山东省庆云县第四中学九年级数学上册:231图形的旋转学案(无答案)
- 格式:doc
- 大小:201.50 KB
- 文档页数:3
旋转单元概览奥秘。
二、你将学哪些知识?(画一张内容纲要图,包括各课时主题及其关系。
)单元第1分课时学历案评价指标理解旋转的基本含义;感悟旋转的“三要素”;理解旋转的“不变性”;能活用旋转的性质解决问题。
得自我评价小组评价总结性评价(优填“4”,良填“3”,中填“2”,差填“1”)评价指标积极举手回答问题,参与小组合作,交流课堂练习订正批改情况课后作业完成情况教师评价3.学习过程(每课时一般安排2-4个任务或环节,前面加上热身,后面加小结。
)热身:搭建支架,感受旋转之美1.请同学们欣赏生活中常见的旋转视频,感受“美”的内涵。
(1)引:美吗?美的内涵是什么?(2)忆:生活中还有类似的例子吗?(3)思:观察运动具备的共同的特征。
2.利用“彩虹伞”实物展示,到抽象成平面图形ppt动画演示。
(4)说:由“形”想“字”,让学生表达旋转概念及基本元素的名称。
任务/环节一:展开支架,概括旋转概念1.旋转的概念:把一个平面图形绕着平面内_____________________________,叫做图形的旋转.(表达旋转的概念)这个定点叫做____________,转动的角叫做_________.旋转前后对应的点叫做_______.2.结合图形感知旋转的基本概念:(1)旋转中心:_______(2)对应点:_________(3)旋转角:_________★点对点训练1.如图,将△ABC绕点C逆时针方向旋转,请说出:(1)旋转中心是点____;实验目的:探索旋转前后平面图形各元素的关系.操作方法:在硬板纸下面放一张白纸,先在白纸上描出挖掉的三角形图案ABC ∆(不同颜色写顶点),然后围绕旋转中心0(订书针固定),_____时针转动硬纸板_____度,再描出这个挖掉的三角形( 对应颜色),移开硬纸板.连接各顶点与旋转中心,测量验证。
(1)验证对应点到旋转中心距离的关系:OA=_______cm,OA/=________cm, OB=_______cm,OB/=_______cm,OC=______cm,OC/=_______cm结论:对应点到旋转中心的距离________.(2) 验证对应点与旋转中心所连线段的夹角与旋转角的关系;结论:对应点到旋转中心所连线段的夹角_______旋转角. (3) 验证旋转前、后图形的关系: 结论:旋转前、后的图形_________。
山东省德州市武城县四女寺镇九年级数学上册第二十三章旋转23.1 图形的旋转(1)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省德州市武城县四女寺镇九年级数学上册第二十三章旋转23.1 图形的旋转(1)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省德州市武城县四女寺镇九年级数学上册第二十三章旋转23.1 图形的旋转(1)教案(新版)新人教版的全部内容。
第二十三章旋转单元要点分析教学内容1.主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.2.本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.教学目标1.知识与技能了解图形的旋转的有关概念并理解它的基本性质.了解中心对称的概念并理解它的基本性质.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.2.过程与方法(1)让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.(2)•通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.(4)复习对称轴和轴对称图形的有关概念,•通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容.(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固.(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、•思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容. (7)复习平面直角坐标系的有关概念,•通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标间的关系.教学难点1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.教学关键1.利用几何直观,经历观察,产生概念;2.利用几何操作,通过观察、探究,•用不完全归纳法归纳出图形的旋转和中心对称的基本性质.单元课时划分本单元教学时间约需10课时,具体分配如下:23.1 图形的旋转 3课时23.2 中心对称 4课时23.3 课题学习;图案设计 1课时教学活动、习题课、小结 2课时23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材练习1、2、3.四、应用拓展例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,•另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.解:面积不变.理由:设任转一角度,如图所示.在Rt△ODD′和Rt△OEE′中∠ODD′=∠OEE′=90°∠DOD′=∠EOE′=90°-∠BOEOD=OD∴△ODD′≌△OEE′∴S△ODD`=S△OEE`∴S四边形OE`BD`=S正方形OEBD=1 4五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.六、布置作业1.教材复习巩固1、2、3.2.《同步练习》一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个2.从5点15分到5点20分,分针旋转的度数为( ).A.20° B.26° C.30° D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于( ).A.70° B.80° C.60° D.50°(1)(2) (3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.三、综合提高题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(4) (5) (6)(7)如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=12 AB.(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到△ADF 的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转旋转中心旋转角 2.A 45° 3.点A 60°等边三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=•DF,BE⊥DF2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.。
【
求助交流】
如图,四边形ABCD 是边长为1的正方形,且DE=
,△ABF 是△ADE 的旋转图形. (1)旋转中心是哪一点?点A 的对应点是谁?
(2)旋转了多少度?
(3)AF 的长度是多少?
(4)如果连结EF ,那么△AEF 是怎样的三角形?
【补助练兵】
1、下面的图形绕着一个点旋转120°后,能与原来的位置重合的是( )
A .(1),(4)
B .(1),(3)
C .(1),(2)
D .(3),(4)
2、如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.
14
3、图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.
4、如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.
【共助反馈】
如图△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转,
能与△ACP′重合,如果AP=3,求PP′的长.
续助反思。
23.1 图形的旋转教学目标知识与技能 1.了解旋转及其旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题. 过程与方法1、通过观察具体实例认识旋转,探索它的基本性质.2、了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.情感与态度培养学生学习数学的技能与兴趣。
教学要点教学重点观察具体实例认识旋转,探索它的基本性质.教学难点图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.教学内容设计意图知识准备:(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其他的吗?自学指导教师点拨:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质.(3)什么叫轴对称图形.。
教师点拨:旋转角指对应点与旋转中心的连线的夹角.自学教材第59页内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:①从3时到5时,时针转动了多少度?(60°)②风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(90°)③以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?知识探究把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个教师点拨(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.教师点拨:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE′=S△ODD′,那么只要说明△OEE′≌△ODD′教师点拨: 1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心距离相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同且大小相等,即全等.分别移到什么位置?例2 如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点A;旋转的度数是45°.活动2 跟踪训练两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.预习导学2:自学指导自学教材第60页内容,并完成教材第61页练习.教师用几何画板演示请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)′、OB与OB′、OC与OC′有什么关系?2.∠AOA′、∠BOB′、∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?知识探究(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.活动1 小组讨论例3 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形. 关键是确定△ADE三个顶点的对应点的位置.例4 已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.∠AOC=100°在OC上截取OA′∠BOD=100°在OD上截取OB′′B′.线段A′B′就是线段AB绕点O 按逆时针方向旋转100°后的对应线段.教师点拨:作图应满足三要素:旋转中心、旋转角、旋转方向.活动2 跟踪训练1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.①此图能否旋转某一部分得到一个正方形?②若能,指出由哪一部分旋转而得到的?并说明理由. ③它的旋转角多大?并指出它们的对应点.解:①能. ②由△BCQ绕△ABP≌△△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.③90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形. 解:(1)连接CD,(2)以CB为一边作∠BCE,使得∠BCE=∠ACD,(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点.(4)连结DB′,则△DB′C就是△ABC绕C点旋转后的图形.教师点拨:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM 为旋转角且为90°.∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的.∴BK=DM.教师点拨:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.活动3 课堂小结1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.。
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案,主要讲述了图形的旋转性质及其在实际问题中的应用。
本节课内容是学生在学习了图形的平移、翻转的基础上,进一步探究图形的旋转特点,培养学生的空间想象能力和动手操作能力。
二. 学情分析九年级的学生已具备一定的图形变换基础,对于图形的平移、翻转有一定的了解。
但学生在理解和应用图形旋转方面可能存在一定的困难,因此,在教学过程中,教师需要注重引导学生通过实际操作来掌握图形旋转的性质,提高学生的空间想象能力。
三. 教学目标1.理解图形旋转的性质,掌握图形旋转的基本方法。
2.能够运用图形旋转解决实际问题,提高学生的应用能力。
3.培养学生的空间想象能力和动手操作能力。
四. 教学重难点1.图形旋转的性质及其在实际问题中的应用。
2.学生空间想象能力的培养。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过自主探究、合作交流的方式,掌握图形旋转的性质。
同时,运用多媒体技术辅助教学,提高学生的空间想象能力。
六. 教学准备1.多媒体课件。
2.图形旋转的实际问题案例。
3.练习题。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转现象,激发学生的学习兴趣。
同时,提问:“你们认为图形旋转有哪些性质呢?”2.呈现(10分钟)教师通过多媒体课件,展示图形旋转的性质,如旋转变换不改变图形的形状和大小,对应点、对应线段、对应角相等等。
同时,引导学生观察图形旋转前后的变化,总结旋转的规律。
3.操练(10分钟)教师提出一些实际问题,让学生运用图形旋转的性质进行解决。
如:“一个正方形绕着其一个顶点旋转90度后,求得旋转后的正方形面积。
”学生在教师的指导下,进行动手操作,巩固图形旋转的应用。
4.巩固(10分钟)教师给出一些关于图形旋转的练习题,让学生独立完成。
九年级数学上册《23.1图形的旋转》导学案1、学会区分旋转和平移的现象2、认识旋转的三要素以及理解旋转的性质3、运用旋转的三要素及旋转的性质来画图和解决问题重点:认识旋转的三要素以及理解旋转的性质难点:运用旋转的三要素及旋转的性质来解决平面直角坐标系中的画图问题1、旋转把一个平面图形绕着平面内的一点O转动一个角度。
2、旋转三要素____________、_____________、_______________3、性质①对应点到旋转中心的距离_______②对应点到旋转中心所连线段的夹角等于_______③旋转前后的图形_______1、(2021秋•汤阴县期中)数学来源于生活,下列生活中的运动属于旋转的是()A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输的东西2、(2021·吉林省初三三模)如图,该图案绕它的中心至少旋转m度能与自身完全重合,则m的值是()A .45B .90C .135D .1803、(2021·河北省初一期末)如图,将ABC 就点C 按逆时针方向旋转75°后得到A B C ''△,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°4、(2021·江苏省中考真题)以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5、(2021·江苏省初三其他)如图,A 点的坐标为(﹣1,5),B 点的坐标为(3,3),线段AB 绕着某点旋转一个角度与线段CD 重合(C 、D 均为格点),若点A 的对应点是点C ,且C 点的坐标为(5,3),则这个旋转中心的坐标是__________.6、(2021·广东省初二期中)如图,AC 是正方形ABCD 的对角线,△ABC 经过旋转后到达△AEF 的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度; (3)分别写出点A ,B ,C 的对应点.7、如图,在边长为1的小正方形组成的86 的方格中,ABC 和111A B C △的顶点都在格点上,且111ABC A B C △≌△.利用平移、旋转变换,能使ABC 通过一次或两次变换后与111A B C △完全重合.(1)请你写出△ABC 通过两次变换与△A 1B 1C 1完全重合的变换过程。
图形的旋转学习目标:【知识与技能】通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。
【过程与方法】经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,按要求作出简单平面图形旋转后的图形。
【情感、态度与价值观】学生在经历了实际探究、知识应用及内化等数学活动中,体验数学的具体、•生动、灵活,调动学生学习的数学的主动性。
培养学生初步的审美能力,增强对图形的欣赏意识・。
【重点】对生活中的旋转现彖作数学上的分析,理解旋转的定义。
【难点】对旋转现象进行分析研究,旋转后的现象进行探索。
学习过程:一、自主学习(一)复习巩固1•把一个平面图形绕着平面内某一点0转动一个角度的图形变换叫做_________ •点0叫做____ ,转动的角叫做________ .2.一般地,可以根据定义得岀旋转的以下性质:(1) ______________________________________ 对应点到旋转中心的距离.(2) _______________________________________________________ 对应点与旋转小心所连线段的夹角等于.(3)________________________________ 旋转前、后的图形 .(二)自主探究例1・如图所示,AC是正方形ABCD的对角线,AABC经过旋转后到达AAEF的位置,贝I」旋转中心是哪点?旋转方向是什么?旋转角度是多少?点B的对应点是什么?例2・选择题:(1)如图所示,在平面直角坐标系中,点A、B的坐标分別为(一2, 0)和(2, 0). M 牙①绕点B顺时针旋转90°得到刀牙②,则点A的对应点A,的坐标为()A. (2, 2)B. (2, 4)C. (4, 2)D. (1, 2)(三)归纳总结:1 一般地,可以根据定义得出旋转的以下性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.2.画已知图形旋转后的图形时,首先要确定一些对应点的位置,这主要由旋转如度及对应点到旋转中心的距离相等等条件确定,也可以利用一些特殊图形的性质.3.利用旋转设计图案•时,要注意到影响设计效果的三个主要因素:基木图形,旋转中心,旋转角度.多试验才能得出美丽的图案.(四)、自我尝试:1 •如图所示,AABC中,ZACB=90° , ZBAC=30a,点D是斜边上任意一点,以A点为屮心,把AACD顺时针旋转30 °,画出旋转后的图形.二、学生分小组交流解疑,教师点评升华。
23.1 图形的旋转一、教学目标1。
掌握旋转的有关概念及基本性质.2。
能够根据旋转的基本性质解决实际问题和进行简单作图。
二、课时安排1课时三、教学重点掌握旋转的有关概念及基本性质.四、教学难点能够根据旋转的基本性质解决实际问题和进行简单作图.五、教学过程(一)导入新课问题:观察下列动画,说一说,生活中的这些现象有什么共同特点?(二)讲授新课1.观察实例得出旋转概念.我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.(1)请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?学生口答,教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.(2)再看自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?思考:这些现象有什么共同特点?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳:像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.2.通过类比试验探究旋转的性质探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC ),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′ )移开硬纸板.△A'B’C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?教师让学生思考这些问题.必要时,可引导学生从以下问题中进行思考:(1)轴对称的性质中对应点之间有怎样的位置关系和数量关系?旋转呢?(2)旋转是一个图形围绕旋转中心旋转一定的角度,此时,图形上的点发生旋转了吗?它是如何旋转的?哪个角表示了旋转的角度?归纳:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.(三)重难点精讲例1 如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.解:∵点A 是旋转中心,∴它的对应点是 。
第二十三章旋转23.1 图形的旋转23.1 图形的旋转(第2课时)学习目标1.掌握对应点到旋转中心的距离相等.2.掌握对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等以及三个以上图形的旋转的基本性质的运用.学习过程一、自主思考1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?二、学习新知【例1】如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.,△ABF是△ADE的旋转图形.【例2】如图,四边形ABCD是边长为1的正方形,且DE=14(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?三、课堂练习1.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()2.在旋转图形中,各对应点与旋转中心的距离.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.四、自我检测1.如图1,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是,它们之间的关系是,其中BD=.2.如图2,自正方形ABCD的顶点A引两条射线分别交BC,CD于E,F两点,∠EAF=45°.在保持∠EAF=45°的前提下,当点E、F分别在边BC,CD上移动时,BE+DF与EF的关系是.3.如图3,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?4.如图4,以△ABC的三个顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形的面积之和是多少?布置作业1.必做题:课本第61页练习第1,2题.2.选做题:课本第61页练习第3题.参考答案一、自主思考1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.2.旋转前后重合的点就是对应点.3.能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°,120°,180°,240°,300°形成的.二、学习新知例1:解:绕C 点旋转,A 点的对应点是D 点,那么旋转角就是∠ACD.根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB'=ACD ,又由对应点到旋转中心的距离相等,即CB=CB',就可确定B'的位置,如图所示.例2:解:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心为点A 和旋转角为∠DAB=90°.根据旋转前后的对应线段相等,得AF=AE.由勾股定理很容易得到AE=√174,即AF=√174.因为△ABF 与△ADE 是完全重合的,所以△AEF 是直角三角形.因为AE=AF ,所以连接EF 得△AEF 为等腰直角三角形.三、课堂练习 1.D 2.相等3.解:∵四边形ABCD 、四边形AKLM 都是正方形,∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°,∴△ADM 是以A 为旋转中心、∠BAD 为旋转角由△ABK 旋转而成的,∴BK=DM.四、自我检测 1.△ACE 全等 CE 2.相等 3.全等 4.π2。
23.1图形的旋转
一、学习目标
1.经历对生活中旋转现象的观察、分析过程,通过具体实例掌握旋转的概念。
2.经历对具有旋转特征图形的观察、操作、画图等过程,掌握旋转性质;并能利用性质解决问题。
二、创设情景
1、 PPT展示一组生活中现象的图片,你能说出它们有什么共同的特征?
2、生活中还有类似的例子吗?
三、自学探究
自学范围:课本59页练习以上部分
自学时间:2分钟
自学要求:圈出关键字,理解并记忆旋转的相关概念
思考:要精确地描述一次旋转,需要从哪几个方面叙述?
自学检测:(2分钟)
课本59页练习题
自学指导2:
自学范围:课本60页全部内内容
自学时间:3分钟
自学要求:圈出关键字,理解并记忆旋转的性质
自学检测:(3分钟)
课本61页练习1--3
A B C D E
四、班级升华
组内交流在旋转过程中如何寻找旋转中心和旋转角度。
五、课堂小结
对照黑板,理解并记忆旋转的相关概念和性质。
六、当堂达标
1.下列现象中属于旋转的有( )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.
A.2
B.3
C.4
D.5
2. 下列说法正确的是( )
A.旋转改变图形的形状和大小
B.平移改变图形的位置
C. 图形可以向某方向旋转一定距离
D.由平移得到的图形也一定可由旋转得到
3.如图,将Rt△ABC绕点A 按顺时针方向旋转一定角度得Rt △ADE,点B 的对应点D 恰好落在BC 边上.若AC= 3, ∠B=60 °,则CD 的长为( )
A. 0.5
B. 1.5
C. 2
D. 1
第3题图 第4题图 第5题图
4.△A ′ OB ′是△AOB 绕点O 按逆时针方向旋转得到的.已知∠AOB=20 °, ∠ A ′ OB =24°,。