熔焊原理-应力腐蚀裂纹
- 格式:pptx
- 大小:1.67 MB
- 文档页数:10
焊接裂纹产生的原因1. 引言焊接是将两个或多个金属材料通过熔化并冷却形成一体的加工方法。
然而,在焊接过程中,裂纹的产生可能会导致焊接接头的强度和密封性下降,从而影响产品的质量和安全性。
因此,了解焊接裂纹产生的原因对于提高焊接工艺和产品质量至关重要。
2. 焊接裂纹的分类焊接裂纹通常可以分为热裂纹、冷裂纹和应力腐蚀裂纹三类。
2.1 热裂纹热裂纹是在焊接过程中由于局部区域受到高温热循环引起的。
主要包括固相变热裂纹、液相变热裂纹和固液相变热裂纹。
2.2 冷裂纹冷裂纹是在焊缝凝固过程中由于温度梯度引起的。
主要包括基体冷裂纹、极低温冷裂纹和残余应力引起的冷裂纹。
2.3 应力腐蚀裂纹应力腐蚀裂纹是在焊接接头表面受到应力和介质共同作用下产生的。
主要包括氢致应力腐蚀裂纹和应力腐蚀疲劳裂纹。
3. 焊接裂纹产生的原因3.1 热裂纹产生的原因热裂纹主要是由于焊接过程中局部区域的温度变化引起的。
以下是几个常见的原因:•不合适的焊接参数:如焊接电流、电压和速度等参数选择不当,会导致焊缝局部区域温度过高或过低,从而引起热裂纹。
•不合理的预热和后热处理:预热温度选择不当或后热处理不到位,会使焊缝局部区域冷却速度不均匀,从而容易产生热裂纹。
•材料组织性能差异:如果焊接材料之间存在明显的化学成分差异或晶粒尺寸差异,会导致局部区域在焊接过程中受到不均匀的热影响,进而引起热裂纹的产生。
3.2 冷裂纹产生的原因冷裂纹主要是由于焊接过程中局部区域的温度梯度引起的。
以下是几个常见的原因:•焊接速度过快:焊接速度过快会导致焊缝凝固不完全,局部区域温度梯度大,从而容易产生冷裂纹。
•焊接材料选择不当:某些材料在焊接过程中容易形成低温脆性组织,一旦遇到高应力或剧烈变形,就会发生冷裂纹。
•焊接残余应力:焊接过程中产生的残余应力可能会导致局部区域发生塑性变形,进而引起冷裂纹。
3.3 应力腐蚀裂纹产生的原因应力腐蚀裂纹主要是由于焊接接头表面受到应力和介质共同作用下产生的。
1-5 应力腐蚀开裂概述因介质对材料的腐蚀而造成的结构破裂称腐蚀破裂。
金属材料的腐蚀有多种,按腐蚀机理可分为:化学腐蚀和电化学腐蚀;按腐蚀介质可分为:氧腐蚀、硫腐蚀、酸腐蚀、碱腐蚀等;按腐蚀部位和破坏现象,可分为:均匀腐蚀、点腐蚀、晶间腐蚀、应力腐蚀、腐蚀疲劳等。
金属材料在特定腐蚀环境下,受拉应力共同作用时所产生的延迟开裂现象,称为“应力腐蚀开裂”。
应力腐蚀开裂属于环境敏感断裂范畴。
并非任何环境都会产生应力腐蚀开裂,应力腐蚀是特殊的腐蚀现象和腐蚀过程,一定的金属材料只在某一特定的腐蚀环境中才会产生应力腐蚀开裂。
有拉伸应力存在,是应力腐蚀开裂的先决条件,焊接剩余拉应力有着极为重要的影响!在锅炉压力容器部件的腐蚀中,应力腐蚀及其造成的破裂是最常见、危害最大的一种!已成为工业(特别是石油化工)中越来越突出的问题(参见:化工设备损伤事例统计表),石油化工焊接结构的破坏事故中,约有半数为应力腐蚀开裂。
化工设备(低于300ºC)损伤事例统计表①包括腐蚀疲劳开裂,一般约占8% 。
因此,必须从结构设计及施工制造方面考虑洚低剩余拉应力,以提高结构的抗应力腐蚀开裂性能。
当然,还应从生产管理方面考虑降低介质的腐蚀作用。
本节主要是了解应力腐蚀开裂的特征,以防止、控制应力腐蚀开裂。
一. 应力腐蚀开裂特征:1. 应力腐蚀开裂条件:(1)合金----纯金属不发生应力腐蚀,但几乎所有的合金在特定的腐蚀环境中都会产生应力腐蚀裂纹。
极少量的合金或杂质都会使材料产生应力腐蚀。
各种工程实用材料几乎都有应力腐蚀敏感性。
(2)拉应力-----引起应力腐蚀的应力必须是拉应力,且应力可大可小,极低的应力水平也可能导致应力腐蚀破坏(不管拉应力多么小,只要能引起变形滑移,即可促使产生应力腐蚀开裂)。
应力既可由载荷引起,也可是焊接、装配或热处理引起的残余应力。
(3)腐蚀性介质----产生应力腐蚀的材料和腐蚀性介质之间有选择性和匹配关系,即当二者是某种特定组合时才会发生应力腐蚀。
第五章一、简述焊接裂纹的种类及其特征和产生的原因。
按产生裂纹的本质来分,焊接裂纹可分为五大类:1、热裂纹产生:在焊接时高温下产生。
特征:宏观看, 沿焊缝的轴向成纵向分布(连续或继续)也可看到缝横向裂纹,裂口均有较明显的氧化色彩,表面无光泽,微观看,沿晶粒边界(包括亚晶界)分布,属于沿晶断裂性质。
热裂纹又分为结晶裂纹、液化裂纹和多边化裂纹等三类。
2、再热裂纹产生:由于重新加热(热处理)过程中产生称再热裂纹—消除应力处理裂纹。
特征:多发生的低合金高强钢、珠光体耐热钢、奥氏体不锈钢和某些镍基合金的焊接热影响区粗晶部位。
再热裂纹的敏感温度,视钢种的不同约550~650℃。
3、冷裂纹产生:温度区间在+100℃~-75℃之间。
特征(断口):宏观断口具有发亮的金属光泽的脆性断裂特征。
微观看:晶间断裂,但也可穿晶(晶内)断裂,也可晶间和穿晶混合断裂。
冷裂纹又分为延迟裂纹、淬硬脆化裂纹(淬火裂纹)、低塑性脆化裂纹等三类。
4、层状撕裂产生:由于轧制母材内部存在有分层的夹杂物(特别是硫化物夹杂物)和焊接时产生的垂直轧制方向的应力,使热影响区附近地方产生呈“台阶”状的层状断裂并有穿晶发展。
特征:它属于低温开裂,一般低合金钢,撕裂的温度不超过400℃;常发生在厚壁结构的T型接头、十字接头和角接头,是一种难以修复的失效类型。
5、应力腐蚀裂纹产生:金属材料在某些特定介质和拉应力共同作用下所产生的延迟破裂现象,称应力腐蚀裂纹。
特征:形态如同枯干的树枝,从表面向深处发展,大多属于晶间断裂性质,少数也有穿晶断裂。
从端口来看,为典型的脆性断口。
二、焊接结晶裂纹的形成过程及条件是什么?1、过程:在焊缝金属凝固结晶的后期,低熔点共晶物被排挤在晶界,形成一种所谓的“液态薄膜”,在焊接拉应力作用下,就可能在这薄弱地带开裂,产生结晶裂纹。
2、条件:必要条件是拉伸应力。
焊缝在脆性温度区间所承受的拉伸应变大于焊缝金属所具有塑性,或者说焊缝金属在脆性温度区间内的塑性储备量()s e∆小于零时就会产生结晶裂纹。
焊接裂纹的分类焊接裂纹是指在焊接过程中或焊接后,由于内部应力、冷却速度等因素的影响,导致焊接接头内部或表面产生的裂纹。
根据裂纹的产生原因和裂纹形态不同,可以将焊接裂纹分为不同的类型。
下面就几种常见的焊接裂纹进行分类和介绍。
1. 热裂纹热裂纹是由于焊缝热影响区的结构组织和化学成分发生变化而引起的。
热裂纹通常在焊接过程中或焊接后的短时间内出现。
根据裂纹出现的位置和形态,热裂纹可以分为几种不同的类型:(1) 固相转变裂纹:当金属处于固相转变的温度范围内,由于组织的变化和内部应力的影响,容易产生热裂纹。
这种裂纹通常直接出现在焊缝和热影响区的边缘。
(2) 晶粒边界裂纹:在焊接过程中,由于焊接区和热影响区的组织结构发生变化,晶粒边界处的脆性增大,容易形成裂纹。
这种裂纹通常呈线状,沿着晶粒边界方向延伸。
(3) 退火裂纹:由于焊接过程中产生的应力或变形,在焊接后的退火过程中,容易引起焊接接头的内部产生裂纹。
这种裂纹通常在焊缝和热影响区内部产生,对焊接接头的强度和韧性产生负面影响。
2. 冷裂纹冷裂纹是由于焊接后在室温条件下产生的裂纹。
冷裂纹通常是由于焊接接头内部的残余应力和变形引起的。
根据裂纹形态和位置的不同,冷裂纹可以分为以下几种类型:(1) 焊接残余应力裂纹:由于焊接接头的热变形以及冷却过程中产生的残余应力,容易导致焊接接头内部产生裂纹。
这种裂纹通常沿着焊缝或热影响区的方向延伸,严重影响焊接接头的力学性能。
(2) 氢致裂纹:在焊接过程中,如果焊接材料和焊接环境中存在水、油、脂肪等含氢物质,容易引起焊接接头内部产生氢致裂纹。
这种裂纹通常呈细小的网状分布,对焊接接头的韧性和可靠性产生严重影响。
3.应力腐蚀裂纹应力腐蚀裂纹是由于金属在受到应力和腐蚀介质的共同作用下产生的裂纹。
这种裂纹通常在金属制品长期使用过程中出现,对金属制品的可靠性和使用寿命产生严重影响。
根据裂纹产生的条件和形态不同,应力腐蚀裂纹可以分为以下几种类型:(1) 晶间腐蚀裂纹:当金属在受到腐蚀介质和应力的作用下,容易发生晶间腐蚀和产生裂纹。
焊接冶金学基本原理绪论1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。
2)焊接、钎焊和粘焊本质上的区别:焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒;钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的机械结合;粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。
3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。
压力焊和钎焊热源:电阻热、摩擦热、高频感应热。
4)焊接加热区:可分为活性斑点区和加热斑点区5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。
表示方法:等温线或者等温面。
特点:焊接时焊件上各点的温度在每一瞬时都在有规律的变化。
影响因素:(1)热源的性质;(2)焊接线能量;(3)被焊金属的热物理性质;<热导率,比热容容积比热容,热扩散率,热焓,表面散热系数>;(4)焊件的板厚和形状。
6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊。
,件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。
8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。
9)焊接热传递的三种形式:传导、对流和辐射。
由热源传热给焊件的热量以辐射和对流为主,而母材和焊丝获得热能后热的传播以传导为主。
10)焊接线能量:热源功率q与焊接速度v的比值。
热输入:在单位时间内,在单位长度上输入的热能。
第一章焊接化学冶金1)平均熔化速度:单位时间内熔化焊芯质量或长度。
平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。
(真正反应焊接质量的指标)损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。
有时候我发现焊道会有裂纹,这是怎么产生的,如何解决这问题?裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。
A、.裂纹的分类根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。
(2)微观裂纹:在显微镜下才能发现。
(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。
从产生温度上看,裂纹分为两类:(1)热裂纹:产生于Ac3线附近的裂纹。
一般是焊接完毕即出现,又称结晶裂纹。
这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。
(2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。
按裂纹产生的原因分,又可把裂纹分为:(1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。
再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。
(2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。
在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。
(3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。
除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。
B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。
世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。
C、.热裂纹(结晶裂纹)(1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓"液态薄膜",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。
焊接产生裂纹的原因焊接是通过加热金属材料使其熔化,然后冷却使其固化,以实现金属材料的连接。
然而,在焊接过程中,由于温度变化和热应力的作用,容易引起焊接件出现裂纹。
裂纹的产生主要是由以下几个原因引起的:1. 冷裂:冷裂是焊接过程中最常见的一种裂纹。
在焊接件的冷却过程中,由于焊缝和母材之间的冷却速度不同,会产生应力差,从而引起裂纹的产生。
冷裂主要有两种类型,即热裂和冷滴。
- 热裂:热裂主要是由于焊接区域的温度升高而引起的。
当焊接区域的温度升高到一定程度时,会引起焊件的变形和应力集中,从而导致裂纹的产生。
热裂一般发生在高碳钢、不锈钢等易于形成脆性组织的金属材料上。
- 冷滴:冷滴是焊接过程中由于焊料凝固过程中的收缩而引起的裂纹。
焊料在凝固过程中发生收缩,由于焊件的约束作用,会导致焊缝区域的应力集中,从而引起裂纹的产生。
2. 热裂:热裂是在焊接过程中,由于焊接区域的温度升高,引起金属材料发生相变而引起的裂纹。
一般来说,热裂主要发生在高碳钢、不锈钢、铜合金和铸铁等金属材料上。
3. 应力腐蚀裂纹:应力腐蚀裂纹是由于金属材料在有外界应力和腐蚀介质的作用下,产生了腐蚀损伤而引起的裂纹。
焊接过程中,焊件可能会受到外界应力和腐蚀介质的共同作用,从而引起应力腐蚀裂纹的产生。
应力腐蚀裂纹对焊接件的结构安全性造成很大威胁,需要进行预防和控制。
对于裂纹的产生,我们可以通过以下方法进行预防和控制:1. 选择合适的焊接材料:在进行焊接时,应根据具体的焊接工艺和要求,选择合适的焊接材料。
避免使用容易产生裂纹的高碳钢、不锈钢等材料,同时注意材料的成分和组织结构对裂纹的影响。
2. 控制焊接参数:合理控制焊接的温度、焊接速度、焊接电流等参数,避免焊接过程中的温度变化和应力集中。
合理的焊接参数对减少焊接裂纹的产生起到重要作用。
3. 提高焊接工艺:采用先进的焊接技术和工艺,如预热、热处理、加强焊接件的支撑等,可以减小焊接裂纹的产生。
4. 进行焊缝设计:合理设计焊缝结构,避免出现应力集中的地方,减少焊接裂纹的产生。
压力管道焊接接头裂纹原因分析摘要:压力管道的焊接质量直接关系到管线的安全运行。
裂纹是压力管道最容易产生同时也是最具危害性的缺陷,焊缝易产生延迟裂纹和再热裂纹,裂纹一般在靠近熔合线附近的焊缝中产生,裂纹的深度与接头成形状况直接相关,成形越差,裂纹深度越大,为穿晶断裂形式裂纹。
在返修补焊的焊接接头焊趾处过渡圆滑,未发现此处有裂纹产生。
因此在实际的设计与施工过程中要特别关注。
在具体项目的设计过程中,可以将一些重要的焊接工艺要求写入设计说明;在现场施工焊接时,应严格遵照设计说明、焊接工艺评定报告和焊接作业指导书进行,确保焊接质量,保证管道的安全稳定运行。
关键词:压力管道;焊接接头;裂纹原因引言压力管道的应用极为广泛,和我们的日常生活也日益息息相关。
采取有效的预防措施和检验手段来控制压力管道裂纹的发生,减少因为裂纹而产生的失效形式,确保压力管道安全的运行具有重要的意义。
1压力管道焊接接头裂纹原因分析压力管道焊接应根据焊接工艺评定报告和焊接工艺指导书进行。
施焊单位要对施工现场的焊接环境进行严格的管理,当环境温度过低、焊件表面潮湿,或者在下雨、下雪、刮风期间,如对焊件无适当保护措施时,不应进行焊接作业,以免影响焊接质量。
1.1应力腐蚀裂纹应力腐蚀裂纹主要是管道在应力与腐蚀环境共同作用下产生的裂纹。
常见的应力腐蚀裂纹有碳钢在碱液中发生开裂,奥氏体不锈钢在氯离子溶液中开裂以及金属在湿硫化氢溶液中腐蚀开裂。
应力的来源可以是外加应力,也可以是在经过焊接、冷加工后管道内部的残余应力。
残余应力可能由于内部结构改变引起体积改变造成的,也有可能是升温后降温不均匀造成的。
应力腐蚀破裂通常有一个孕育周期,有经过几天就开裂,也有可能数年后才开裂。
应力腐蚀裂纹通常发生在焊缝的焊波处、引弧坑、焊缝的咬边以及孔蚀的凹坑等应力集中处,因此,裂纹发生时通常不止有一条裂纹,而常常是多源的裂纹。
应力腐蚀裂纹的形态主要是不断扩展的裂纹,具有分叉、多源和宏观走向与主应力大致垂直等特征。
金属焊接中的应力腐蚀开裂分析与预防在金属焊接中,应力腐蚀开裂是一个普遍存在的问题。
这种现象指的是在受到外部应力作用下,金属焊接接头出现应力腐蚀破裂的情况。
它会严重影响金属焊接接头的性能和使用寿命,因此对于应力腐蚀开裂的分析与预防非常关键。
本文将围绕着金属焊接中的应力腐蚀开裂,从分析其原因、影响因素和预防措施等方面进行探讨。
一、应力腐蚀开裂的原因应力腐蚀开裂的形成是由于金属焊接接头同时受到应力和腐蚀介质的作用,从而引发了金属腐蚀破裂。
其原因主要有以下几个方面:1.应力源:金属焊接接头中存在各种应力源,如冷却过程中的收缩应力、加热过程中的热应力、装配过程中的焊接残余应力等。
这些应力源的存在使得金属接头产生了内应力,为应力腐蚀开裂提供了条件。
2.腐蚀介质:金属焊接接头在使用环境中遭受到腐蚀介质的侵蚀,如酸性、碱性或盐性介质等。
这些腐蚀介质与金属焊接接头之间的相互作用会导致金属发生腐蚀,从而降低其力学性能和耐蚀性。
3.材料选择:金属材料的选择也会对应力腐蚀开裂起到重要影响。
一些材料本身就具有较高的应力腐蚀敏感性,容易发生腐蚀破裂。
此外,焊接接头处于退火状态下时,晶界与晶界附近区域的化学成分和晶界能对应力腐蚀开裂也具有影响。
二、应力腐蚀开裂的影响因素除了上述原因外,还有一些其他因素会进一步影响应力腐蚀开裂的产生与发展。
这些因素包括:1.温度:温度是影响应力腐蚀开裂的重要因素之一。
在一定温度范围内,金属的活化能和扩散速率会显著增加,从而加剧金属的腐蚀破裂。
2.应力:外部应力对金属焊接接头的应力腐蚀开裂有着直接影响。
当外部应力超过金属材料的抗应力裂纹扩展能力时,应力腐蚀开裂就会产生。
3.介质浓度:腐蚀介质的浓度对应力腐蚀开裂的发生和发展也起到重要作用。
高浓度的腐蚀介质会加速腐蚀破裂的速度。
三、应力腐蚀开裂的预防措施为了有效预防金属焊接中的应力腐蚀开裂,我们可以采用以下方法:1.材料选择:选择抗应力腐蚀开裂性能良好的金属材料,如高强度合金钢、不锈钢等。
焊接冶金原理课件:焊接裂纹 (一)焊接冶金原理课件:焊接裂纹焊接是一种常见的连接方法,它通过熔化并再次凝固来实现一些金属部件的连接。
焊接中存在许多问题,其中之一就是焊接裂纹。
焊接裂纹是指焊接过程中或焊后由于各种原因导致的金属裂纹。
本文将对焊接裂纹的形成原理、预防方法和修补方法进行介绍。
一、焊接裂纹的形成原理1.热裂纹:热裂纹是在热作用下形成的,主要由于金属在加热和冷却过程中产生的热应力和压应力不断变化,使得金属发生了裂纹的问题。
2.冷裂纹:冷裂纹是由于钢材或钢板塑性后强度减小,在一些应变状态下容易发生的裂纹。
3.应力腐蚀裂纹:应力腐蚀裂纹是金属在介质的影响下结合高应力的作用下,产生的化学反应和电化学过程中,出现的腐蚀、氢脆和应力相结合的裂纹。
二、焊接裂纹的预防方法1.合理焊接工艺:合理的焊接工艺可以减少焊接裂纹的发生,例如减小焊接热量、加大间隙、控制焊接速度、选用适当的电流电压和极性等。
2.选用合适的焊接材料:选用适合的焊接材料可以有效降低焊接裂纹的产生,焊接材料的选择要根据基体材料和工作环境进行,在选择焊接材料时,要注意焊接后的连续性和完整性。
3.进行预热和后热处理:进行预热和后热处理,可以降低材料的收缩应力、热应力,减少焊接裂纹的发生。
三、修补焊接裂纹的方法1.热处理修补:用热处理的方法来修补焊接裂纹,主要是对焊接部位进行局部加热,使出现的裂纹处得到熔化、结合,从而达到修补的效果。
2.机械修补:通过机械的方法将焊接裂纹处切割或者打磨掉,然后重新进行焊接或补焊即可。
3.焊接修补:选择合适的焊接方法,进行焊接修补,让焊接材料与原来的金属材料结合在一起,从而达到焊接裂纹的修补效果。
综上所述,焊接裂纹是焊接过程中比较常见的问题,产生原因多种多样。
为了避免焊接裂纹的产生,应采取正确的焊接工艺、选用合适的焊接材料、进行适当的热处理和预防应力腐蚀等方法。
如果出现了焊接裂纹,可以采用热处理、机械修补和焊接修补等方法进行修复。
焊接裂纹形成的原因及防止措施焊接裂纹是在焊接应力及其它致脆因素共同作用下,材料的原子结合遭到破坏,形成新界面而产生的缝隙。
它具有尖锐的缺口和长宽比大的特征,易引起较高的应力集中,而且有延伸和扩展的趋势,所以,也是最危险的焊接缺陷。
裂纹常有热裂纹、冷裂纹以及再热裂纹(消除应力处理裂纹)。
一、热裂纹形成及防止常见的热裂纹有两种:结晶裂纹、液化裂纹。
结晶裂纹是焊接熔池初次结晶过程中形成的裂纹,是焊缝金属沿初次结晶晶界的开裂。
而液化裂纹是紧靠熔合线的母材晶界被局部重熔,在收缩力的作用下而产生的裂纹。
结晶裂纹产生的原因:焊接时,熔池在电弧热的作用下,被加热到相当高的温度,而受热膨胀,而母材却不能自由收缩,于是高温的熔池受到一定的压力。
当熔池开始冷却时,就以半融化的母材为晶核开始处结晶。
最先结晶的是纯度较高的的合金。
最后凝固的是低熔点共晶体。
低熔点共晶物的多少取决于焊缝金属中C、S、L等元素的含量。
当含量较少时,不足以在初生晶粒间形成连续的液态膜。
焊接熔池的冷却速度极快,低熔点共晶物几乎与初析相同时完成结晶。
因此连续冷却的金属熔池虽然受到收缩应力的作用也不至于产生晶间裂纹。
当低熔点共晶体量较多时,情况就不同了,初次结晶的偏析程度较大,并在初次结晶的晶体之间形成晶间液膜,当熔池冷却收缩时,被液膜分割的晶体边界就会被拉开就形成了裂纹。
这是主要原因,另有两个其它原因:一是焊缝金属所经受的应变增加速度大于低熔点共晶物凝固的速度;另外,初生晶体的张大方向和残留低熔共晶体的相对位置的影响。
可见,关键的措施就是:1、应严格控制焊缝金属中C、S、P和其它易形成低熔点共晶体的合金成分的含量,这些元素和杂质的含量越低,焊缝金属的抗裂纹能力越大。
当焊缝中C>0.15%,S>0.04%就可能有裂纹出现,如果母材中含碳量很高,就要控制焊接材料的成分,以使混合后的碳含量降下来。
2、改变焊缝横截面的形状也就改变了焊接熔池的结晶方向,使之有利于将低熔点共晶体推向不易产生裂纹的位置。