二轮复习 概率与统计 教案(全国通用)
- 格式:doc
- 大小:3.58 MB
- 文档页数:81
高中数学高考二轮复习概率与统计教案本专题涉及面广,常以生活中的热点问题为依托,在高考中的考查方式十分灵活,强化“用数据说法,用事实说话”的考查内容。
为了突破这一专题,可以按照“用样本估计总体”、“古典概型与几何概型”、“随机变量及其分布列”、“独立性检验与回归分析”四个方面分类进行引导。
在古典概型问题的求解中,可以采用直接列举、画树状图、逆向思维、活用对称等技巧。
对于特殊古典概型问题,画树状图可以使列举结果不重不漏;对于较复杂的问题,逆向思维可以先求对立事件的概率,再得到所求事件的概率;对于具有对称性的问题,可以利用对称思维快速解决。
几何概型的求解关键在于准确确定度量方式和度量公式,常见的几何度量包括长度、面积、体积、角度等。
在求解概率时,可以采用将所求事件转化为几个彼此互斥的事件的和事件,利用概率加法公式求解概率,或者利用对立事件的概率公式“正难则反”来求“至少”或“至多”型事件的概率。
举例来说,对于一个问题:4位同学各自在周六、周日两天中任选一天参加公益活动,周六、周日都有同学参加公益活动的概率为多少?其中,4名同学各自在周六、周日两天中任选一天参加公益活动的情况有2的4次方等于16种,其中仅在周六或周日参加的各有1种,所以所求概率为1减去(1+1)/16,即7/8.总之,熟练掌握古典概型与几何概型的求解技巧,以及求解概率的常用方法,可以在高考中更好地应对这一专题。
基本事件为取出的第一颗球和第二颗球的颜色,共有10种基本事件,其中第一颗球为白球的有3种情况,第二颗球为黑球的有2种情况,所以第一次为白球、第二次为黑球的概率为3/10,选B。
2)对于函数f(x)=ax+bx+x-3在R上为增函数,即a+b+1>0,所以a+b>-1.因为a,b都是M中的元素,所以a +b的取值有16种,其中a+b>-1的取值有9种,所以函数f(x)在R上为增函数的概率为9/16,选A。
中大于30的有12种,即(3,4),(3,5),(4,5),(2,4),(2,5),(1,4),(1,5),(2,3),(1,3),(1,2)和(4,3),(5,3).故所求概率为12/20=3/5,选项C正确.变式训练2](2017·全国卷Ⅰ)设函数f(x)=ax^2+bx+c,其中a,b,c均为实数,且满足f(1)=2,f(2)=3,f(3)=6,则f(x)在[1,3]上的最小值为()A。
统计与概率复习课教案一、课程和目标1.1 课程统计与概率是数学中的一个重要分支,它研究的是随机现象的规律性和不确定性。
在现实生活中,我们经常会遇到各种各样的随机事件,如掷骰子、抽签、样本调查等,统计与概率能够帮助我们理解和分析这些事件,并从中得到有意义的。
1.2 课程目标本节复习课的主要目标是回顾统计与概率的基本概念和方法,并帮助学生巩固已学知识,为下一阶段的学习打下坚实的基础。
通过本节课的复习,学生将能够:- 理解概率的基本概念和性质; - 掌握常见的概率计算方法; - 复习统计学中的基本概念和统计量的计算方法。
二、教学内容和方式2.1 教学内容本节复习课的教学内容主要包括以下几个方面: 1. 概率的基本概念 - 样本空间和事件 - 概率的定义和性质2.概率计算方法–独立事件的概率计算–互斥事件的概率计算–条件概率和乘法定理–加法定理和全概率定理3.统计学基本概念和统计量的计算方法–总体和样本的概念–样本均值和样本方差的计算–正态分布的基本性质和应用2.2 教学方式本节复习课采用以下教学方式: - 板书讲解:通过板书解释概念和公式,并结合示例进行说明。
- 互动讨论:鼓励学生在课堂上提问和讨论,以促进学生的思考和理解。
- 练习和讲解:设置一些练习题供学生练习,再进行讲解和答疑。
3.1 热身活动(5分钟)•引导学生回顾统计与概率的基本概念,如样本空间、事件、概率等。
3.2 概率的基本概念(10分钟)•板书讲解样本空间和事件的概念,并举例说明。
•解释概率的定义和性质,引导学生理解概率的基本含义。
3.3 概率计算方法(25分钟)•板书讲解独立事件的概率计算和互斥事件的概率计算方法。
•解释条件概率和乘法定理的概念,引导学生掌握计算方法。
•板书讲解加法定理和全概率定理的概念和计算方法。
3.4 统计学基本概念和统计量的计算方法(25分钟)•板书讲解总体和样本的概念,引导学生理解抽样的过程。
•解释样本均值和样本方差的计算方法,帮助学生掌握统计量的计算方法。
概率与统计复习教案一、教学目标1. 回顾和巩固概率与统计的基本概念、原理和方法。
2. 提高学生运用概率与统计解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 概率的基本概念:必然事件、不可能事件、随机事件。
2. 概率的计算:古典概率、条件概率、独立事件的概率。
3. 统计的基本概念:平均数、中位数、众数、方差、标准差。
4. 数据的收集与处理:调查方法、数据整理、数据可视化。
5. 概率与统计在实际应用中的例子。
三、教学方法1. 讲授法:讲解概率与统计的基本概念、原理和方法。
2. 案例分析法:分析实际应用中的例子,引导学生运用概率与统计解决实际问题。
3. 小组讨论法:分组讨论问题,培养学生的团队协作能力。
4. 练习法:布置课后作业,巩固所学知识。
四、教学准备1. 教学PPT:制作包含概率与统计基本概念、原理和方法的PPT。
2. 案例材料:收集实际应用中的概率与统计例子。
3. 作业题目:准备课后作业,涵盖本节课的主要内容。
五、教学过程1. 导入:回顾上节课的内容,引导学生进入本节课的学习。
2. 讲解概率的基本概念:必然事件、不可能事件、随机事件。
3. 讲解概率的计算:古典概率、条件概率、独立事件的概率。
4. 案例分析:分析实际应用中的例子,让学生体会概率与统计在生活中的应用。
5. 讲解统计的基本概念:平均数、中位数、众数、方差、标准差。
6. 讲解数据的收集与处理:调查方法、数据整理、数据可视化。
7. 小组讨论:分组讨论问题,培养学生的团队协作能力。
8. 课堂练习:布置课后作业,巩固所学知识。
9. 总结:对本节课的主要内容进行总结,提醒学生注意重点知识点。
10. 课后作业:布置作业,让学生进一步巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对概率与统计概念的理解程度。
2. 小组讨论:观察学生在讨论中的表现,评估他们的团队协作能力和问题解决能力。
3. 课后作业:检查学生作业完成情况,评估他们对课堂所学知识的掌握程度。
概率与统计复习教案一、教学目标1. 知识与技能:(1)掌握概率的基本概念和性质;(2)了解随机事件的独立性和互斥性;(3)熟练运用概率计算公式解决实际问题;(4)理解统计学的基本概念和方法。
2. 过程与方法:(1)通过复习使学生能够自主掌握概率统计的基本知识;(2)培养学生运用概率统计知识解决实际问题的能力;(3)提高学生分析数据、处理数据、解释数据的能力。
3. 情感态度价值观:(1)培养学生对概率统计学科的兴趣和好奇心;(2)使学生认识到概率统计在实际生活中的重要性;(3)培养学生的团队协作和自主学习能力。
二、教学内容1. 概率的基本概念和性质:(1)概率的定义;(2)概率的基本性质;(3)概率的计算公式。
2. 随机事件的独立性和互斥性:(1)随机事件的独立性;(2)随机事件的互斥性;(3)独立事件和互斥事件的概率计算。
三、教学过程1. 导入新课:(1)回顾概率的基本概念和性质;(2)引导学生思考概率在实际生活中的应用。
2. 自主学习:(1)让学生自主学习随机事件的独立性和互斥性的定义及性质;(2)让学生通过例题理解独立事件和互斥事件的概率计算方法。
3. 课堂讲解:(1)讲解概率的基本概念和性质;(2)讲解随机事件的独立性和互斥性的判断方法及概率计算;(3)通过典型例题分析,引导学生掌握解题技巧。
4. 巩固练习:(1)让学生完成课后习题,巩固所学知识;(2)组织小组讨论,共同解决难题。
5. 课堂小结:(1)总结本节课的主要内容和知识点;(2)强调概率统计在实际生活中的应用。
四、课后作业1. 完成课后习题;2. 选取一道实际问题,运用概率统计知识解决。
1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成作业的情况,评估学生的掌握程度;3. 小组讨论:评价学生在团队合作中的表现,了解学生的合作能力;4. 课堂小结:评估学生的总结能力,了解学生对知识的掌握情况。
2023高三二轮复习概率专题学案目标本学案的目标是帮助高三学生复概率相关知识,为他们在高考中取得优异成绩提供支持。
复内容1. 概率基础知识回顾:包括样本空间、事件、概率定义等。
2. 概率计算方法:包括排列组合、加法原理、乘法原理等。
3. 条件概率与独立事件:理解条件概率的概念,掌握计算条件概率的方法,并能够判断事件的独立性。
4. 随机变量与概率分布:了解随机变量的概念,研究常见的概率分布如二项分布、正态分布等。
5. 概率统计与推断:了解统计学中的概率概念,包括抽样方法、估计与检验等。
研究计划本学案建议按照以下研究计划进行概率复:第一周1. 复概率基础知识:回顾样本空间、事件的概念,熟悉概率定义和基本性质。
2. 复概率计算方法:回顾排列组合、加法原理和乘法原理的应用。
3. 完成相关练题,提高概率计算能力。
第二周1. 研究条件概率与独立事件:理解条件概率的定义,研究计算条件概率的方法。
2. 掌握判断事件独立性的准则,并能应用于实际问题。
3. 完成相应练题,巩固所学内容。
第三周1. 了解随机变量与概率分布:研究随机变量的基本概念和性质。
2. 掌握二项分布、正态分布等常见概率分布的特点和计算方法。
3. 完成相关练题,提高概率分布的应用能力。
第四周1. 研究概率统计与推断:了解抽样方法、估计与检验的基本概念。
2. 研究如何利用样本数据进行参数估计和假设检验。
3. 完成相关练题,掌握概率统计与推断的基本方法。
复方法1. 阅读教材和参考书籍:仔细阅读相关章节,理解概念和方法。
2. 刷题巩固知识:完成大量的练题,提高计算能力和问题解决能力。
3. 合作研究与讨论:与同学一起讨论和解决问题,互相研究和帮助。
4. 老师辅导和答疑:及时向老师提问和求助,解决研究中的困惑。
复建议1. 制定合理的研究计划,合理安排每周的研究内容和复时间。
2. 坚持每天的研究和复,保持良好的研究惯。
3. 多进行归纳总结,拓宽概率知识的应用。
2019年高考二轮复习概率与统计随机事件的概率、古典概型、几何概型;概率的基本概念与公式;用样本估计总体、回条件概率与相互独立事件的概率;一、高考回顾概率与统计是高考考查的核心内容之一,在高考中一般有1~2个选择或者填空题,一个解答题.选择或者填空题有针对性地考查古典概型及其二项式定理,二项式定理主要考查求特定项或系数或求参数等,试题的难度一般不大;解答题考查多在概率与统计的综合问题,重点考查随机变量的期望与方差.二、知识清单1.思维导图2.知识再现 1.排列排列数公式:),,()!(!)1()1(**N n N m n m m n n m n n n A mn ∈∈≤-=+--=2.组合(1)组合数公式:),,()!(!!1)1()1()1(**N n N m n m m n m n m m m n n n A A C m m m n mn∈∈≤-=-+--== .由于1!0=,所以10=n C . (2)组合数的性质m n nm n C C -=①;1-1m n m n m n C C C +=+②. 3.二项式定理(1)二项展开式:)()(*1110N n b C b a C b a C a C b a nn n k k n k n n n nn n∈+++++=+--通项:).2,1,0(1n k b aC T k kn kn k ==-+(2)二项式系数的有关性质:①二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即1425312-=+++=+++n n n n n n n C C C C C C ;②若,)(2210nn x a x a x a a x f ++++= 则)(x f 展开式中的各项系数和为)1(f ,奇数项系数和为2)1()1(420-+=+++f f a a a ,偶数项系数之和为2)1()1(531--=+++f f a a a .4.三种抽样方法的特点简单随机抽样:操作简便、适当,总体个数较少 分层抽样:按比例抽样 系统抽样:等距抽样5. 必记公式——数据n x x x x ,,,,321 的数字特征公式: (1)平均数:nx x x x x n++++=321(2)方差:])()()[(1222212x x x x x x ns n -++-+-=(3)标准差:])()()[(122221x x x x x x ns n -++-+-= 6.重要性质及结论(1)频率分布直方图的三个结论①小长方形的面积=⨯=组距频率组距频率;②各小长方形的面积之和等于1;③小长方形的高组距频率=. (2)回归直线方程:一组具有线性相关关系的数据),(,),,(),,(2211n n y x y x y x 其回归方程^^^a x b y +=,其过样本中心点),(y x .(3)独立性检验))()()(()(22d b c a d c b a bc ad n k ++++-=(其中d c b a n +++=为样本容量).7.随机事件的概率:(1)随机事件的概率范围:1)(0<<A P .(2)必然事件的概率为1.(3)不可能事件的概率为0.8.互斥事件、对立事件的概率公式:(1))()()(B P A P B A P +=⋃.(2)若B A ,为对立事件,则)(1)(B P A P -=.9.古典概型的概率公式:基本时间总数中所含的基本事件数A n m A P ==)(. 10.几何概型的概率公式:)区域长度(面积或体积试验全部结果所构成的积)的区域长度(面积或体构成事件A A P =)(.11.相互独立事件同时发生的概率:)()()(B P A P AB P =.12.独立重复试验与二项分布:如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为kn k k n k n p p C P --=)1()(,.,,2,1,0n k =用X 表示事件A 在n 次独立重复试验中发生的次数,则X 服从二项分布,即),(~p n B X 且k n k k n p p C k X P --==)1()(.13.超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则nNKN MN k M C C C k X P --==)(,.,,2,1,0m k =其中},m i n {n M m =,且*,,N N M n N M N n ∈≤≤、、.此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样.14.离散型随机变量的均值、方差 (1)离散型随机变量X 的分布列为离散型随机变量X的分布列具有两个性质:①0≥i p ;②),,3,2,1(121n i p p p p n i ==++++.(2) ))(2211n n i i p x p x p x p x X E ++++= 为随机变量X 的数学期望或均值.nn i i p X E x p X E x p X E x p X E x X D ⋅-+⋅-++⋅-+⋅-=22222121))(())(())(())(()( 叫做随机变量X 的方差.性质:①b X aE b aX E +=+)()(,)()(2X D a b aX D =+;②),(~p n B X ,则np X E =)(,)1()(p np X D -=;),(~2σμN X ,则2)(,)(σμ==X D X E ;③X 服从两点分布,则p X E =)(,)1()(p p X D -=.三、例题精讲题型一 古典概型与几何概型例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】58【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为40155408-=. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2)2011. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵527564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(3) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率2011=P .【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算. 【思维点拨】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比.题型二 统计与统计案例例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[ 并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数; (Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(Ⅰ)4.0;(Ⅱ)20;(Ⅲ)2:3.【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为6.010)04.002.0(=⨯+,所以样本中分数小于70的频率为4.06.01=-.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=. 所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为6010010)04.002.0(=⨯⨯+,所以样本中分数不小于70的男生人数为302160=⨯.所以样本中的男生人数为60230=⨯,女生人数为4060100=-,男生和女生人数的比例为2:340:60=,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为2:3.【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1,当小矩形等高时,说明频率相等,计算时不要漏掉其中一个. 【思维点拨】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成.4.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.求回归直线方程的关键①正确理解计算^^,a b 的公式和准确的计算.②在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 6.独立性检验的关键①根据22⨯列联表准确计算2K ,若22⨯列联表没有列出来,要先列出此表. ②2K 的观测值k 越大,对应假设事件0H 成立的概率越小,0H 不成立的概率越大. 题型三 概率、随机变量及其分布例1、“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布()2,N μσ,利用该正态分布,求Z 落在()14.55,38.45内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于()10,30内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为11.95σ=≈;②若()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.【答案】(1) 26.5x = (2) 0.6826(3)X 的分布列为;()2E X =.【解析】(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布()2,N μσ,且26.5μ=, 11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在()14.55,38.45内的概率是0.6826.②根据题意得1~4,2X B ⎛⎫ ⎪⎝⎭, ()404110216P X C ⎛⎫=== ⎪⎝⎭; ()41411124P X C ⎛⎫=== ⎪⎝⎭; ()42413228P X C ⎛⎫=== ⎪⎝⎭; ()43411324P X C ⎛⎫=== ⎪⎝⎭; ()444114216P X C ⎛⎫=== ⎪⎝⎭. ∴X 的分布列为∴()142E X =⨯=.【思维点拨】1.条件概率的两种求解方法: (2)基本事件法,借助古典概型概率公式,先求事件A 包含的基本事件数)(A n ,再求事件AB 所包含的基本事件数()AB n ,得)()()|(A n AB n A B P =. 2.判断相互独立事件的三种常用方法:(1)利用定义,事件B A ,相互独立⇔)()()(B P A P AB P ⋅=.(2)利用性质,A 与B 相互独立,则A 与A B ,与B ,B A 与也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.3. 求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.4. 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检验该概率模型是否满足公式kn kkn p p C k X P --==)1()(的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率. 5. 求离散型随机变量的均值与方差的基本方法有:(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解; (2)已知随机变量X 的均值、方差,求X 的线性函数b aX Y +=的均值、方差,可直接用均值、方差的性质求解,即b X aE b aX E +=+)()(,)()(2X D a b aX D =+(b a ,为常数). (3)如能分析所给随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,即若X 服从两点分布,则p X E =)(,)1()(p p X D -=;若),(~p n B X ,则np X E =)(,)1()(p np X D -=.四、成果巩固题型一 古典概型与几何概型1.已知{}0 1 2a ∈,,,{}1 1 3 5b ∈-,,,,则函数()22f x ax bx =-在区间()1 +∞,上为增函数的概率是( )A .512 B .13 C .14 D .16【答案】A【解析】①当0a =时,()2f x bx =-,情况为 1 1 3 5b =-,,,符合要求的只有一种1b =-;②当0a ≠时,则讨论二次函数的对称轴22b b x a a -=-=要满足题意则1ba≤产生的情况() a b ,表示:()()()1 1 1 1 1 3-,,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,8种情况满足的只有4种;综上所述得:使得函数()22f x ax bx =-在区间()1 +∞,为增函数的概率为:1251214=+=P .2.在区间()0,4上任取一数x ,则1224x -<<的概率是( )A .12 B .13 C .14 D .34【答案】C【解析】由题设可得211<-<x ,即32<<x ;所以4,1==D d ,则由几何概型的概率公式1=P .故应选C .(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.【答案】(1) 0.4;(2) 45;(3)4.考向二 统计与统计案例1.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只, (Ⅰ)求22⨯列联表中的数据x ,y ,A ,B 的值; (Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?【答案】(Ⅰ)10y=,40B =,40x =,60A =;(Ⅱ)详见解析;(Ⅲ)至少有%9.99的把握认为疫苗有效.【解析】(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A,由已知得302()100y P A +==,所以10y =,40B =,40x =,60A =.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率.10000005016.6710.8285020603=≈>⨯⨯. 所以至少有%9.99的把握认为疫苗有效.未注射 注射未注射 注射2.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S 市的A 区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x 表示在各区开设分店的个数, y 表示这x 个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程;(Ⅱ)假设该公司在A 区获得的总年利润z (单位:百万元)与,x y 之间的关系为20.05 1.4z y x =--,请结合(Ⅰ)中的线性回归方程,估算该公司应在A 区开设多少个分店,才能使A 区平均每个分店的年利润最大? 参考公式:y b x a ∧∧∧=+, 1221ni i i nii x y nxyb x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑, a y b x ∧∧=-. 【答案】(1)0.850.6y x =+;(2)公司应在A 区开设4个分店,才能使A 区平均每个分店的年利润最大.【解析】(1)10085)())(()(,4,42112121^=---=--===∑∑∑∑====x x y y x x x n xy x n y x b y x ni ini iini in i ii ,6.0^^=-=x b y a ,∴y 关于x 的线性回归方程6.085.0+=x y .(2)20.05 1.4z y x =--= 20.050.850.8x x -+-,A 区平均每个分店的年利润0.80.050.85z t x x x ==--+ 800.0150.85x x ⎛⎫=-++ ⎪⎝⎭, ∴4x =时, t 取得最大值,故该公司应在A 区开设4个分店,才能使A 区平均每个分店的年利润最大.3. 某商场对A 商品30天的日销售量y (件)与时间t (天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y (件)与时间t (天)之间具有线性相关关系.(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程a t b y +=. (2)已知A 商品30天内的销售价格z (元)与时间t(天)的关系为,),200(,20),3020(,100⎩⎨⎧∈<<+∈≤≤+-=N t t t N t t t z 根据(1)中求出的线性回归方程,预测t 为何值时,A 商品的日销售额最大.参考公式:2121^)(t n tyt n y t b ni ini ii --=∑∑==,t b y a ^^-=.【答案】(1)40^+-=t y ;(2)预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 【解析】(1)根据题意,6)108642(51=++++⨯=t ,34)3033323738(51=++++⨯=y ,980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=ii i yt ,22010864222222512=++++=∑=i i t ,所以回归系数为1652203465980)(22121^-=⨯-⨯⨯-=--=∑∑==t n tyt n yt b ni ini ii,406)1(34^^=⨯--=-=t b y a ,故所求的线性回归方程为40^+-=t y . (2)由题意得日销售额为,,3020),40)(100(,200),40)(20(⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L当N t t ∈<<,200时,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L , 所以当;90010max ==L t 时,当N t t ∈≤≤,3020时,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L ,所以当.160020max ==L t 时,综上所述,预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 题型三 概率、随机变量及其分布1.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含1A 但不包含1B 的频率。
2019-2020年高考数学第二轮复习 统计与概率教学案考纲指要:“统计”是在初中“统计初步”基础上的深化和扩展, 本讲主要会用样本的频率分布估计总体的分布, 并会用样本的特征来估计总体的分布。
热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
统计案例主要包括回归分析的基本思想及其初步应用和独立性检验的基本思想和初步应用。
对概率考察的重点为互斥事件、古典概型的概率事件的计算为主, 了解随机数的意义, 能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率, 初步体会几何概型的意义。
考点扫描:1.三种常用抽样方法:(1)简单随机抽样;(2)系统抽样;(3)分层抽样。
2.用样本的数字特征估计总体的数字特征: (1)众数、中位数;(2)平均数与方差。
3.频率分布直方图、折线图与茎叶图。
4.线性回归:回归直线方程。
5.统计案例:相关系数、卡方检验,6.随机变量:随机变量的概念, 离散性随机变量的分布列, 相互独立事件、独立重复试验公式, 随机变量的均值和方差, 几种特殊的分布列:(1)两点分布;(2)超几何分布;(3)二项分布;正态分布。
7随机事件的概念、概率;事件间的关系:(1)互斥事件;(2)对立事件;(3)包含; 事件间的运算:(1)并事件(和事件)(2)交事件(积事件)8古典概型:古典概型的两大特点;古典概型的概率计算公式。
9几何概型:几何概型的概念;几何概型的概率公式;几种常见的几何概型。
考题先知:例1.为了科学地比较考试的成绩, 有些选拔性考试常常会将考试分数转化为标准分, 转化关系式为:(其中x 是某位学生的考试分数, 是该次考试的平均分, s 是该次考试的标准差, Z 称为这位学生的标准分).转化成标准分后可能出现小数和负值, 因此, 又常常再将Z 分数作线性变换转化成其他分数. 例如某次学业选拔考试采用的是T 分数, 线性变换公式是:T=40Z+60. 已知在这次考试中某位考生的考试分数是85, 这次考试的平均分是70, 标准差是25, 则该考生的T 分数为 .分析:正确理解题意, 计算所求分数。
2020年高考第二轮专题复习(教学案):统计与概率考纲指要:“统计”是在初中“统计初步”基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布。
热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
统计案例主要包括回归分析的基本思想及其初步应用和独立性检验的基本思想和初步应用。
对概率考察的重点为互斥事件、古典概型的概率事件的计算为主,了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义。
考点扫描:1.三种常用抽样方法:(1)简单随机抽样;(2)系统抽样;(3)分层抽样。
2.用样本的数字特征估计总体的数字特征: (1)众数、中位数;(2)平均数与方差。
3.频率分布直方图、折线图与茎叶图。
4.线性回归:回归直线方程。
5.统计案例:相关系数、卡方检验,6.随机变量:随机变量的概念,离散性随机变量的分布列,相互独立事件、独立重复试验公式,随机变量的均值和方差,几种特殊的分布列:(1)两点分布;(2)超几何分布;(3)二项分布;正态分布。
7随机事件的概念、概率;事件间的关系:(1)互斥事件;(2)对立事件;(3)包含; 事件间的运算:(1)并事件(和事件)(2)交事件(积事件)8古典概型:古典概型的两大特点;古典概型的概率计算公式。
9几何概型:几何概型的概念;几何概型的概率公式;几种常见的几何概型。
考题先知:例1.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为:sxx Z -=(其中x 是某位学生的考试分数,x 是该次考试的平均分,s 是该次 考试的标准差,Z 称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此, 又常常再将Z 分数作线性变换转化成其他分数. 例如某次学业选拔考试采用的是T 分数,线性变换公式是:T=40Z+60. 已知在这次考试中某位考生的考试分数是85,这次考试的平均分是70,标准差是25,则该考生的T 分数为 . 分析:正确理解题意,计算所求分数。
第1讲 统计、统计案例[例1] (1)某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽选100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽选的人数分别为( )A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,8(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A.7B.9C.10D.15[解析] (1)因为抽样比为10020000=1200,所以每类人中应抽选的人数分别为4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.故选D. (2)由题意知应将960人分成32组,每组30人.设每组选出的人的号码为30k +9(k =0,1,…,31).由451≤30k +9≤750,解得44230≤k ≤74130,又k ∈N ,故k =15,16, (24)共10人.[答案] (1)D (2)C[解题方略] 系统抽样和分层抽样中的计算 (1)系统抽样①总体容量为N ,样本容量为n ,则要将总体均分成n 组,每组Nn个(有零头时要先去掉). ②若第一组抽到编号为k 的个体,则以后各组中抽取的个体编号依次为k +N n,…,k +(n -1)N n.(2)分层抽样按比例抽样,计算的主要依据是:各层抽取的数量之比=总体中各层的数量之比.[跟踪训练]1.(2019·全国卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生解析:选C 根据题意,系统抽样是等距抽样,所以抽样间隔为1000100=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C.2.某中学有高中生3000人,初中生2000人,男、女生所占的比例如图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是( )A.12B.15C.20D.21解析:选 A 因为抽样比为213000×70%=1100,所以从初中生中抽取的男生人数为2000×60%×1100=12.故选A.[例2] (2019·全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.[解] (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100 i =15n i (y i -y )2=1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7] =0.0296,s =0.0296=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.[解题方略] 1.方差的计算与含义(1)计算:计算方差首先要计算平均数,然后再按照方差的计算公式进行计算. (2)含义:方差是描述一个样本和总体的波动大小的特征数,方差大说明波动大. 2.从频率分布直方图中得出有关数据的方法[跟踪训练]1.(2019·石家庄市质量检测)甲、乙两人8次测评成绩的茎叶图如图,由茎叶图知甲的成绩的平均数和乙的成绩的中位数分别是( )A.23,22B.23,22.5C.21,22D.21,22.5解析:选D 由茎叶图可得甲的成绩的平均数为10+11+14+21+23+23+32+348=21.将乙的成绩按从小到大的顺序排列,中间的两个成绩分别是22,23,所以乙的成绩的中位数为22+232=22.5.2.为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量的数据(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a 的值;(2)估计这种植物果实重量的平均数x 和方差s 2(同一组中的数据用该组区间的中点值作代表).解:(1)由5×(0.020+0.040+0.075+a +0.015)=1,得a =0.050. (2)各组中点值和相应的频率依次为中点值 30 35 40 45 50 频率0.10.20.3750.250.075x =30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,s 2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.考点三统计案例题型一 回归分析在实际问题中的应用[例3] 某省的一个气象站观测点在连续4天里记录的AQI 指数M 与当天的空气水平可见度y (单位:cm)的情况如表1:M 900 700 300 100 y0.53.56.59.5该省某市2019年11月份AQI 指数频数分布如表2:M[0,200)[200,400)[400,600)[600,800)[800,1000]频数(天) 361263(1)设x =M100,若x 与y 之间是线性关系,试根据表1的数据求出y 关于x 的线性回归方程.(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI 指数存在相关关系如表3:M[0,200)[200,400)[400,600)[600,800)[800,1000]日均收入(元) -2000-1000200060008000根据表3估计小李的洗车店2019年11月份每天的平均收入.附参考公式:y ^=b ^x +a ^,其中b ^=,a ^=y -b ^x .[解] (1)x =14(9+7+3+1)=5,y =14(0.5+3.5+6.5+9.5)=5,∑4,i =1x i y i =9×0.5+7×3.5+3×6.5+1×9.5=58. ∑4,i =1x 2i =92+72+32+12=140,所以b ^=58-4×5×5140-4×52=-2120,a ^=5-⎝ ⎛⎭⎪⎫-2120×5=414, 所以y 关于x 的线性回归方程为y ^=-2120x +414.(2)根据表3可知,该月30天中有3天每天亏损2000元,有6天每天亏损1000元,有12天每天收入2000元,有6天每天收入6000元,有3天每天收入8000元,估计小李洗车店2019年11月份每天的平均收入为130×(-2000×3-1000×6+2000×12+6000×6+8000×3)=2400(元).[解题方略] 求回归直线方程的方法(1)若所求的回归直线方程是在选择题中,常利用回归直线y ^=b ^x +a ^必经过样本点的中心(x ,y )快速选择.(2)若所求的回归直线方程是在解答题中,则求回归直线方程的一般步骤为:题型二 独立性检验在实际问题中的应用[例4] (2019·全国卷Ⅰ)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).P (K 2≥k )0.050 0.010 0.001[解] (1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K 2的观测值k =100×(40×20-30×10)250×50×70×30≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.[解题方略] 独立性检验的一般步骤 (1)根据样本数据制成2×2列联表;(2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d )计算出K2的观测值;(3)比较K 2的观测值与临界值的大小,作出统计推断.[跟踪训练]1.某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:则认为“是否同意限定区域停车与家长的性别有关”的把握约为( ) A.0.1% B.0.5% C.99.5%D.99.9%附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解析:选C 因为K 2=50×(20×15-5×10)225×25×30×20≈8.333>7.879,所以约有99.5%的把握认为“是否同意限定区域停车与家长的性别有关”.2.2019年秋新学期开始,某市对全市中小学学生进行健康状况抽样调查,其中在某校调查得到了该校前五个年级近视率y 的数据如下表:根据前五个年级的数据,利用最小二乘法求出y 关于x 的线性回归方程,并根据方程预测六年级学生的近视率.附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘法估计公式分别为得b ^=2.76-2.2555-45=0.051,a ^=0.15-0.051×3=-0.003,得线性回归方程为y ^=0.051x -0.003.当x =6时,代入得y ^=0.051×6-0.003=0.303, 所以六年级学生的近视率在0.303左右.数学建模——回归分析问题的求解[典例] (2019·合肥市第二次质量检测)为了了解A 地区足球特色学校的发展状况,某调查机构统计得到如下数据:(1)根据表中数据,计算y 与x 的相关系数r ,并说明y 与x 的线性相关性强弱(已知:0.75≤|r |≤1,则认为y 与x 线性相关性很强;0.3≤|r |<0.75,则认为y 与x 线性相关性一般;|r |≤0.25,则认为y 与x 线性相关性较弱);(2)求y 关于x 的线性回归方程,并预测A 地区2019年足球特色学校的个数(精确到个).[解] (1)x =2016,y =1,r =i =15(x i -x )(y i -y )i =15(x i -x )2i =15(y i -y )2=(-2)×(-0.7)+(-1)×(-0.4)+1×0.4+2×0.710× 1.3= 3.63.6056=0.9984>0.75, ∴y 与x 线性相关性很强.a ^=y -b ^x =1-0.36×2016=-724.76,∴y 关于x 的线性回归方程是y ^=0.36x -724.76. 当x =2019时,y ^=0.36×2019-724.76=2.08, 即A 地区2019年足球特色学校约有208个. [素养通路]本题是典型的回归分析问题,在实际问题中收集数据,画散点图,用线性回归模型拟合变量关系,再用最小二乘法求出回归方程,进而用回归模型对实际问题进行预测,考查了数学建模这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.利用系统抽样法从编号分别为1,2,3,…,80的80件不同产品中抽出一个容量为16的样本,如果抽出的产品中有一件产品的编号为13,则抽到产品的最大编号为( )A.73B.78C.77D.76解析:选B 样本的分段间隔为8016=5,所以13号在第三组,则最大的编号为13+(16-3)×5=78.故选B.2.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差解析:选A 中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.3.(2019·广东六校第一次联考)某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:kW ·h)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了如下对照表:由表中数据得线性回归方程:y ^=-2x +60,则a 的值为( ) A.48 B.62 C.64D.68解析:选C 由题意,得x =17+14+10-14=10,y =24+34+38+a 4=96+a4.样本点的中心(x ,y )在回归直线y ^=-2x +60上,代入线性回归方程可得96+a 4=-20+60,解得a=64,故选C.4.如图是民航部门统计的2019年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A.深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的春运期间往返机票价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门解析:选D 由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,故A 正确;由图可知深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,故B 正确;由图可知条形图由高到低居于前三位的城市为北京、深圳和广州,故C 正确;由图可知平均价格的涨幅由高到低分别为天津、西安和南京,故D 错误,选D.5.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n },若a 3=8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A.13,12B.13,13C.12,13D.13,14解析:选B 设等差数列{a n }的公差为d (d ≠0),a 3=8,a 1a 7=a 23=64,(8-2d )(8+4d )=64,即2d -d 2=0,又d ≠0,故d =2,故样本数据为:4,6,8,10,12,14,16,18,20,22,平均数为(4+22)×510=13,中位数为12+142=13.6.(2019·成都市第二次诊断性检测)为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分,制成如图所示的茎叶图.有下列结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数; ②甲最近五场比赛得分的平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定; ④从最近五场比赛的得分看,甲比乙更稳定. 其中所有正确结论的编号为( ) A.①③ B.①④ C.②③D.②④解析:选C 对于①,甲得分的中位数为29,乙得分的中位数为30,错误; 对于②,甲得分的平均数为15×(25+28+29+31+32)=29,乙得分的平均数为15×(28+29+30+31+32)=30,正确;对于③,甲得分的方差为15×[(25-29)2+(28-29)2+(29-29)2+(31-29)2+(32-29)2]=15×(16+1+0+4+9)=6,乙得分的方差为15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=15×(4+1+0+1+4)=2,所以乙比甲更稳定,③正确,④错误.所以正确结论的编号为②③.二、填空题7.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.解析:x =10×0.97+20×0.98+10×0.9910+20+10=0.98.则经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.988.(2019·安徽五校联盟第二次质检)数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为________.解析:设a 1,a 2,a 3,…,a n 的平均数为a ,则2a 1,2a 2,2a 3,…,2a n 的平均数为2a , σ2=(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n.则2a 1,2a 2,2a 3,…,2a n 的方差为(2a 1-2a )2+(2a 2-2a )2+(2a 3-2a )2+…+(2a n -2a )2n=4×(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n=4σ2.答案:4σ29.某新闻媒体为了了解观众对央视《开门大吉》节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:试根据样本估计总体的思想,估计在犯错误的概率不超过________的前提下(约有________的把握)认为“喜爱该节目与否和性别有关”.参考附表:⎝ ⎛⎭⎪⎫参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d解析:分析列联表中数据,可得K 2的观测值k =110×(40×30-20×20)260×50×60×50≈7.822>6.635,所以在犯错误的概率不超过0.01的前提下(有99%的把握)认为“喜爱该节目与否和性别有关”.答案:0.01 99% 三、解答题10.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解:(1)由已知得0.70=a +0.20+0.15,故a =0.35.b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05, 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.某市教育学院从参加市级高中数学竞赛的考生中随机抽取60名学生,将其竞赛成绩(均为整数)分成六段:[40,50),[50,60),[60,70),…,[90,100],得到如图所示的频率分布直方图.(1)根据频率分布直方图,估计参加高中数学竞赛的考生的成绩的平均数、众数、中位数(小数点后保留一位有效数字);(2)用分层抽样的方法在各分数段的考生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?解:(1)由频率分布直方图可知,(0.010+0.015+0.015+a +0.025+0.005)×10=1,所以a =0.03. 所以参加高中数学竞赛的考生的成绩的平均数为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71, 成绩的众数为75.设参加高中数学竞赛的考生的成绩的中位数为x ,则0.1+0.15+0.15+(x -70)×0.03=0.5,解得x ≈73.3, 所以中位数为73.3.(2)因为各层人数分别为6,9,9,18,15,3,各层抽取比例为2060=13,所以各分数段抽取人数依次为2,3,3,6,5,1.12.(2019·沈阳市质量监测(一))某篮球运动员的投篮命中率为50%,他想提高自己的投篮水平,制定了一个夏季训练计划,为了了解训练效果,执行训练前,他统计了10场比赛的得分,计算出得分的中位数为15,平均得分为15,得分的方差为46.3.执行训练后也统计了10场比赛的得分,茎叶图如图所示:(1)请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差. (2)如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?解:(1)训练后得分的中位数为14+152=14.5;平均得分为8+9+12+14+14+15+16+18+21+2310=15;方差为110[(8-15)2+(9-15)2+(12-15)2+(14-15)2+(14-15)2+(15-15)2+(16-15)2+(18-15)2+(21-15)2+(23-15)2]=20.6.(2)尽管中位数训练后比训练前稍小,但平均得分一样,训练后方差20.6小于训练前方差46.3,说明训练后得分稳定性提高了(阐述观点合理即可),这是投篮水平提高的表现.故此训练计划对该篮球运动员的投篮水平的提高有帮助.B 组——大题专攻强化练1.(2019·武汉市调研测试)一个工厂在某年里连续10个月每月产品的总成本y (万元)与该月产量x (万件)之间有如下一组数据:(1)通过画散点图,发现可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明. (2)①建立月总成本y 与月产量x 之间的回归方程;②通过建立的y 关于x 的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:错误!i =27.31,∑i =110x 2i -10x 2≈0.850,∑i =110y 2i -10y 2≈1.042,b ^≈1.223. ②参考公式:相关系数回归直线y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为:解:(1)由已知条件得,r =b ^·∑i =110x 2i -10x 2∑i =110y 2i -10y 2,∴r =1.223×0.8501.042≈0.998,这说明y 与x 正相关,且相关性很强. (2)①由已知求得x =1.445,y =2.731, a ^=y -b ^x =2.731-1.223×1.445≈0.964,∴所求回归直线方程为y ^=1.223x +0.964.②当x =1.98时,y =1.223×1.98+0.964≈3.386(万元), 此时产品的总成本约为3.386万元.2.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50kg的概率并估计新养殖法的箱产量的平均值;(2)填写下面的2×2列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解:(1)旧养殖法的箱产量低于50kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62,所以旧养殖法的箱产量低于50kg的概率估计值为0.62;新养殖法的箱产量的平均值为37.5×0.004×5+42.5×0.020×5+47.5×0.044×5+52.5×0.068×5+57.5×0.046×5+62.5×0.010×5+67.5×0.008×5=52.35.(2)根据箱产量的频率分布直方图得2×2列联表如下:由表中数据得K 2=200×(62×66-34×38)2100×100×96×104≈15.705,由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.3.(2019·长沙市统一模拟考试)某互联网公司为了确定下一季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如下表:他们用两种模型①y =bx +a ,②y =a e bx分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由. (2)残差绝对值大于2的数据被认为是异常数据,需要剔除:(ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程;(ⅱ)广告投入量x =18时,(1)中所选模型收益的预报值是多少?附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为:解:(1)应该选择模型①,因为模型①的残差点比较均匀地落在水平的带状区域中,且模型①的带状区域比模型②的带状区域窄,所以模型①的拟合精度高,回归方程的预报精度高.(2)(ⅰ)剔除异常数据,即3月份的数据后,得x =15×(7×6-6)=7.2, y =15×(30×6-31.8)=29.64.(ⅱ)把x =18代入(ⅰ)中所求回归方程得y ^=3×18+8.04=62.04,故预报值为62.04万元.4.每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技兴趣小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:(1)请根据统计的最后三组数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;(3)若100颗小麦种子的发芽数为n 颗,则记n %的发芽率,当发芽率为n %时,平均每亩地的收益为10n 元,某农场有土地10万亩,小麦种植期间昼夜温差大约为9℃,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.附:在线性回归方程y ^=b ^x +a ^中,b ^=解:(1)∵x =11+13+123=12,y =85+90+863=87,∴b ^=11×85+13×90+12×86-3×12×87112+132+122-3×122=52, 由b ^x +a ^=y ,即52×12+a ^=87,得a ^=57,∴线性回归方程为y ^=52x +57.(2)当x =8时,y ^=52×8+57=77,与实际值79比较,误差没有超过两颗;当x =10时,y ^=52×10+57=82,与实际值81比较,误差也没有超过两颗.所以(1)中得到的线性回归方程y ^=52x +57是可靠的.(3)由y ^=52x +57得,当x =9时,y ^=79.5,即每亩地的收益大约为795元,所以该农场种植小麦所获得的收益大约为7950万元.第2讲 概 率[例1] (1)(2019·全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B.35 C.25D.15(2)某教师让学生从3.1415926的小数点之后的七个数字1,4,1,5,9,2,6中随机选取两个数字,整数部分3不变,那么得到的数大于3.14的概率为( )A.2831B.1921C.2231D.1721[解析] (1)设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.故选B.(2)从1,4,1,5,9,2,6这7位数字中任选两位数字的不同情况有:14,11,15,19,12,16,41,45,49,42,46,59,52,56,92,96,26,51,91,21,61,54,94,24,64,95,25,65,29,69,62,共31种,其中使得到的数字不大于3.14的情况有3种,故所得到的数字大于3.14的概率P =1-331=2831.[答案] (1)B (2)A [解题方略]1.求古典概型概率的两个关键点(1)会利用枚举法、列表法等,求样本空间所含的基本事件数n 以及事件A 所含的基本事件数m ;(2)会运用古典概型的概率计算公式P (A )=m n求事件A 发生的概率. 2.互斥事件、对立事件概率的求法解决此类问题,首先应根据互斥事件和对立事件的定义分析出是不是互斥事件或对立事件,再选择概率公式进行计算.其方法有直接法和间接法.[跟踪训练]1.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x+b 为减函数的概率是( )A.310B.35C.25D.15解析:选C 函数f (x )=(a 2-2)e x+b 为减函数,则a 2-2<0,-2<a <2,且与b无关.又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,所以函数f (x )=(a 2-2)e x+b 为减函数的概率是25.故选C.2.如图是由1个圆、1个三角形和1个长方形构成的组合体,现用红、蓝2种颜色为其涂色,每个图形只能涂1种颜色,则3个图形颜色不全相同的概率为________.解析:设事件M 为“3个图形颜色不全相同”,则其对立事件M 为“3个图形颜色全相同”,用红、蓝2种颜色为3个图形涂色,每个图形有2种选择,共有2×2×2=8种情况.其中颜色全部相同的有2种,即全部用红色或蓝色,所以P (M )=28=14,所以P (M )=1-P (M )=1-14=34.答案:343.某校拟从高二年级2名文科生和4名理科生中选出4名同学代表学校参加知识竞赛,其中每个人被选中的可能性均相等.(1)求被选中的4名同学中恰有2名文科生的概率; (2)求被选中的4名同学中至少有1名文科生的概率.解:将2名文科生和4名理科生依次编号为1,2,3,4,5,6,从2名文科生和4名理科生中选出4名同学记为(a ,b ,c ,d ),其结果有(1,2,3,4),(1,2,3,5),(1,2,3,6),(1,2,4,5),(1,2,4,6),(1,2,5,6),(1,3,4,5),(1,3,4,6),(1,3,5,6),(1,4,5,6),(2,3,4,5),(2,3,4,6),(2,3,5,6),(2,4,5,6),(3,4,5,6),共15种.(1)被选中的4名同学中恰有2名文科生的结果有(1,2,3,4),(1,2,3,5),(1,2,3,6),(1,2,4,5),(1,2,4,6),(1,2,5,6),共6种.记“被选中的4名同学中恰有2名文科生”为事件A , 则P (A )=615=25.(2)记“被选中的4名同学中至少有1名文科生”为事件B ,则事件B 包含有1名文科生或者2名文科生这两种情况.其对立事件为“被选中的4名同学中没有文科生”,只有一种结果(3,4,5,6).所以P (B )=115,所以P (B )=1-P (B )=1-115=1415.考点二几何概型[例2] (1)设集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫14<2x <16,B ={x |y =ln(x 2-3x )},从集合A 中任取一个元素,则这个元素也是集合B 中元素的概率是________.(2)(2019·江淮十校联考)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块小正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的大正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为________.[解析] (1)因为集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪14<2x <16=(-2,4),B ={x |y =ln(x 2-3x )}=(-∞,0)∪(3,+∞),所以A ∩B ={x |3<x <4或-2<x <0},所以所求事件的概率是4-3+0+24+2=12.(2)设大正方形的边长为2,则该正方形的面积为4,阴影部分的面积为12×1×2+1×12=32,所以在大正方形中任取一点,此点取自阴影部分的概率为324=38. [答案] (1)12 (2)38[解题方略] 公式法求解几何概型的关键(1)定型,即判断事件的属性——等可能性与无限性,确定所求概率模型为几何概型. (2)定类,即确定所求事件的几何属性及其度量方式,确定其度量的类别——长度、角度、面积或体积等.(3)求量,根据平面几何、立体几何的相关知识求出基本事件空间Ω度量及事件A 的几何度量.(4)求值,把所求的两个几何度量值代入几何概型的计算公式求值.[跟踪训练]1.(2019·福建五校第二次联考)在区间[0,2]上随机取一个数x ,使sin π2x ≥32的概率为( )A.13B.12C.23D.34解析:选A 当x ∈[0,2]时,0≤π2x ≤π,所以sin π2x ≥32⇔π3≤π2x ≤2π3⇔23≤x≤43.故由几何概型的知识可知所求概率P =43-232=13.故选A. 2.(2019·湖南省五市十校联考)一只蚂蚁在三边长分别为6,8,10的三角形内自由爬行,某时刻该蚂蚁距离三角形的任意一个顶点的距离不超过1的概率为( )A.π24 B.π48C.112D.18解析:选 B 由题意,可得三角形为直角三角形,其面积为12×6×8=24,三角形内距离三角形的任意一个顶点的距离不大于1的区域如图中阴影部分所示,它的面积为半径为1的半圆面积,即S =12π×12=π2,所以所求概率P =π224=π48,故选B.3.已知在四棱锥P ABCD 中,PA ⊥底面ABCD ,底面ABCD 是正方形,PA =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O ABCD 的体积不小于23的概率为________.解析:当四棱锥O ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则有13×22×h =23,解得h =12.如图所示,在四棱锥P ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为PA ⊥底面ABCD ,且PA =2,所以PH PA =34,又四棱锥P ABCD 与四棱锥P EFGH 相似,所以四棱锥O ABCD 的体积不小于23的概率为P =V 四棱锥P EFGH V 四棱锥P ABCD =⎝ ⎛⎭⎪⎫PH PA 3=⎝ ⎛⎭⎪⎫343=2764.答案:2764。
二轮复习 概率与统计 教案(全国通用)一、统计与统计案例 1.抽样方法三种抽样方法的比较2.统计图表(1)在频率分布直方图中:①各小矩形的面积表示相应各组的频率,各小矩形的高=频率组距;②各小矩形面积之和等于1;③中位数左右两侧的直方图面积相等,因此可以估计其近似值. (2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推). 3.样本的数字特征 (1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据). (2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.学-科网 (3)平均数与方差样本数据的平均数x -=1n (x 1+x 2+…+x n ).方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定. 4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量x 和y 具有线性相关关系. (2)用最小二乘法求回归直线的方程 设线性回归方程为y ^=b ^x +a ^,则⎩⎪⎨⎪⎧b ^=∑i =1n x i -x -y i -y-∑i =1n x i -x-2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2a ^=y --b ^x-.注意:回归直线一定经过样本的中心点(x -,y -),据此性质可以解决有关的计算问题. 5.回归分析r =∑i =1nx i -x-y i -y-∑i =1nx i -x-2∑i =1ny i -y-2,叫做相关系数.相关系数用来衡量变量x 与y 之间的线性相关程度;|r |≤1,且|r |越接近于1,相关程度越高,|r |越接近于0,相关程度越低. 6.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为y 1y 2总计x 1 a b a +b x 2 c d c +d 总计a +cb +da +b +c +d则K 2=a +b +c +d ad -bc 2a +bc +da +cb +d,若K 2>3. 841,则有95%的把握说两个事件有关; 若K 2>6.635,则有99%的把握说两个事件有关; 若K 2<2.706,则没有充分理由认为两个事件有关. 7.随机事件的概率随机事件的概率范围:0≤P (A )≤1;必然事件的概率为1,不可能事件的概率为0. 8.古典概型①计算一次试验中基本事件的总数n ;②求事件A 包含的基本事件的个数m ;③利用公式P (A )=mn 计算.9.一般地,如果事件A 、B 互斥,那么事件A +B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率的和,即P (A +B )=P (A )+P (B ).10.对立事件:在每一次试验中,相互对立的事件A 和A -不会同时发生,但一定有一个发生,因此有P (A -)=1-P (A ).11.互斥事件与对立事件的关系 对立必互斥,互斥未必对立. 12.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点落在其内部区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.高频考点一 事件与概率例1.(2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为【变式探究】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5 概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【解析】(1)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15. 又P (AB )=P (B ),故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311,因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为X 0.85a a 1.25a 1.5a 1.75a 2a P0.300.150.200.200.100.05EX =0.85a ×0.30+a ×0.15+1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=1.23a . 因此续保人本年度的平均保费与基本保费的比值为1.23aa=1.23.【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .1 B.1121 C.1021 D.521解析 从袋中任取2个球共有C 215=105种取法,其中恰好1个白球1个红球共有C 110C 15=50种取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.答案 C高频考点二 古典概型例2.【2017山东,理8】从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】标有1, 2,⋅⋅⋅, 9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡片上的数奇偶性不同的概率是115425989C C =⨯ ,选C.【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.521 B.1021 C.1121D .1 【解析】 (1)方法一:从袋中取出2个球的方法有C 215=105(种),取出1个白球的方法有C 110=10(种),取出1个红球的方法有C 15=5(种),故取2个球,1白1红的方法有C 110C 15=50(种),所以P =50105=1021. 方法二(间接法):从袋中取出2个球的方法有C 215=105(种),若取出的2个球是同色的,则取出的方法有C 210+C 25=55(种).记“取出的2个球同色”为事件A ,则P (A )=55105=1121.因此,取出的2个球不同色的概率为P =1-P (A )=1021.【变式探究】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15B.25C.35D.45高频考点三 随机数与几何概型例3.(2018年全国I 卷理数)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.【变式探究】【2017课标1,理】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【答案】B【变式探究】某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34【答案】B 【解析】由题意知,小明在7:50至8:30 之间到达发车站,故他只能乘坐8:00或8:30发的车,所以他等车时间不超过10分钟的概率P =10+1040=12.【变式探究】从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2nm C.4m n D.2m n【答案】C 【解析】由题意知,m n =π4,故π=4m n ,即圆周率π的近似值为4m n .高频考点四 条件概率与相互独立事件的概率例4.【2017课标II ,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:【答案】(1)0.4092;(2)见解析;(3)52.35kg (). 【解析】(1)记B 表示事件“旧养殖法的箱产量低于50kg ” , C 表示事件“新养殖法的箱产量不低于50kg ”由题意知旧养殖法的箱产量低于50kg 的频率为故()P B 的估计值为0.62新养殖法的箱产量不低于50kg 的频率为故()P C 的估计值为0.66 因此,事件A 的概率估计值为(2)根据箱产量的频率分布直方图得列联表箱产量50kg < 箱产量50kg ≥ 旧养殖法 62 38 新养殖法3466由于故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为,箱产量低于55kg 的直方图面积为故新养殖法箱产量的中位数的估计值为.【变式探究】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36D .0.312解析 该同学通过测试的概率为p =0.6×0.6+C 12×0.4×0.62=0.648. 答案 A【变式探究】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75C .0.6D .0.45解析 由条件概率可得所求概率为0.60.75=0.8,故选A.答案 A高频考点五 正态分布例5.【2017课标1,理19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在之外的零件数,求(1)P X ≥及X 的数学期望;学_科网(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.9110.13 10.02 9.22 10.04 10.05 9.95经计算得,,其中i x 为抽取的第i 个零件的尺寸,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则,,.【答案】(1)0.0416.(2)(i )见解析;(ii )0.09. 【解析】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此.X 的数学期望为.(2)(i )如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程学科&网可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ii )由,得μ的估计值为ˆ9.97μ=, σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据9.22,剩下数据的平均数为,因此μ的估计值为10.02.,剔除之外的数据9.22,剩下数据的样本方差为,因此 的估计值为.【变式探究】在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4.A .2 386B .2 718C .3 413D .4 772 解析 由X ~N (0,1)知,P (-1<X ≤1)=0.682 6, ∴P (0≤X ≤1)=12×0.682 6=0.341 3,故S ≈0.341 3.∴落在阴影部分中点的个数x 估计值为x 10 000=S1(古典概型),∴x =10 000×0.341 3=3 413,故选C. 答案 C【变式探究】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表); (2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.(ⅰ)利用该正态分布,求P (187.8<Z <212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.高频考点六离散型随机变量的分布列例6.(2018年浙江卷)设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】,,,∴先增后减,因此选D.【变式探究】【2017天津,理16】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111 ,, 234.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(Ⅰ)见解析;(Ⅱ)1148. 【解析】(Ⅰ)解:随机变量X 的所有可能取值为0,1,2,3.,,,.所以,随机变量X 的分布列为X 0 1 2 3P14 1124 14 124随机变量X 的数学期望.(Ⅱ)解:设Y 表示第一辆车遇到红灯的个数, Z 表示第二辆车遇到红灯的个数,则所求事件的概率为.所以,这2辆车共遇到1个红灯的概率为1148. 【变式探究】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A -BCD +AB -CD +ABC -D +ABCD -. 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A -BCD )+P (AB -CD )+P (ABC -D )+P (ABCD -)=P (A )P (B )P (C )P (D )+P (A -)P (B )·P (C )P (D )+P (A )P (B -)P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )·P (D -) =34×23×34×23+2×⎝⎛14×23×34×23+34×13×34×⎭⎫23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎫34×13×14×13+14×23×14×13=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝⎛⎭⎫34×23×34×13+34×23×14×23=60144=512, P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望EX =0×1144+1×572+2×25144+3×112+4×512+6×14=236.【变式探究】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A .P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为X 200 300 400 P110310610E (X )=200×110+300×310+400×610=350.高频考点七 均值与方差例7.(2018年北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k 类电影得到人们喜欢,“”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差,,,,,的大小关系.【答案】(1) 概率为0.025 (2) 概率估计为0.35 (3)>>=>>【解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.(Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P ()=P ()+P ()=P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)>>=>>.【变式探究】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 【答案】0.1【解析】这组数据的平均数为,.故答案应填:0.1,【变式探究】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75高频考点八抽样方法例8.(2018年天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)答案见解析;(ii).【解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为X 0 1 2 3P随机变量X的数学期望.(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.【变式探究】【2017天津,理16】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111 ,, 234.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【答案】(Ⅰ)见解析;(Ⅱ)11 48.【解析】(Ⅰ)解:随机变量X的所有可能取值为0,1,2,3.,,,.所以,随机变量X的分布列为X0123P 14112414124随机变量X的数学期望.(Ⅱ)解:设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为.学科-网所以,这2辆车共遇到1个红灯的概率为11 48.【变式探究】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140【答案】D【解析】由频率分布直方图可知,每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,所以每周的自习时间不少于22.5小时的人数是200×0.7=140.【变式探究】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.167 B.137 C.123 D.93解析由题干扇形统计图可得该校女教师人数为:110×70%+150×(1-60%)=137.故选B.答案 B【变式探究】对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析因为采取简单随机抽样、系统抽样和分层抽取样本时,总体中每个个体被抽中的概率相等,故选D. 答案 D高频考点九频率分布直方图与茎叶图例9.(2018年江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】先由茎叶图得数据,再根据平均数公式求平均数。