理论力学材料力学相关概念
- 格式:doc
- 大小:32.50 KB
- 文档页数:1
做一位学渣,我就说一下理论力学和材料力学的关系,给一些大一没有学好理论力学的学生,说一下两个的关系。
给那些没有学好理论力学的,说:没有学好理论力学,一样可以学好材料力学!简单的说一下:理论力学是研究刚体的受力和运动,而材料力学是研究材料的拉伸、压缩、剪切、弯曲的受力。
两个没有什么直接的基础关系(也就是讲材料力学不是加深理论力学的研究,不是建立在理论力学上,继续研究刚体受力运动的那一快),学习材料力学只是在理论力学学到的一些力学知识,当然这是基础的知识,或许是概念,或许是基本的方法和解题的方法。
所以大一没有学好理论力学的,不要以为自己的材料力学学不好。
下面我简单的说一下,材料力学学习注意的那些方面(因为目前学习是渣渣级别的,所以很多的都是废话,但是我觉着确实有用)。
1、态度认真,很多知识比较难理解,但是不要抱着爱理不理的态度去学习。
做好第一个环节:那就是认真听课。
很多的老师都是很好的,我的材料力学老师是一位博士,也出过国,看起来,他是学术型和实用型并有的人才。
记住:认真听,多发现老师的优点。
2、如果你学不好理论力学,那并不可怕,因为对材料力学最大的克星是高数。
如果你没有把高数中的微积分学好,那就努力看看吧,因为很多的知识和理论的推倒都会用到。
学好高数的微积分基本知识,这很关键!(不要像我,到了学习材料力学的时候,自己又补高数知识呢,提前做好准备)3、自己认真的理解一些定义,很多人认为理解定义是一件非常没有意思的事情,确实,我也同意这样,但是一旦你认真的理解其中的奥妙,认真的一个字一个字的斟酌的时候,就不一样了。
你会把定义理解更加深刻,把编书人的意向把握的恰到巧处,对你理解整个理论是非常有帮助的。
4、认真的做课后习题。
说白了,学那么多的知识,不就是为了用嘛,如果你整天看书,没意思了。
不用做太多的题,教科书上的例题和课后的习题就够了。
通过做题,你机会发现自己对那些定义理解的不够到位,对那些理论和公式理解的不是正确。
材料力学面试重点概念36题第一章绪论1.什么是强度、刚度、稳定性?答:(1)强度:抵抗破坏的能力(2)刚度:抵抗变形的能力(3)稳定性:细长压杆不失稳。
2、材料力学中的物性假设是?答:(1)连续性;物体内部的各物理量可用连续函数表示。
(2)均匀性:构件内各处的力学性能相同。
(3)各向同性:物体内各方向力学性能相同。
3.材料力学与理论力学的关系答:相同点:材力与理力:平衡问题,两者相同不同点:理论力学描述的是刚体,而材料力学描述的是变形体。
4.变形基本形式有答:拉伸或压缩、剪切、扭转、弯曲。
5.材料力学中涉及到的内力有哪些?通常用什么方法求解内力?答:(1)轴力,剪力,弯矩,扭矩。
(2)用截面法求解内力。
6,变形可分为?答:1)、弹性变形:解除外力后能完全消失的变形2)、塑性变形:解除外力后不能消失的永久变形7,什么是切应力互等定理答:受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小8,什么是纯剪切?答:单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。
9、材料力学中有哪些平面假设1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面上正应力为零。
3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
第二、三章轴向拉压应力表嘻10、轴向拉伸或压缩有什么受力特点和变形特点。
答:(1)受力特点:外力的合力作用线与杆的轴线重合。
(2)变形特点:沿轴向伸长或缩短。
11,什么叫强度条件?利用强度条件可以解决哪些形式的强度问题?要使杆件能正常工作,杆内(构件内)的最大工作应力不超过材料的许用应力,即≤[σ],称为强度条件。
σmax=F NmaxA利用强度条件可以解决:1)结构的强度校核;2)结构的截面尺寸设计;3)估算结构所能承受的最大外荷载。
材料力学概念整理材料力学是研究材料的力学性质和行为的一门学科。
它是工程力学的重要组成部分,与材料科学和工程密切相关。
材料力学主要研究材料的变形、破坏和疲劳等力学性质,揭示材料内部的微观结构与力学性能之间的关系,为材料设计和工程应用提供理论依据。
1.弹性力学弹性力学是材料力学的基础。
弹性力学研究材料在受力作用下的变形行为,弹性变形和弹性力学的关系遵循胡克定律。
弹性变形是指在外力作用下,材料会发生可逆的形变,当外力消除后,材料会恢复其初始形状。
弹性力学的经典理论主要包括拉压力学、剪切力学和折弯力学等。
2.塑性力学塑性力学研究材料在受力作用下的塑性变形行为。
与弹性变形不同,塑性变形一旦发生,材料无法恢复其初始形状。
塑性变形的机制主要包括滑移、位错移动和晶粒形变等。
塑性力学的经典理论主要包括单轴拉伸、多轴变形和硬化等。
3.破坏力学破坏力学研究材料在受力作用下的破坏行为。
材料的破坏可表现为断裂、裂纹扩展和脆性破坏等形式。
破坏力学的研究可通过断裂力学、裂纹力学和损伤力学等方法来解释材料的破坏行为,例如断裂力学中的强度理论和断裂韧性的表征。
4.疲劳力学疲劳力学研究材料在交变循环载荷下的疲劳行为。
疲劳是材料由于反复载荷引起的局部损伤积累而导致的失效现象。
疲劳失效通常可通过疲劳寿命和疲劳强度等指标来评价。
疲劳力学的研究主要包括S-N曲线、疲劳寿命预测和疲劳裂纹扩展等。
5.蠕变力学蠕变力学研究材料在长时间高温下的蠕变变形行为。
蠕变是材料在高温下由于内部应力的作用而发生的不可逆变形。
蠕变力学的研究可通过蠕变曲线、蠕变寿命和蠕变机制等方面来描述材料的蠕变特性。
6.微观力学微观力学是研究材料内部微观结构与力学性能之间关系的力学分支。
它涉及到材料的原子、晶格和位错等微观结构,并通过探索这些微观结构对材料强度、塑性和破坏等性能的影响,了解材料的力学行为的基本机制。
总结:材料力学作为一门重要的工程力学学科,涵盖了弹性、塑性、破坏、疲劳、蠕变和微观力学等诸多概念。
中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。
应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科)《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。
结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。
)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。
观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。
结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。
学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。
结构静力学结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。
材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。
本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。
一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。
一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。
法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。
1.2 应变应变是物体在受力作用下发生形变的度量。
一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。
线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。
二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。
即当外力停止作用时,材料能够完全恢复到初始状态。
弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。
2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。
即当外力停止作用时,材料只能部分恢复到初始状态。
塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。
三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。
在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。
根据胡克定律,应力等于弹性模量与应变的乘积。
四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。
杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。
4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。
剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。
五、破坏力学破坏力学是研究材料在外力作用下失效的学科。
理论力学和材料力学理论力学是研究物体在受力作用下的运动和变形规律的科学。
它是应用数学、物理学、力学等基础理论研究材料力学问题的一个基础学科,广泛应用于工程和科学领域。
材料力学是研究材料受力后的力学行为和性能变化的学科。
它包括静力学、动力学、弹性力学、塑性力学、断裂力学等分支,涵盖了材料的强度、刚度、韧性、疲劳、断裂等力学性能。
首先,理论力学为材料力学提供了基本的力学模型和方程。
例如,经典弹性理论可以描述线弹性材料的应力-应变关系,塑性力学可以描述金属等可塑性材料的应力-应变行为。
这些模型和方程提供了分析和计算材料力学问题所需的理论基础。
其次,理论力学为材料力学提供了力学测试和实验设计的指导。
基于理论力学的预测模型和计算方法,可以为实际力学测试和实验设计提供依据。
例如,在材料强度测试中,可以根据理论力学知识选择合适的试样尺寸和加载方式,以获得准确的材料强度参数。
另外,理论力学为材料力学的进一步发展提供了方向。
通过将力学模型与实际材料力学问题相结合,可以为材料力学研究提出新的理论和方法。
例如,基于微观力学的材料力学,通过研究材料内部的原子和分子行为,探索材料性能与结构之间的关系,为材料力学的发展提供了新的理论基础。
理论力学和材料力学的研究成果在工程和科学领域有着广泛的应用。
例如,材料强度计算在结构设计中被广泛使用,可以评估结构在受力下的安全性能。
材料疲劳寿命预测在机械工程中有着重要应用,可以指导产品设计和寿命评估。
材料断裂力学在材料加工和结构安全评估中发挥着关键作用。
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
材料力学和理论力学材料力学和理论力学是力学的两个重要分支,它们分别研究了材料的力学性能和力学规律。
材料力学主要研究材料的强度、韧性、蠕变、疲劳等力学性能,而理论力学则是研究物体的运动和力学规律。
本文将从材料力学和理论力学的基本概念、研究内容和应用领域等方面进行介绍。
首先,材料力学是研究材料的力学性能和力学规律的学科。
材料力学的研究对象主要包括金属材料、非金属材料、复合材料等。
它主要研究材料在外力作用下的强度、韧性、蠕变、疲劳、断裂等力学性能,以及材料的力学行为和力学规律。
通过对材料力学的研究,可以为材料的设计、选择和加工提供科学依据,同时也为材料的故障分析和失效预测提供理论支持。
其次,理论力学是研究物体的运动和力学规律的学科。
它主要包括静力学、动力学和弹性力学等内容。
静力学研究物体在静止或平衡状态下的力学性质,动力学研究物体在运动状态下的力学性质,而弹性力学研究物体在受力后的变形和恢复等力学性质。
理论力学的研究内容涵盖了广泛的领域,包括工程、物理、地质、天文等各个学科领域。
材料力学和理论力学在工程领域有着广泛的应用。
材料力学的研究成果可以用于材料的设计、选择和加工,从而提高工程结构的安全性和可靠性。
而理论力学的研究成果可以用于工程结构的设计和分析,为工程实践提供理论指导。
此外,材料力学和理论力学的研究成果也可以用于新材料的开发和应用,为工程技术的进步提供支持。
总之,材料力学和理论力学是力学的重要分支,它们分别研究了材料的力学性能和力学规律。
它们的研究成果对于工程领域具有重要的理论和实际意义,为工程结构的设计、分析和应用提供了重要的科学依据。
希望本文的介绍能够对材料力学和理论力学有所了解,为相关领域的学习和研究提供帮助。
材料力学的基本知识与基本原理材料力学是研究材料在外力作用下的力学性能和力学行为的学科。
它是材料科学与工程中的重要基础学科,对于材料的设计、制备和应用具有重要意义。
本文将介绍材料力学的基本知识与基本原理,帮助读者更好地理解材料的力学性质。
一、材料力学的基本概念材料力学是研究材料在外力作用下的力学行为的学科,它主要包括静力学、动力学和弹性力学等内容。
静力学研究材料在力的作用下的平衡状态,动力学研究材料在力的作用下的运动状态,而弹性力学则研究材料在外力作用下的弹性变形。
二、材料力学的基本原理1. 牛顿第一定律牛顿第一定律也被称为惯性定律,它指出物体在没有外力作用下将保持静止或匀速直线运动。
在材料力学中,这一定律可以解释材料在没有外力作用下的静力平衡状态。
2. 牛顿第二定律牛顿第二定律是描述物体受力后的运动状态的定律,它表明物体所受合力与物体的加速度成正比。
在材料力学中,牛顿第二定律可以用来描述材料在外力作用下的运动状态,从而研究材料的力学性能。
3. 弹性力学原理弹性力学原理是研究材料在外力作用下的弹性变形的原理。
它基于胡克定律,即应力与应变成正比。
应力是单位面积上的力,应变是单位长度上的变形量。
弹性力学原理可以用来计算材料在外力作用下的应力和应变,从而研究材料的弹性性能。
4. 应力与应变的关系应力与应变的关系是材料力学中的重要内容,它可以通过应力-应变曲线来描述。
应力-应变曲线是材料在外力作用下的应力和应变之间的关系曲线,它可以反映材料的力学性能和变形特性。
在应力-应变曲线中,通常有线弹性阶段、屈服阶段、塑性阶段和断裂阶段等不同的阶段。
5. 杨氏模量和泊松比杨氏模量和泊松比是材料力学中的两个重要参数。
杨氏模量是描述材料在拉伸或压缩时的刚度的参数,它越大表示材料越硬。
泊松比是描述材料在拉伸或压缩时的体积变化与形变的比值,它越小表示材料越不易变形。
三、材料力学的应用材料力学的研究成果广泛应用于材料科学与工程领域。
理论力学与材料力学的关系理论力学和材料力学是力学学科中两个重要的分支,它们在研究对象、研究方法和研究内容上存在着密切的联系和相互渗透。
本文将探讨理论力学与材料力学之间的关系,并从宏观和微观两个层面进行详细讨论。
一、宏观层面上的关系在宏观层面上,理论力学和材料力学的关系体现在对材料的宏观性能进行建模和分析方面。
首先,理论力学通过建立各种力学模型来描述和解释物体受力和变形的规律。
这些模型包括刚体力学、弹性力学、塑性力学等。
而材料力学则研究材料在外界力作用下的宏观力学行为,例如拉伸、压缩、弯曲等。
理论力学的模型可以为材料力学提供基础,并为材料力学中的问题提供解决方法。
例如,弹性力学模型可以用于描述材料的弹性变形行为,提供材料的刚性和强度等参数。
其次,材料力学通过实验和观测提供了大量的实际数据和现象,为理论力学提供验证和完善的基础。
在材料力学中,通过应力应变曲线、断裂行为等实验结果,可以对理论模型进行验证和修正。
理论力学通过分析和解释实验现象,可以指导和促进材料力学的发展。
因此,在宏观层面上,理论力学和材料力学是相互依存、相互推进的关系。
二、微观层面上的关系在微观层面上,理论力学和材料力学的关系体现在对材料内部微观结构和材料性能之间的联系进行研究和分析。
首先,理论力学可以通过统计力学、连续介质力学等方法,研究材料的微观结构与宏观性能之间的关系。
例如,在材料的弹性变形研究中,可以利用理论力学的方法对晶体的原子力学行为进行描述,从而揭示材料宏观弹性性能与晶体微观结构之间的关系。
其次,材料力学通过观察和研究材料的微观结构和组织,为理论力学提供了实例和案例。
材料力学通过电子显微镜、X射线衍射等手段揭示了材料内部的晶体结构、晶界、位错等微观特征,为理论力学提供了具体的研究对象和实验基础。
理论力学可以运用这些实例和案例,推导和建立适用于不同材料的力学模型。
总结而言,理论力学与材料力学在力学学科中相互渗透、相互依存。
分享材料力学基础知识理论力学分为静力学和动力学,顾名思义,这是打基础的纯理论;材料力学里面很多东西比较微观,经常会讲到到某个截面上某个微小部分的力学分析,基本上就是对某个杆件的某些截面和节点进行分析;结构力学主要涉及体系分析,分析中会忽略一些不必要的条件,比如杆件的轴向变形,而这部分在材料力学里面还专门论述过。
除此之外,还有流体力学和土力学,相对来说,流体力学用的不是很多,土力学经验公式太多了,在实践中非常依赖于经验和资料的积累。
今天我们来聊一聊材料力学,有不对的地方,欢迎大家指正啊!理论力学,研究刚体,研究力与运动的关系;材料力学,研究变形体,研究力与变形的关系。
材料力学(strength of materials) 主要研究对象是弹性体。
对于弹性体,除了平衡问题外,还将涉及到变形以及力和变形之间的关系。
此外,由于变形,在材料力学中还将涉及到弹性体的失效以及与失效有关的设计准则。
将材料力学理论和方法应用于工程,即可对杆类构件或零件进行常规的静力学设计,包括强度、刚度和稳定性设计。
材料力学的基本概念在工程静力学中,忽略了物体的变形,将所研究的对象抽象为刚体。
实际上,任何固体受力后其内部质点之间均将产生相对运动,使其初始位置发生改变,称之为位移(displacement),从而导致物体发生变形。
工程上,绝大多数物体的变形均被限制在弹性范围内,即当外加载荷消除后,物体的变形随之消失,这时的变形称为弹性变形(elastic deformation),相应的物体称为弹性体 (elastic body)。
材料力学所涉及的内容分属于两个学科:固体力学(solid mechanics),即研究物体在外力作用下的应力、变形和能量,统称为应力分析 (stress analysis)。
但是,材料力学又不同于固体力学,材料力学所研究的仅限于杆类物体,例如杆、轴、梁等。
材料科学(materials science) 中的材料的力学行为 (behaviors of materials),即研究材料在外力和温度作用下所表现出的力学性能(mechanical properties) 和失效 (failures) 行为。
理论力学理论力学是机械运动及物体间相互机械作用的一般规律的学科,也称经典力学。
是力学的一部分,也是大部分工程技术科学理论力学的基础。
其理论基础是牛顿运动定律,故又称牛顿力学。
20世纪初建立起来的量子力学和相对论,表明牛顿力学所表述的是相对论力学在物体速度远小于光速时的极限情况,也是量子力学在量子数为无限大时的极限情况。
对于速度远小于光速的宏观物体的运动,包括超音速喷气飞机及宇宙飞行器的运动,都可以用经典力学进行分析。
基本概况理论力学是研究物体的机械运动及物体间相互机械作用的一般规律的学科。
同时理论力学是一门理论性较强的技术基础课,随着科学技术的发展,工程专业中许多课程均以理论力学为基础。
理论力学研究示意图理论力学遵循正确的认识规律进行研究和发展。
人们通过观察生活和生产实践中的各种现象,进行多次的科学试验,经过分析、综合和归纳,总结出力学的最基本的理论规律。
[1]发展简史力学是最古老的科学之一,它是社会生产和科学实践长期发展的结果。
随着古代建筑技术的发展,简单机械的应用,静力学逐渐发展完善。
公元前5~前4世纪,在中国的《墨经》中已有关于水力学的叙述。
古希腊的数学家阿基米德(公元前3世纪)提出了杠杆平衡公式(限于平行力)及重心公式,奠定了静力学基础。
荷兰学者S.斯蒂文(16世纪)解决了非平行力情况下的杠杆问题,发现了力的平行四边形法则。
他还提出了著名的“黄金定则”,是虚位移原理的萌芽。
这一原理的现代提法是瑞士学者约翰第一·伯努利于1717年提出的。
动力学的科学基础以及整个力学的奠定时期在17世纪。
意大利物理学家伽利略创立了惯性定律,首次提出了加速度的概念。
他应用了运动的合成原理,与静力学中力的平行四边形法则相对应,并把力学建立在科学实验的基础上。
英国物理学家牛顿推广了力的概念,引入了质量的概念,总结出了机械运动的三定律(1687年),奠定了经典力学的基础。
他发现的万有引力定律,是天体力学的基础。
理论力学与材料力学的关系与应用理论力学和材料力学是力学学科中的两个重要分支,二者相互关联、相互渗透,并在科学研究和工程实践中发挥着重要作用。
本文将探讨理论力学和材料力学之间的关系,并分析其在实际应用中的具体应用情况。
一. 理论力学与材料力学的关系理论力学是力学学科的基础,旨在研究物质运动和相互作用的规律。
它以数学模型和方程为基础,通过分析和推导,揭示了物体运动和形变的本质规律。
理论力学的主要内容包括牛顿力学、拉格朗日力学和哈密顿力学等。
它提供了抽象的理论框架和精确的计算方法,为后续科学研究和工程设计提供了基础。
材料力学是力学学科的一个分支,旨在研究材料的性能、力学行为和材料内部结构之间的关系。
它通过实验和理论分析,探索材料的强度、刚度、蠕变等力学特性,研究材料在外力作用下的变形和破坏行为。
材料力学的主要内容包括静力学、弹性力学、塑性力学、断裂力学和疲劳力学等。
它提供了分析和预测材料性能的方法,为材料设计和制造提供了理论依据。
理论力学和材料力学紧密联系,相互促进,共同推动了技术和科学的发展。
理论力学为材料力学提供了基础和方法,而材料力学的实际问题又激发了理论力学的发展。
二者的关系可以从以下三个方面来理解:1. 基础理论理论力学提供了材料力学的基础理论和方法。
通过数学建模和分析,理论力学揭示了材料内部的力学行为,如力的平衡、运动方程、应力应变关系等。
材料力学在研究材料的时候,可以利用理论力学的方法对实际问题进行建模和分析,从而预测材料的性能和行为。
2. 实验验证材料力学的实验研究为理论力学提供了验证和实验数据。
材料力学通过实验手段,对材料的性能和行为进行测试和观测,并验证理论力学的模型和假设。
实验结果不仅可以验证理论力学的准确性,还可以为理论力学的进一步发展提供实验依据和参考。
3. 应用交叉理论力学和材料力学的交叉应用丰富了两个学科的研究内容。
在材料力学的实际问题中,理论力学的思想和方法被广泛应用。
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
结构力学科技名词定义中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。
应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科)《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
结构力学研究的容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。
结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。
)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。
观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。
结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。
学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。
结构静力学结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。
1、约束和约束(反)力
2、力的平移定理和力的可传性原理
3、力偶
4、合力矩定理
二、填空
1、静力学五大公理1〉、_____________2〉、__________________3〉、刚化公理4〉、__________________5〉、__________________________。
2、物体受到的力包括______和__________两类。
3、力偶的三要素是指___________,__________和______________。
4、约束反力总是在约束与______的接触处,其方向与约束反限制的___________相反。
5、常见的约束可归纳为如下四种基本类型:1〉、___________2〉、光滑接触面约束;3〉、______________4〉、_______________。
光滑面约束的约束反力的方向为过接触点处的_______,指向物体的_______。
6、平面一般力系向平面内一点简化为一个力R’和一个力偶M。
,这个力称原力系的_____,这个力偶称为原力系对简化中点O的_______。
平面一般力系平衡的充要条件为_____________________________。
7、写出平面汇交力系平衡方程:_______________________________.
平面力偶系的平平衡方程:_____________________________
8、如果所研究的平衡问题的未知量的数目________对应平衡方程数目,则所有未知量可由_____________全部求出,这类问题称_____问题。
9、由若干个物体通过约束按一定方式边接而成的系统称为________。
10、单位长度上所受的力称分布力在该处的________。
一、填空题
1、弹性变形体的基本假设是指1〉_____________假设2〉均匀性假设3〉__________假设
2、分析杆件内力的基本方法是_____________。
分三个步骤:1〉、_____________2〉、_____________3〉
_____________。
3、胡克定律的表达式为____________,E称为材料的__________。
4、杆件变形的基本形式有四种:轴向拉伸与压缩、___________、____________和_______________。
5、以扭转变形为主的杆件称为___________,其横截面形状分___________和____________。
确定扭
转T正负号用____________法则。
6、工程上把弯曲变形的构件称为梁,按支承形式可简化为1〉_____________梁,2〉____________
梁,3〉____________梁。
7、提高梁强度的主要措施:_________,___________,__________。
8、直径为d的圆形截面的惯性矩I Z=__________,极惯性矩I P=______________。
抗弯截面系数W Z
与搞扭截面系数W P的关系是______________。
内力与应力
1、平面弯曲
2、应力集中现象
3、强度
4、弹性变形
5、切应力互等定理
三、简答
1、轴向拉压时杆件受力和变形的特点;
2、常用的四种强度理论及强度条件;
3、低碳钢拉伸试验时分哪几个变形阶段?
4、何谓纯弯曲?写出纯弯曲时梁横截面上任一点弯曲正应力的计算公式。