天气学基础课件——对流性天气过程
- 格式:ppt
- 大小:6.60 MB
- 文档页数:138
天气学原理与方法——对流性天气过程天气是大气系统中的一种自然现象,是指其中一地区在一段时间内的气象状况。
天气的变化是由大气的物理过程所引起的,而天气学就是研究天气变化的科学。
其中,对流性天气过程是天气学中的一个重要方面。
对流性天气过程是指在大气中形成对流环流的过程,其中包括强烈的上升气流和下沉气流,以及它们所带来的降水、云、雷电等现象。
对流性天气过程通常发生在较为暖湿的气团中,由于气团内部的不稳定性和外界的刺激,导致上升气流的形成。
对流性天气过程的形成需要满足以下条件:首先,需要有一个热源,例如太阳辐射可以加热地面,地面再通过对流将热量传递给大气。
其次,需要有一定的湿度,水汽的蒸发可以提供上升气流所需要的热量。
最后,需要有一种上升的机制,例如地形的隆起或强大的热对流可以促使空气上升。
在大气中,由于地表的不规则性和地形的差异,气团的稳定性也会不同,从而引发对流性天气过程。
当较为湿热的气团受到地表的加热,气团内部的温度会上升,使得气团变得不稳定。
随着气团的上升,地面上方的冷空气会下沉,形成一个闭合的环流系统。
而上升气流在达到饱和后会形成云和降水,降水过程中释放的潜热又会进一步加强气团的上升。
对流性天气过程的研究可以通过多种方法来进行。
其中,观测是最直接的方法,通过观测云型、降水量、气温等气象要素的变化,可以获得对流性天气过程的一些基本信息。
此外,气象雷达和卫星遥感技术也可以提供对流性天气过程的相关数据,例如雷达可以观测到降水的分布和强度,卫星可以观测到云的形态和发展。
除了观测外,天气模式是研究对流性天气过程的重要工具。
天气模式可以通过复杂的数学方程描述大气的运动和热力过程,从而预测未来几天的天气情况。
通过对模式的数据输出进行分析和诊断,可以了解对流性天气过程的发展和变化趋势。
在对流性天气过程的研究中,还需要考虑到不同尺度上的变化。
对于较小尺度的对流系统,如雷暴和阵雨,通常采用雷达和卫星观测的数据进行研究;而对于较大尺度的对流系统,如台风和冷锋,需要借助于气象观测站的数据和天气模式的模拟。
第八章对流性天气过程一、填空1、雷暴一般伴有阵雨,有时则伴有(大风)、(冰雹)、(龙卷)等天气现象,通常把只伴有阵雨的雷暴称为(一般雷暴),而把伴有雷暴、大风、(冰雹)、(龙卷)等严重的灾害性天气现象之一的雷暴叫做(强雷暴)。
2、产生雷暴的积雨云叫(雷暴云),一个雷暴云叫做一个雷暴单体,多个雷暴单体成群成带地聚集在一起叫(雷暴群或雷暴带)。
每个雷暴单体的生命史大致可分为(发展)、(成熟)、(消亡)三个阶段。
3、雷电是由积雨云中冰晶(温差起电)以及其他作用所造成的。
一般云顶高度到达(-20℃等温线高度以上)是才产生雷电。
P4034、雷暴云中放电强度和频繁程度与雷暴云的(高度)和(强度)有关。
P4035、在雷暴云下形成一个近乎饱和的冷空气堆,因其密度较大而气压较高,这个高压叫(雷暴高压),当雷暴云向前移动经过测站时,使该站产生气温(下降)、气压(涌升)、相对湿度(上升)、露点或绝对湿度(下降)等气象要素的显著变化。
P4036、以严重降雹为主的雷暴叫(雹暴),以强烈阵风为主的叫(飑暴),强雷暴和一般雷暴的区别是(系统中的垂直气流的强度)、(垂直气流的有组织程度)和(不对称性)。
P4047、超级单体是具有单一的特大垂直环流的巨大强风暴云。
P4048、超级单体风暴中的下沉气流是由三种作用综合造成的:一种是降水物的拖曳作用;第二种是在中层云外围绕流的干冷空气被卷入后,在云体前部逐渐下沉;第三种是在中层从云后部直接进入云中的干空气,降水物通过这种干空气时强烈蒸发冷却,因为形成很冷的下沉气流。
8、强雷暴按其结构特征划分不同的类型,常分为(超级单体风暴)、(多单体风暴)、(飑线)。
9、风暴的运动方向一般偏向于对流云中层的风的(右侧),所以这类风暴也叫(右移强风暴)。
10、由许多雷暴单体侧向排列而形成的强对流云带叫做(飑线)。
P40711、当强雷暴云来临的瞬间,风向(突变),风力(猛增),由静风突然加强到大风以上的强风。