空气状态参数的计算方法
- 格式:xls
- 大小:64.50 KB
- 文档页数:4
标况和工况之间的不同是什么呢?如何计算气体状态?
标况和工况之间的不同是什么呢?如何计算气体状态?标况流量与工况流量又该如何转换呢?今天,小编就来帮你轻松搞定标况和工况的相关知识。
标况和工况的区别
工况:实际工作状态下的流量,单位:m³/h
标况:温度20℃、一个大气压(101.325kPa)下的流量,单位:Nm³/h
注意:通常所指的标况是温度为0℃(273.15开尔文)和压强为101.325千帕(1标准大气压,760毫米汞柱)的情况,区别于我国工业气体标况的规定。
两种状态下的单位都是一样的,只是对应的流量不同而已。
另外不同国家所指的标态也不一样。
计算方程
根据理想气体状态方程
其方程为pV=nRT。
这个方程有4个变量:p是指理想气体的压强,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数。
PV/T=nR为常数,
所以P1×V1/T1=P2×V2/T2
设标况下体积流量为V0,
温度T0=273+20=293k,压力P0=101.325Kpa=0.101325Mpa,
工况下体积流量为V,温度T(摄氏度),压力P(表压力,Mpa),
忽略压缩因子的变化有V*(P+0.101325)/(T+273)=V0*P0/T0
注意:一般天然气都是中低压输送,低压入户,都是带有压力的,属于工况。
天然气的计量按标准状态(严格的说是准标准状态,我们叫它常态)来计量的,一般贸易。
气体的理想气体状态方程及应用在我们的日常生活和科学研究中,气体无处不在。
从我们呼吸的空气,到工业生产中的各种气体,了解气体的性质和行为对于解决许多实际问题至关重要。
而理想气体状态方程就是描述气体行为的一个重要工具。
理想气体状态方程可以表示为:$PV = nRT$。
这里的$P$表示气体的压强,$V$表示气体的体积,$n$表示气体的物质的量,$T$表示气体的热力学温度,而$R$是一个常数,被称为理想气体常数。
让我们先来理解一下这个方程中的各个量。
压强$P$,简单来说,就是气体作用在容器壁上的压力强度。
想象一下,一个充满气的气球,气球内部的气体对气球壁施加的压力就是压强的体现。
体积$V$就很好理解啦,就是气体所占据的空间大小。
物质的量$n$,它反映了气体分子的数量。
温度$T$,则代表了气体的冷热程度。
那么,理想气体状态方程是怎么来的呢?其实,它是在大量实验观察和理论推导的基础上得出的。
科学家们通过研究各种气体在不同条件下的行为,发现它们遵循一定的规律,最终总结出了这个方程。
这个方程有什么用呢?它的应用可广泛啦!在化学领域,我们常常需要知道化学反应中气体的变化情况。
比如,在合成氨的反应中,通过理想气体状态方程,我们可以计算出反应前后气体的体积、压强等参数的变化,从而优化反应条件,提高生产效率。
在物理学中,理想气体状态方程对于研究热学现象也非常重要。
比如,当我们研究气体的膨胀和压缩过程时,就可以利用这个方程来分析压强、体积和温度之间的关系。
在气象学中,它也能派上用场。
大气中的气体成分复杂,但在一定程度上可以近似看作理想气体。
通过测量大气的压强、温度等参数,结合理想气体状态方程,我们可以对天气变化进行预测和分析。
再来说说工程领域。
在汽车发动机的设计中,了解燃料燃烧产生的气体在气缸内的状态变化是至关重要的。
理想气体状态方程可以帮助工程师计算出气缸内的压强和体积变化,从而优化发动机的性能。
在航空航天领域,飞机的飞行高度不同,大气的压强和温度也会发生变化。
3.7空调房间送风状态的确定及送风量的计算在已知空调区冷(热)、湿负荷的基础上,确定消除室内余热、余湿,维持室内所要求的空气参数所需的送风状态及送风量,是选择空气处理设备的重要依据。
3.7.1空调房间送风状态的变化过程在空调设计中,经常采用空气质量平衡和能量守恒定律来进行空调系统的一些能量问题分析 图3-10表示一个空调房间的热湿平衡示意图,房间余热量(即房间冷负荷)为Q (kW),房间余湿量(即房间湿负荷)为W (kg /s),送入m q (kg/s)的空气,吸收室内余热余湿后,其状态由O(h O ,d O )变为室内空气状态N(h N ,d N ),然后排出室外。
图3-10 空调房间的热湿平衡 当系统达到平衡后,总热量、湿量均达到了平衡,即总热量平衡 ⎪⎭⎪⎬⎫-==+O N m N m O m h h Q q h q Q h q (3-43) 湿量平衡 ⎪⎭⎪⎬⎫-==+O N m N m O m d d W q d q W d q (3-44)式中 m q ——送入房间的风量(kg/s ); Q ——余热量(kW );W ——余湿量(kg/s );O O d h ,——送风状态空气的比焓值(kJ/ kg )和含湿量(kg/kg );N N d h ,——室内空气比焓值(kJ/ kg )和含湿量(kg/kg )。
同理,可利用空调区的显热冷负荷和送风温差来确定送风量。
)(O N p m t t C Qq -= (3-45)式中 Q ——显热冷负荷(kW );C p ——空气的定压比热容[ 1.01 kJ/ (kg ⋅K)]。
上述公式均可用于确定消除室内负荷应送入室内的风量,即送风量的计算公式。
图3-11 为送入室内的空气(送风)吸收热、湿负荷的状态变化过程在h-d 图上的表示。
图中N 为室内状态点,O 为送风状态点。
热湿比或变化过程的角系数为sR O N d d h h W Q --==)(ε (3-46) 由上可得,送风状态O 在余热Q ,余湿W 作用下,在h-d 图上沿着过室内状态点N 点且/Q W ε=的过程线变化到N 点。
第一节 矿内空气的主要物理参数一、密度单位体积空气所具有的质量称为空气的密度,用符号ρ表示。
空气可以看作是均质气体,故:Vm =ρ,kg/m 3 (1-2-1) 式中 m ——空气的质量,kg ;V ——空气的体积,m 3 ;ρ——空气的密度,kg /m 3;一般地说,当空气的温度和压力改变时,其体积会发生变化。
所以空气的密度是随温度、压力而变化的,从而可以得出空气的密度是空间点坐标和时间的函数。
如在大气压P 0为101325 Pa 、气温为0 ℃(273.15 K)时,干空气的密度ρ0为1.293 kg /m3。
湿空气的密度是l m3空气中所含干空气质量和水蒸汽质量之和:v d ρρρ+= (1-2-2) 式中 ρd —1m 3空气中干空气的质量,kg ;ρv —1m 3空气中水蒸汽的质量,kg ;由气体状态方程和道尔顿分压定律可以得出湿空气的密度计算公式:⎪⎭⎫ ⎝⎛-+=P P t P s ϕρ378.01273003484.0 (1-2-3) 式中 P —空气的压力,Pa ;t —空气的温度,℃ ; P s —温度t 时饱和水蒸汽的分压,Pa ;φ—相对湿度,用小数表示。
二、比容空气的比容是指单位质量空气所占有的体积,用符号v (m 3/kg)表示,比容和密度互为倒数,它们是一个状态参数的两种表达方式。
则:ρ1==m V v ,m 3/kg (1-2-4) 在矿井通风中,空气流经复杂的通风网络时,其温度和压力将会发生一系列的变化,这些变化都将引起空气密度的变化,在不同的矿井这种变化的规律是不同的。
在实际应用中,应考虑什么情况下可以忽略密度的这种变化,而在什么条件下又是不可忽略的。
三、粘性当流体层间发生相对运动时,在流体内部两个流体层的接触面上,便产生粘性阻力(内摩擦力)以便阻止相对运动,流体具有的这一性质,称作流体的粘性。
例如,空气在管道内以速度u 作层流流动时,管壁附近的流速较小,向管道轴线方向流速逐渐增大,如同把管内的空气分成若干薄层,图1-2-1所示。
采暖通风与空气调节设计规范室内外计算参数室内空气计算参数1、冬季室内计算温度。
l)根据国内外有关卫生部门的研究结果,当人体衣着适宜、保暖量充分且处于安静状态时,室内温度20℃比较舒适,18℃无冷感,15℃是产生明显冷感的温度界限。
本着提高生活质量,满足室温可调的要求,并按照国家现行标准《室内空气质量标准》(GB/T18883)要求,把民用建筑主要房间的室内温度范围定在16~24℃。
2)工业建筑工作地点的温度,其下限是根据现行国家标准《工业企业设计卫生标准)(GBZ1)制定的。
轻作业时,空气温度15℃尚无明显冷感;中作业和重作业时,空气温度分别不低于16℃和14℃即可基本满足要求。
关于劳动强度分级标准mdash;mdash;轻、中、重、过重作业,是按现行国家标准《工业企业设计卫生标准》(GBZ1)执行的,而卫生部门还制定了《体力劳动强度分级指标》(共分四级),鉴于这两种分级方法对制定相应的室内卫生标准并无实质差别,本条及本规范其他有关条文中仍沿用原来的提法。
2、采暖建筑物冬季室内风速。
将原条文中生活地带或作业地带统称为活动区,以下同。
将原条文中集中采暖改为采暖。
现今采暖方式的多样化,采暖热源亦多种多样,为使室内获得热量并保持一定温度,以达到适宜的生活或工作条件,不一定必须设置集中采暖。
本条对冬季室内最大允许风速的规定,主要是针对设置热风采暖的建筑而言的,目的是为了防止人体产生直接吹风感,影响舒适性。
3、空气调节室内计算参数。
l)舒适性空气调节的室内参数,是基于人体对周围环境温度,相对湿度和风速的舒适性要求,并结合我国经济情况和人们的生活习惯及衣着情况等因素,参照国家现行标准《室内空气质量标准》(GB/T18883)等资料制定。
2)对于设置工艺性空气调节的工业建筑,其室内参数应根据工艺要求,并考虑必耍的卫生条件确定。
在可能的条件下,应尽量提高夏季室内温度基数,以节省建设投资和运行费用。
另外,室温基数过低(如20℃),由于夏季室内外温差太大,工作人员普遍感到不舒适。
1. 如图所示的汽缸,充以空气,汽缸载面积A =100cm2,活塞距底面高度H =10cm ,活塞及重物的总质量G1=195kg 。
当地大气压Pb =102kpa ,环境温度to =27摄氏度,当汽缸内的气体与外界处于热平衡时,把活塞重物拿去100kg ,活塞会突然上升,最后重新达到热力平衡。
假定活塞与汽缸之间无摩擦,气体可以通过汽缸壁与外界充分换热,空气为理想气体,试求活塞上升的距离。
解:空气初始的状态参数:311141959.810210293.110010b g b m g p p p p KPa A -⨯=+=+=⨯+=⨯ 4233110010101010V AH m ---==⨯⨯⨯=拿掉重物后空气的终止状态参数:()312241951009.810210192.310010out b g b m g p p p p p KPa A --⨯==+=+=⨯+=⨯ 由pV mRT =及12T T =,得:333312132293.11010 1.52410192.310p V V m p --⨯==⨯=⨯⨯ ( 则活塞上升距离:()()()3322141.5241010 5.241010010V V H m A ----⨯--∆===⨯⨯2. 3kg 空气,P 1=1Mpa ,T 1=900K ,定熵膨胀到P 2=0.1MPa 。
设比热容为定值,绝热指数k =1.4。
其中,C V =718J/(Kg ·K),R =287 J/(Kg ·K)求:(1)终态参数T 2和V 2(2)体积功和技术功解:(1)10.41.42211322520.1900466.151287466.15 1.34/10k k p T T K p RT v m kg p -⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭⨯===(2)()()123718900466.15933.211.4933.211306.5v t W mc T T KJW kW KJ =-=⨯⨯-===⨯=3. 空气流经喷管作定熵流动,已知进口截面1-1处参数值为p 1=0.7MPa ,t 1=947℃,c 1=0m/s 。
3.7空调房间送风状态的确定及送风量的计算在已知空调区冷(热)、湿负荷的基础上,确定消除室内余热、余湿,维持室内所要求的空气参数所需的送风状态及送风量,是选择空气处理设备的重要依据。
3.7.1空调房间送风状态的变化过程 在空调设计中,经常采用空气质量平衡和能量守恒定律来进行空调系统的一些能量问题分析 图3-10表示一个空调房间的热湿平衡示意图,房间余热量(即房间冷负荷)为Q (kW),房间余湿量(即房间湿负荷)为W (kg /s),送入m q (kg/s)的空气,吸收室内余热余湿后,其状态由O(h O ,d O )变为室内空气状态N(h N ,d N ),然后排出室外。
图3-10 空调房间的热湿平衡 当系统达到平衡后,总热量、湿量均达到了平衡,即总热量平衡 ⎪⎭⎪⎬⎫-==+O N m N m O m h h Q q h q Q h q (3-43) 湿量平衡 ⎪⎭⎪⎬⎫-==+O N m N m O m d d W q d q W d q (3-44)式中 m q ——送入房间的风量(kg/s ); Q ——余热量(kW );W ——余湿量(kg/s );O O d h ,——送风状态空气的比焓值(kJ/ kg )和含湿量(kg/kg );N N d h ,——室内空气比焓值(kJ/ kg )和含湿量(kg/kg )。
同理,可利用空调区的显热冷负荷和送风温差来确定送风量。
)(O N p m t t C Qq -= (3-45)式中 Q ——显热冷负荷(kW );C p ——空气的定压比热容[ 1.01 kJ/ (kg ⋅K)]。
上述公式均可用于确定消除室内负荷应送入室内的风量,即送风量的计算公式。
图3-11 为送入室内的空气(送风)吸收热、湿负荷的状态变化过程在h-d 图上的表示。
图中N 为室内状态点,O 为送风状态点。
热湿比或变化过程的角系数为sR O N d d h h W Q --==)(ε (3-46) 由上可得,送风状态O 在余热Q ,余湿W 作用下,在h-d 图上沿着过室内状态点N 点且/Q W ε=的过程线变化到N 点。
空气的主要物理参数一、温度温度是描述物体冷热状态的物理量。
矿井表示气候条件的主要参数之一。
热力学绝对温标的单位K,摄式温标T=273.15+t二、压力(压强)空气的压力也称为空气的静压,用符号P表示。
压强在矿井通风中习惯称为压力。
它是空气分子热运动对器壁碰撞的宏观表现。
P=2/3n(1/2mv2)矿井常用压强单位:Pa Mpa mmHg mmH20 mmbar bar atm 等。
换算关系:1 atm = 760 mmHg = 1013.25 mmbar = 101325 Pa(见P396) 1mmbar = 100 Pa = 10.2 mmH20,1mmHg = 13.6mmH20 = 133.32 Pa三、湿度表示空气中所含水蒸汽量的多少或潮湿程度。
表示空气湿度的方法:绝对湿度、相对温度和含湿量三种。
1、绝对湿度每立方米空气中所含水蒸汽的质量叫空气的绝对温度。
其单位与密度单位相同(Kg/ m3),其值等于水蒸汽在其分压力与温度下的密度。
rv=Mv/V饱和空气:在一定的温度和压力下,单位体积空气所能容纳水蒸汽量是有极限的,超过这一极限值,多余的水蒸汽就会凝结出来。
这种含有极限值水蒸汽的湿空气叫饱和空气,这时水蒸气分压力叫饱和水蒸分压力,PS,其所含的水蒸汽量叫饱和湿度rs 。
2、相对湿度单位体积空气中实际含有的水蒸汽量(rV)与其同温度下的饱和水蒸汽含量(rS)之比称为空气的相对湿度φ= rV/ rS反映空气中所含水蒸汽量接近饱和的程度。
Φ愈小空气愈干爆,φ=0为干空气;φ愈大空气愈潮湿,φ=1为饱和空气。
温度下降,其相对湿度增大,冷却到φ=1时的温度称为露点例如:甲地:t = 18 ℃, rV =0.0107 Kg/m3,乙地:t = 30 ℃, rV =0.0154 Kg/m3解:查附表当t为18 ℃, rs =0.0154 Kg/m3, ,当t为30 ℃, rs =0.03037 Kg/m3,∴甲地:φ= rV/ rS=0.7 =70 %乙地:φ= rV/ rS=0.51=51 %乙地的绝对湿度大于甲地,但甲地的相对湿度大于乙地,故乙地的空气吸湿能力强。