f1.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;2.已知函数321()3f x ax x bx c =+++. 曲线()y f x =在点()0,(0)f 处的切线方程为1y x =+.(Ⅰ)求b ,c 的值;3. 已知函数().xe f x x= (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值;1.已知函数()ln sin(1)f x x a x =-⋅-,其中a ∈R . (Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值;2.设函数32()(1)f x x b x bx =-++.(切线斜率) (Ⅱ)当1b >时,函数()f x 与直线y x =-相切,求b 的值;3.已知函数()ln 1a f x x x =--.(Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;5.已知函数2()(0)f x ax bx a=->和()lng x x=的图象有公共点P,且在点P处的切线相同.(公切线问题)(Ⅰ)若点P的坐标为1(,1)e-,求,a b的值;(Ⅱ)已知a b=,求切点P的坐标.。
高三数学必修二导数知识点导数是高等数学中一个重要的概念,它在解析几何、微积分以及其他数学领域中都有广泛的运用。
在高三数学必修二中,导数知识点是非常重要的一部分,掌握导数的相关概念和性质对于解决数学问题和拓展数学思维有着重要的帮助。
一、导数的定义导数可以理解为函数在某一点处的变化率。
对于函数f(x),在点x处的导数用f'(x)表示,其定义为:f'(x) = lim┬(△x→0)〖(f(x+△x)-f(x))/△x〗二、导数的基本运算法则1.和与差的法则:设函数u(x)和v(x)都在点x处可导,则有:(u±v)'(x) = u'(x)±v'(x)2.常数因子法则:设c为常数,u(x)在点x处可导,则有:(cu(x))'(x) = cu'(x)3.乘积法则:设函数u(x)和v(x)都在点x处可导,则有:(uv)'(x) = u'(x)v(x) + u(x)v'(x)4.商的法则:设函数u(x)和v(x)都在点x处可导,且v(x)≠0,则有:(u/v)'(x) = (u'(x)v(x) - u(x)v'(x))/[v(x)]^25.复合函数求导法则(链式法则):设函数y=f(u),且u=g(x),其中f和g都可导,则有:dy/dx = dy/du * du/dx三、常见函数的导数1.常数函数的导数为0。
2.幂函数的导数:设函数y=x^n,其中n为常数,则有:dy/dx = nx^(n-1)3.指数函数的导数:设函数y=a^x,其中a为常数且a>0,a≠1,则有:dy/dx = a^x*ln(a)4.对数函数的导数:设函数y=logₐx,其中a为常数,a>0,a≠1,则有:dy/dx = 1/[x*ln(a)]5.三角函数的导数:sinx的导数为cosx;cosx的导数为-sinx;tanx的导数为sec^2(x)。
高三导数都学什么知识点导数是高中数学课程中的重要内容之一,它是微积分学的基础知识,具有广泛的应用领域。
在高三阶段,学生需要掌握并深入理解导数的各种概念、性质和应用。
本文将介绍高三阶段学习导数所需的主要知识点。
一、导数的定义导数的定义是理解导数概念的重要起点。
导数可以理解为函数在某一点处的瞬时变化率,它表示函数曲线在该点的切线斜率。
导数的定义主要分为几何定义和极限定义,学生需要熟练掌握两种定义的形式及其间的相互转换。
二、导数的基本性质1. 导数的可导性:学生需要掌握函数在某一点可导的条件,以及可导函数的充要条件。
2. 导数的四则运算法则:学生需要了解导数的四则运算规则,包括常数倍法则、和差法则、乘积法则和商法则,能够应用这些法则求解导数。
3. 复合函数的导数:学生需要掌握复合函数导数的链式法则,即复合函数的导数等于外函数的导数乘以内函数的导数。
4. 反函数的导数:学生需要了解反函数导数与原函数导数的关系,能够通过已知原函数导数求解反函数导数。
三、高阶导数与导数的应用1. 高阶导数:学生需要了解高阶导数的概念,即对函数的导数再求导数。
对于常见的函数,如多项式函数、三角函数和指数函数,学生需要能够计算其高阶导数。
2. 极值问题:学生需要掌握极值问题的解法,包括利用导数判定函数的极值和求解极值点的方法。
同时,还要学会应用拉格朗日乘数法解决含有约束条件的极值问题。
3. 函数的图像与导数:学生需要了解函数的导数与函数图像的关系,通过导数的符号表述,判断函数在不同区间的单调性、凹凸性以及极值情况。
4. 应用问题:学生需要学会将导数应用于实际问题的解决。
例如,利用导数求解最优化问题、求曲线的切线和法线、求解最大最小值等。
四、其他导数的知识点除了上述主要知识点外,高三阶段还需要学习和掌握导数的其他相关知识,如导数的应用于函数的增减性、导函数与导数的关系、不定积分与原函数等。
总结起来,高三导数的学习内容主要包括导数的定义、导数的基本性质、高阶导数与导数的应用以及其他导数的知识点。
高三数学教案范文:导数的概念及其运算教案标题:导数的概念及其运算教学目标:1. 理解导数的概念及其运算;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学重点:1. 导数的概念;2. 导数的计算方法。
教学难点:1. 导数的计算方法。
教学过程:一、导入(5分钟)1. 引入导数的概念:导数是微积分中的一个重要概念,表示函数在某一点的变化速率。
导数的概念和计算方法在解决实际问题中具有重要应用。
二、提出问题(5分钟)1. 通过实例引出导数的计算方法:假设有一段直线走进山谷,我们想知道在每个位置上,直线的斜率是多少?三、导数的定义(10分钟)1. 定义导数(以函数f(x)为例):函数f(x)在某一点x=a处的导数,记作f'(a),表示函数曲线在点(x=a, f(a))处的切线的斜率。
2. 根据导数的定义,讨论导数的几何意义:导数表示函数曲线在某一点上的切线的斜率,也反映了函数在该点的变化趋势。
四、导数的计算方法(15分钟)1. 导数的计算方法:使用导数的定义,通过极限过程求得导数。
2. 计算导数的示例:(1)求常数函数的导数;(2)求多项式函数的导数;(3)求分式函数的导数。
五、导数运算法则(15分钟)1. 导数运算法则:(1)和法则:(f(x)±g(x))' = f'(x)±g'(x);(2)积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x);(3)商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2;(4)复合函数的导数:若y=f(u),u=g(x),则y的导数为dy/dx = dy/du * du/dx。
六、应用导数解决实际问题(10分钟)1. 利用导数求函数的增减性和极值;2. 通过实例讲解应用导数解决实际问题的方法。
高三数学导数知识点导数是高中数学中的重要概念,也是高三数学学习的重点内容。
在数学中,导数是用来刻画函数在某一点上的变化率的工具,具有广泛的应用和意义。
本文将介绍高三数学中常见的导数知识点,以帮助同学们更好地理解和掌握该知识。
1. 导数的定义导数的定义是函数微分学的基本概念,是函数f(x)在某一点x=a处的变化率,记作f'(a)或dy/dx。
导数的定义可以用极限进行表达,即当自变量x的增量无限趋近于0时,函数的增量与自变量增量之比的极限。
2. 导数的几何意义导数具有几何意义,它可以衡量函数图像在某一点处的切线斜率。
当函数图像在某一点处的导数存在时,这个点就有切线,切线的斜率就是函数在该点处的导数值。
3. 导数的计算导数的计算有多种方法,常见的包括使用导函数公式、求导法则以及高阶导数的求法。
其中,导函数公式是一些常见函数导数的表达式,求导法则是对一些常见函数进行求导的方法总结。
4. 导数的基本性质导数具有一些基本性质,包括可导性与连续性的关系、导函数的四则运算规则、复合函数的导数等。
这些性质是导数计算和应用的基础,需要同学们熟练掌握。
5. 导数的应用导数在数学和实际问题中有广泛的应用。
其中,导数可以用来求函数的最值、判断函数的增减性、解微分方程等。
此外,导数还可以应用于物理、经济、生物等领域的问题求解中。
6. 高阶导数高阶导数是指对函数进行多次求导所得到的导数,例如二阶导数、三阶导数等。
高阶导数的概念和计算方法与一阶导数类似,可以进一步刻画函数的曲率和变化规律。
7. 隐函数求导隐函数是由方程所决定的函数,通常不能用显式函数的形式表示。
隐函数求导是指求解隐函数的导数,通过分析方程的关系和运用导数计算方法,可以求得隐函数的导数表达式。
8. 参数方程求导参数方程是一种用参数表示的曲线方程,也常见于数学中的问题。
求参数方程的导数需要将参数方程化为自变量x和因变量y的函数形式,然后应用导数的计算方法进行求导。
导数的概念与切线问题一.导数的定义与几何意义导数的定义函数)(x f y =在0x x =处的导数:称函数)(x f y =在0x x =处的瞬时变化率xx f x x f xy x x ∆-∆+=∆∆→∆→∆)()(lim lim 000为函数)(x f y =在0x x =处的导数,记作)(0'x f 或,即xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(lim lim )('00000函数)(x f 的导函数:称函数xx f x x f x f x ∆-∆+=→∆)()(lim )('0000为)(x f 的导函数.导数的几何意义函数)(x f 在0x x =处的导数)(0'x f 是曲线)(x f y =在点P()(,00x f x )处的切线的斜率k ,即k=)(0'x f 注:曲线)(x f y =在点处的切线是指P()(,00x f x )为切点斜率为k =)(0'x f 的切线,是唯一的一条切线;曲线)(x f y =过点P()(,00x f x )的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.二.导数的运算基本初等函数的导数公式①_____)(',)(==x f C x f ;②_____)(',)(==x f x x f α③_____)(',sin )(==x f x x f ;④_____)(',cos )(==x f x x f ⑤_____)(',)(==x f a x f x;⑥_____)(',)(==x f e x f x⑦_____)(',log )(==x f x f x a ;⑧_____)(',ln )(==x f x x f 导数的运算法则①_________)]'()([=±x g x f ;②_________)]'()([=⋅x g x f ③_________]')()([=x g x f ;④_________)]'([=x Cf ⑤复合函数的导数,复合函数))((x g f y =,设)(x g u =,则)'()'('x u u f y ⋅=导数的概念与公式应用例1已知4)2(',3)2(==f f ,则_______6)42()22(lim=-++-→xx f x f x 解:注意到0→x ,根据导数的定义,需构造8)2('2)('4)2('24)2()42(lim 42)2()22(lim 2)2()42(lim)2()22(lim )2()42()2()22(lim 6)42()22(lim000000==+-=-++----=-++--=-++--=-++-→→→→→→f x f f xf x f x f x f xf x f x f x f x f x f f x f x x f x f x x x x x x 练习11.已知函数f (x )=2ln(3x )+8x ,则xf x f x ∆-∆-→∆)1()21(lim的值为()A .10B .-10C .-20D .202.若c bx ax x f ++=24)(满足2)1('=f ,则=-)1('f ()A.-4B.-2C.2D.43.已知对任意实数x ,有)()(),()(x g x g x f x f =--=-,且x >0时,0)(',0)('>>x g x f ,则x<0时,()A.0)(',0)('>>x g x fB.0)(',0)('<>x g x fC.0)(',0)('><x g x f D.0)(',0)('<<x g x f 导数的基本运算例2已知x x x f x f 4)1(')(23-+=,则_______)(=x f 解:直接求导得42)1('3)('2-+=x x f x f ,令x =1,得2)1('3)1('-=f f 即有1)1('=f ,故xx x x f 43)(23-+=练习21.函数x x f 2sin )(=的导数_______)('=x f 2.函数)1cos()(2x x f +=的导数_______)('=x f 3.等比数列}{n a 中,8,281==a a 函数)).....()(()(821a x a x a x x x f ---=,则_______)0('=f4.函数)(x f 的导数为)('x f ,满足x x xf x f ln )('2)(+=,则_______)1('=f5.函数x x x f cos sin )(-=,且)(21)('x f x f =,则tan2x 的值是________6.函数142cos 3sin 3)(23-++=x x x x f θθ,]65,0[πθ∈,导数)1('-f 的取值范围是()A.]34,3[+ B.]6,3[ C.]634[,- D.3434[+- 导数的几何意义例3曲线12-=x xy 在点(1,1)处的切线方程为_________解:求导22)12(1)12(2)12('--=---=x x x x y ,当x =1时,1'-=y ,故切线方程为y=-x +2练习31.曲线xy 1=和y=x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是________2.设函数2)()(x x g x f +=,曲线)(x g y =在点))1(,1(g 处的切线方程为12+=x y ,则曲线)(x f y =在))1(,1(f 处的切线的方程为________3.已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程是()A.y =2x -1B.y=xC.y =3x -2D.y =-2x +34.若存在过点(1,0)的直线与曲线3x y =和94152-+=x ax y 都相切,则a 等于()A.-1或6425-B.-1或421 C.642547--或 D.747或-5.若曲线x ax x f ln )(3+=存在垂直于y 轴的切线,则实数a 的取值范围是_______6.曲线x y ln =上的点到直线y=x +3的最短距离为_________7.已知直线y =2x -2为曲线ax x x f -=3)(的一条切线,则a =__________切线问题的综合应用例4已知函数*)()(1N n xx x f n n∈-=+,曲线)(x f y =在点))2(,2(f 处的切线与y 轴的交点的纵坐标为n b ,则数列}{n b 的前n 项和为____解:求导得n n x n nxx f )1()('1+-=-,x =2时,112)2(2)1(2)2('--+-=⋅+-⋅=n n n n n n f ,n n n f 222)2(1-=-=+,切线方程为n n x n y 2)2(2)2(1--+-=-,令x =0得y=nnnn n y 2)1(22)2(+=-+=,nn n b 2)1(+=,前n 项和n n n n n 2)1(2....242322S 132⋅++⋅+⋅+⋅+⋅=-;14322)1(2....2423222S +⋅++⋅+⋅+⋅+⋅=n n n n n ,两式相减得12S +⋅=n n n 练习41.若曲线)0(ln ≠=a x a y 与曲线221x e y =在它们的公共点P(s ,t)处具有公共切线,则=ts_______2.已知曲线ax ey +=与2x y =恰好存在两条公切线,则实数a 的取值范围是_________3.已知函数2)(x x f =的图像在点),(200x x 处的切线为l ,若l 也与函数的图像)1,0(ln ∈=x x y ,相切,则0x 必满足()A.2100<<x B.1210<<x C.2220<<x D.320<<x4.点P 是曲线x x y ln 2-=上的任意一点,则点P 到直线2-=x y 的最小距离是__________5.若曲线)ln(a x y +=的一条切线为b ex y +=,其中a,b 为正实数,则2++b ea 的取值范围是()A.),22(+∞+ee B.),[+∞e C.),2[+∞ D.)2[e , 课后检测1.已知函数1)(3++=x ax x f 的图像在点))1(,1(f 处的切线过点(2,7),则实数a =_________2.若点P 在曲线32)(3+-=x x x f 上移动,设点P 处切线的倾斜角为α,则α的取值范围是__________3.若曲线1)(2++=x ax x f 在点))1(,1(f 处的切线的倾斜角为43π,则实数a =_________4.若满足c bx ax x f ++=24)(满足2)1('=f ,则)1('-f =()A.-4B.-2C.2D.45.设函数)(x f 在R 上可导,x f x x f 3)2(')(2-=,则)1(-f 与)1(f 的大小关系是_________6.已知函数)(x f y =的图像在点))1(,1(M f 处的切线方程是221+=x y ,则)1(')1(f f +=_______7.已知函数xxy ln =在点))(,(m f m 处的切互平行于x 轴,则实数m =_________8.函数x e x f xsin 12)(++=,其导函数记为)('x f ,则)2018(')2018(')2018()2018(--+-+f f f f 的值为_________参考答案练习11.C 2.B 3.B 练习21.sin2x 2.2x sin(1+x 2)3.284.15.43 6.227.1练习31.e 2 2.)22ln 2,(--∞ 3.D4.25.C课后检测1.12.),43[)2,0[πππ⋃ 3.-1 4.B5.)1()1(f f >- 6.37.e 8.2。