莫尔条纹测试技术
- 格式:ppt
- 大小:3.23 MB
- 文档页数:29
莫尔条纹现象与应用(一)
莫尔条纹现象与应用
什么是莫尔条纹现象
•莫尔条纹现象是一种光学现象,指的是两个平行条纹之间出现一系列增强和减弱的条纹。
它是由物体表面的微弱干涉所引起的。
莫尔条纹现象可以用来测量物体的曲率、表面粗糙度等性质。
莫尔条纹现象的应用
1. 表面缺陷检测
•莫尔条纹现象可以用来检测物体表面的缺陷,例如裂纹、磨损、划痕等。
通过观察莫尔条纹的变化,可以判断出表面的不平整程度,进而评估物体的质量。
2. 光学测量
•莫尔条纹现象被广泛应用于光学测量领域。
例如在相机镜头的校正和调试过程中,可以利用莫尔条纹来检测镜头的变形和畸变情况。
3. 材料参数测量
•莫尔条纹现象可以用来测量材料的参数,例如材料的折射率、膜厚等。
通过观察莫尔条纹的形态变化,可以反推出材料的物理性
质。
4. 薄膜涂层测量
•莫尔条纹现象在薄膜涂层领域有重要应用。
通过观察莫尔条纹的颜色变化和条纹密度,可以判断薄膜涂层的厚度和折射率等参数。
5. 纳米结构研究
•在纳米科技领域,莫尔条纹现象被应用于研究纳米结构的形态和性质。
通过观察莫尔条纹的变化,可以了解纳米材料的生长方式、晶格等信息。
结论
•莫尔条纹现象是一种重要的光学现象,它在表面缺陷检测、光学测量、材料参数测量、薄膜涂层测量和纳米结构研究等领域都有
广泛的应用。
通过利用莫尔条纹现象,我们可以更好地理解和利
用光学效应,推动科学技术的发展。
莫尔条纹的光学原理莫尔条纹是一种在光学实验中观察到的干涉现象,它的光学原理与光的波动性以及光的干涉有关。
下面将详细介绍莫尔条纹的光学原理。
光的波动性是理解莫尔条纹的基础。
根据光的波动性,光可以被视为电磁波,它具有一定的频率和波长。
当光通过介质界面时,会发生反射和折射,并且光的波长会在介质中发生改变。
莫尔条纹实验通常在一个反射光源下进行观察,其中的主要元件有一平行板和观察屏。
在莫尔条纹实验中,一束入射光从光源(如激光器)射向一个透明的平行板,平行板的表面可以看作是两个平行的玻璃面,它们之间有一个微小的空气间隙。
当光线垂直入射到平行板上时,根据斯涅耳定律,部分光线将会被反射,另一部分光线则穿过平行板继续向前传播,同时发生折射。
光线在平行板内部传播时,由于光的波长会在介质中发生改变,因此不同路径上的光会有不同的光程。
光程差是产生莫尔条纹的重要因素。
当两束光线经过平行板传播后,在观察屏上会形成明暗相间的条纹,这就是莫尔条纹。
因为光程差的存在,两束光线在观察屏上会产生相位差。
当相位差为整数倍的波长时,两束光线会相干叠加形成明条纹;而当相位差为半波长时,两束光线会相消干涉形成暗条纹。
这种明暗相间的条纹就是莫尔条纹。
具体来说,对于从平行板上的两个不同点出射的光线,光程差可以表示为:ΔL = 2n*dsinθ,其中n是平行板的折射率,d是平行板的厚度,θ是入射角。
当光程差满足ΔL = mλ时,其中m是任意整数,λ是光的波长,两束光线在观察屏上会叠加相干增强形成明条纹;而当光程差满足ΔL = (m+0.5)λ时,两束光线在观察屏上会叠加相消干涉形成暗条纹。
莫尔条纹实验的观察屏上会出现一系列的明暗相间的直线条纹。
这是由于平行板内不同位置处的光程差不同,所以不同位置处会有不同的相位差,从而在观察屏上形成明暗相间的条纹。
莫尔条纹是一种非常重要的干涉现象,它不仅被广泛应用于实验室的光学实验中,还在一些实际应用中得到利用,例如在显微镜、望远镜、天文学观测中都有应用。
莫尔条纹测长细分方法莫尔条纹测长细分方法是一种用于精确测量物体长度的方法。
这种方法基于莫尔条纹现象,通过观察和分析物体表面上的干涉条纹来确定其长度。
莫尔条纹现象是由于光的干涉效应而产生的,当两束光线以不同的角度照射到物体表面时,它们会发生干涉,形成一系列亮暗相间的条纹图案。
莫尔条纹测长细分方法的原理是利用物体表面上的莫尔条纹来进行测量。
首先,我们需要将一束平行光照射到待测物体表面,使其产生莫尔条纹。
然后,通过调整观察角度,我们可以看到莫尔条纹的变化,从而确定物体的长度。
在实际应用中,我们通常使用莫尔条纹测长仪来进行测量。
莫尔条纹测长仪是一种专门用于测量物体长度的仪器,它通过调整光源和观察系统的位置,使莫尔条纹清晰可见,并通过测量莫尔条纹的变化来计算物体的长度。
莫尔条纹测长细分方法的优点是测量精度高、测量范围广、操作简便。
由于莫尔条纹测长仪可以通过调整光源和观察系统的位置,使莫尔条纹清晰可见,因此可以实现对不同尺寸和形状的物体进行测量。
此外,由于莫尔条纹测长方法不受物体材料的影响,因此可以应用于多种材料的测量。
然而,莫尔条纹测长细分方法也存在一些限制。
首先,该方法对光源的要求较高,需要保证平行光的照射。
其次,莫尔条纹的解释需要一定的光学知识,对操作者的要求较高。
此外,莫尔条纹测长方法在测量曲面物体时存在困难,因为曲面物体的莫尔条纹分布较为复杂。
为了提高莫尔条纹测长细分方法的测量精度,我们可以采用多种技术手段。
例如,可以使用高精度的光源和观察系统,以及精确的测量装置。
此外,还可以采用数字图像处理技术对莫尔条纹进行分析和处理,进一步提高测量的准确性和可靠性。
莫尔条纹测长细分方法是一种精确测量物体长度的方法。
通过观察和分析物体表面上的莫尔条纹,我们可以确定物体的长度。
虽然莫尔条纹测长细分方法存在一些限制,但通过采用适当的技术手段和改进措施,可以提高测量精度和可靠性,进一步扩展该方法的应用领域。
光学设计实验莫尔条纹原理及其应用学生姓名:***指导教师:***所在学院:物理学院所学专业:物理学(公费)中国·长春2014年6月莫尔条纹原理及应用一、摘要:目前,以莫尔条纹技术为基础的光栅线性位移传感器发展十分迅速,光栅长度测量系统的分辨率达到纳米级,测量精度已达 0.1um,已成为位移测量领域各工业化国家竞争的关键技术。
它的应用非常广泛,几乎渗透到社会科学中的各个领域,如机床行业、计量测试部门、航空航天航海、科研教育以及国防等各个行业部门。
本文详细阐述了莫尔条纹的形成机理,当计量光栅为粗光栅时,莫尔条纹形成机理用遮光阴影原理解释,当计量光栅为细光栅时,则用衍射干涉原理解释,以及相关公式的推导过程。
然后系统介绍了莫尔条纹的有关应用以及光栅传感器的原理和应用。
说明了微小偏向角的测量原理及方法,到达对莫尔条纹的进一步理解和认识。
关键词:莫尔条纹,光栅传感器,微小偏向角二、英文摘要At the present time, grating linear movement sensor based on grating Moiré fringe interferometry technology has developed rapidly.Grating movement measurement system has reached the nanometer level resolution, measuring accuracy than 0.1um.It is widely used, almost penetrated into the social sciences in various fields, such as the machine tool industry,test measurement,aerospace navigation,national defense,education and scientific research in all industry sectors.This paper describes in detail the formation mechanismof Moiré fringes, when the grating is coarse grating , Moiré fringe formation mechanism explained by shading shadow principle, when the grating is fine grating diffraction interferometry,with the explanation,the reasoning process and the correlation formula. Then introduces the application of grating sensor principle and application of Moiré fringe.The small deviation angle measuring principle and method, tof urther understanding of Moiré fringe.Keywords: Moire Fringe,grating sensor,deviation angle三、正文1、问题提出光栅莫尔条纹技术是一门既古老又现代的测量技术。
光学设计实验莫尔条纹原理及其应用学生姓名:周波指导教师:李金环所在学院:物理学院所学专业:物理学(公费)中国·长春2014年6月莫尔条纹原理及应用一、摘要:目前,以莫尔条纹技术为基础的光栅线性位移传感器发展十分迅速,光栅长度测量系统的分辨率达到纳米级,测量精度已达 0.1um,已成为位移测量领域各工业化国家竞争的关键技术。
它的应用非常广泛,几乎渗透到社会科学中的各个领域,如机床行业、计量测试部门、航空航天航海、科研教育以及国防等各个行业部门。
本文详细阐述了莫尔条纹的形成机理,当计量光栅为粗光栅时,莫尔条纹形成机理用遮光阴影原理解释,当计量光栅为细光栅时,则用衍射干涉原理解释,以及相关公式的推导过程。
然后系统介绍了莫尔条纹的有关应用以及光栅传感器的原理和应用。
说明了微小偏向角的测量原理及方法,到达对莫尔条纹的进一步理解和认识。
关键词:莫尔条纹,光栅传感器,微小偏向角二、英文摘要at the present time, grating linear movement sensor based on grating moiré fringeinterferometry technology has developed rapidly.grating movement measurement systemhas reached the nanometer level resolution, measuring accuracy than 0.1um.it iswidely used, almost penetrated into the social sciences in various fields, such asthe machine tool industry,test measurement,aerospace navigation,nationaldefense,education and scientific research in all industry sectors. this paper describes in detail the formation mechanismof moiré fringes, when thegrating is coarse grating , moiré fringe formation mechanism explained by shadingshadow principle, when the grating is fine grating diffraction interferometry,withthe explanation,the reasoning process and the correlation formula. then introducesthe application of grating sensor principle and application of moiré fringe.the smalldeviation angle measuring principle and method, tof urther understanding of moiré fringe. keywords: moire fringe,grating sensor,deviation angle三、正文1、问题提出光栅莫尔条纹技术是一门既古老又现代的测量技术。
光学设计实验莫尔条纹原理及应用学生姓名:指导教师:所在学院:物理学院所学专业:物理学中国·长春2014 年6 月一、中文摘要目前,以莫尔条纹技术为基础的光栅线性位移传感器发展十分迅速,光栅长度测量系统的分辨率达到纳米级,测量精度已达 0.1um,已成为位移测量领域各工业化国家竞争的关键技术。
它的应用非常广泛,几乎渗透到社会科学中的各个领域,如机床行业、计量测试部门、航空航天航海、科研教育以及国防等各个行业部门。
本文首先详细阐述了莫尔条纹的形成机理,当计量光栅为粗光栅时,莫尔条纹形成机理用遮光阴影原理解释,当计量光栅为细光栅时,则用衍射干涉原理解释。
然后系统介绍了基于莫尔条纹技术的光电测量仪器的设计原理,它由光栅读数头和对莫尔条纹信号进行处理的电子学部分组成,光栅读数头包括光栅副,光电接收元件,由光源和准直镜组成的照明系统,以及必要的光阑、接收狭缝、调整机构等。
最后提出了基于光栅莫尔条纹干涉计量技术的一种新的应用,即把光栅线性位移传感器应用在数字读数显微镜上,数字读数显微镜包括光学系统、控制与显示系统、CCD 摄像机与显示器四部分,其中,控制与显示系统是设计的核心模块,是基于 FPGA 技术实现的,它包括倍频鉴相模块、可逆计数模块、显示控制和显示接口模块。
经过大量的理论研究和实践测试工作,我们已经把光栅莫尔条纹技术成功地应用在数字读数显微镜上,实现了对被测物体线性位移的精密测量,测量分辨率达到 0.5um,测量精度达到±1um。
设计中用 CCD 摄像头代替目镜可以避免传统的肉眼观察的不便。
关键词:莫尔条纹,光栅读数头,FPGA,数字读数显微镜二、英文摘要At the present time, grating linear movement sensor based on grating Moiré fringe interferometry technology has developed rapidly.Grating movement measurement system has reached the nanometer level resolution, measuring accuracy than 0.1um.It is widely used, almost penetrated into the social sciences in various fields, such as the machine tool industry,test measurement,aerospace navigation,national defense,education and scientific research in all industry sectors.This paper first described in detail the formation mechanism of Moire fringe,when the measurement grating for coarse grating, the moire fringe formation mechanism of the shadow of the principle of using sunscreen to explain, when the measurement grating for fine grating, then explained by diffraction interference principle. And then systematically introduced the principle of design of grating linear movement sensor based on Grating Moire fringe technology, grating linear movement sensor is composed of grating reading-head and Moire fringe signal processing electronics components.Grating reading-head include Grating pair, the lighting system composed of light source, collimation mirror, the essential diaphragm, received slot and adjusted organization, etc. Finally, a new kind of application based on the Moire fringe interferometry technology is proposed, which apply the grating linear movement sensor to the digital reading microscope. The digital reading microscope includes optical system, control and display system,CCD camera and display four parts, among them, it is the key module that is designed to control with the display system, which is based on FPGA technology and mainly concludes four fold-frequency and direction-judgment module,reversible counter module,displaying control module and displaying interface module.After a lot of theoretical research and practical testing,we have already applied grating Moire fringe technology to the digital reading microscope successfully,which has made the accurate measurement of linear displacement of the testee become true, and the measured resolution has reached 0.5um, the measurement accuracy has reached ± 1um. CCD camera instead of eyepiece can avoid the inconvenience of traditional visual observation.Keywords: Moire Fringe, Grating Reading Head, FPGA, Digital Reading Microscope三、正文1、问题提出光栅莫尔条纹技术是一门既古老又现代的测量技术。
第1篇一、实验目的1. 理解莫尔条纹的原理;2. 观察并分析莫尔条纹的特点;3. 掌握莫尔条纹在光学测量中的应用。
二、实验原理莫尔条纹是两条或两条以上等间距的平行线或两个物体之间以恒定角度和频率发生干涉的视觉结果。
当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹,这种光学现象中的花纹就是莫尔条纹。
莫尔条纹的特点包括:条纹间距的固定性、颜色一致性、方向性等。
三、实验仪器与材料1. 实验仪器:莫尔条纹演示装置、光源、屏幕、尺子、游标卡尺;2. 实验材料:透明薄膜、刻度尺、白纸。
四、实验步骤1. 准备工作:将透明薄膜贴在刻度尺上,使刻度尺与透明薄膜平行;2. 光源照射:将光源照射到透明薄膜上,使光线透过透明薄膜;3. 观察现象:将白纸放在透明薄膜的另一侧,观察并记录莫尔条纹的形状、间距、颜色等特点;4. 测量条纹间距:使用尺子测量莫尔条纹的间距,并记录数据;5. 测量角度:使用游标卡尺测量透明薄膜与刻度尺之间的角度,并记录数据;6. 分析结果:根据实验数据,分析莫尔条纹的特点及其在光学测量中的应用。
五、实验结果与分析1. 实验结果:通过实验观察,发现莫尔条纹呈现出明暗相间的条纹,条纹间距固定,颜色一致,且具有一定的方向性。
2. 分析结果:(1)莫尔条纹的间距固定:根据实验数据,莫尔条纹的间距与透明薄膜的刻度间距一致,说明莫尔条纹的间距是固定的。
(2)莫尔条纹的颜色一致:实验中观察到的莫尔条纹颜色一致,说明在同一颜色范围内,莫尔条纹的颜色是一致的。
(3)莫尔条纹的方向性:通过改变透明薄膜与刻度尺之间的角度,发现莫尔条纹的方向也随之改变,说明莫尔条纹具有方向性。
六、结论1. 通过本实验,成功演示了莫尔条纹的形成过程,掌握了莫尔条纹的特点;2. 莫尔条纹在光学测量中具有广泛的应用,如位移测量、角度测量等;3. 本实验有助于加深对光学现象的理解,提高学生的实践能力。
七、实验拓展1. 尝试使用不同厚度的透明薄膜进行实验,观察莫尔条纹的变化;2. 探究莫尔条纹在光学干涉测量中的应用,如波长测量、相位测量等;3. 研究莫尔条纹在光学器件中的应用,如光栅、全息图等。
一、实验目的1. 了解莫尔条纹的产生原理;2. 掌握莫尔条纹的观察方法;3. 学习利用莫尔条纹进行精密测量。
二、实验原理莫尔条纹是两条或两个物体之间以恒定角度和频率发生干涉的视觉结果。
当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹,这种光学现象中的花纹就是莫尔条纹。
莫尔条纹的形成原理:当两个光栅(或物体)相互重叠时,由于光栅间距的不匹配,光栅线之间产生干涉,形成明暗相间的条纹。
当光栅间距变化时,干涉条纹也会发生变化。
三、实验仪器与材料1. 光栅尺;2. 平行光管;3. 分光计;4. 光电传感器;5. 实验台;6. 记录纸;7. 计算器。
四、实验步骤1. 将光栅尺固定在实验台上,确保光栅尺与平行光管的光轴垂直;2. 调节平行光管,使光线垂直照射到光栅尺上;3. 使用分光计测量光栅尺的光栅间距,记录数据;4. 调节光栅尺,使光栅间距发生变化;5. 观察光栅尺上的莫尔条纹,记录条纹间距和形状;6. 利用光电传感器测量光栅尺的位移,记录数据;7. 分析莫尔条纹的间距与光栅尺位移之间的关系,得出结论。
五、实验数据与结果1. 光栅尺的光栅间距:d1 = 0.5mm,d2 = 1.0mm;2. 莫尔条纹间距:Δx1 = 0.2mm,Δx2 = 0.4mm;3. 光栅尺的位移:x1 = 0.1mm,x2 = 0.2mm。
六、分析与讨论1. 莫尔条纹的间距与光栅间距的关系:根据实验数据,莫尔条纹的间距与光栅间距成正比。
即Δx ∝ d,其中Δx为莫尔条纹间距,d为光栅间距。
2. 莫尔条纹的形状与光栅间距的关系:当光栅间距较小时,莫尔条纹间距较大,条纹形状较为粗犷;当光栅间距较大时,莫尔条纹间距较小,条纹形状较为细密。
3. 莫尔条纹的间距与光栅尺位移的关系:根据实验数据,莫尔条纹的间距与光栅尺位移成正比。
即Δx ∝ x,其中Δx为莫尔条纹间距,x为光栅尺位移。
七、结论1. 莫尔条纹的产生原理:莫尔条纹是由两个光栅(或物体)相互重叠,光栅间距不匹配,产生干涉而形成的;2. 莫尔条纹的观察方法:通过调节光栅间距和观察光栅尺上的条纹,可以观察到莫尔条纹;3. 莫尔条纹的测量方法:利用光电传感器测量光栅尺的位移,可以得出莫尔条纹的间距,从而实现精密测量。
莫尔条纹测量金属线膨胀系数以莫尔条纹测量金属线膨胀系数为题,本文将介绍莫尔条纹的原理及其在测量金属线膨胀系数中的应用。
一、引言金属线在受热或受力作用下会发生膨胀,而膨胀系数是描述金属线膨胀程度的物理量。
莫尔条纹是一种常用的测量金属线膨胀系数的方法,其原理基于光的干涉现象。
二、莫尔条纹的原理莫尔条纹是由于两个光源通过同一透明介质照射到金属表面上产生的干涉现象。
当光线从空气经过介质照射到金属表面上时,会发生反射和折射。
在金属表面上形成的干涉条纹可以用来观察金属表面的形变情况,从而间接测量金属线的膨胀系数。
三、莫尔条纹的测量方法1. 实验装置准备:将光源照射到透明介质上,使光线通过介质射到金属表面。
透明介质可以是玻璃或者水,光源可以是激光或者白炽灯。
2. 观察干涉条纹:在金属表面上观察干涉条纹的变化情况。
当金属受热或受力导致膨胀时,干涉条纹会发生位移或形状变化。
3. 计算膨胀系数:根据莫尔条纹的变化情况,可以通过计算位移或形状变化来得到金属线的膨胀系数。
1. 非接触式测量:莫尔条纹测量金属线膨胀系数不需要触碰金属线,可以避免对金属线产生干扰,提高测量的准确性。
2. 高精度测量:莫尔条纹测量方法可以达到亚微米级的精度,可以满足对金属线膨胀系数高精度要求的实际应用。
3. 快速测量:莫尔条纹测量方法可以实时观察金属线的变化情况,可以快速得到金属线的膨胀系数。
五、莫尔条纹测量金属线膨胀系数的应用1. 工程材料研究:莫尔条纹测量方法可以用来研究不同材料的线膨胀系数,从而评估材料的热膨胀性能。
2. 热力学研究:莫尔条纹测量方法可以用来研究金属线在不同温度下的膨胀系数,为热力学研究提供基础数据。
3. 工程应用:莫尔条纹测量方法可以用于工程实际中的温度补偿、热应力分析等领域,提高工程设计的准确性和可靠性。
六、总结莫尔条纹是一种常用的测量金属线膨胀系数的方法,其原理基于光的干涉现象。
通过观察莫尔条纹的变化情况,可以间接测量金属线的膨胀系数。