静电场基本方程
- 格式:ppt
- 大小:277.00 KB
- 文档页数:4
静电场定义由静止电荷(相对于观察者静止的电荷)激发的电场。
静电场性质根据静电场的高斯定理:静电场的电场线起于正电荷或无穷远,终止于负电荷或无穷远,故静电场是有源场.从安培环路定理来说它是一个无旋场.根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场力所做的功都为零,因此静电场是保守场.根据库仑定律,两个点电荷之间的作用力跟它们的电荷量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即F=(k·q1q2)/r²;,其中q1、q2为两电荷的电荷量(不计正负性)、k为静电力常量,约为9.0e+09(牛顿·米²)/(库伦²;),r为两电荷中心点连线的距离。
注意,点电荷是不考虑其尺寸、形状和电荷分布情况的带电体。
是实际带电体的理想化模型。
当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的点电荷。
静电场的泊松方程由于静电场是无旋场,故可用标量电位φ表征静电场(见电位)。
电位与电场强度的关系是式中Q点为电位参考点,可选在无穷远处;P点为观察点。
上式的微分形式为电场强度等于电位的负梯度,即E=-墷φ在ε为常数的区域,式中墷·墷可记作墷2,在直角坐标中分别为一阶与二阶微分算符。
这样,可得电位φ所满足的微分方程称为泊松方程。
如果观察点处自由电荷密度ρ为0,则墷2φ=0称为拉普拉斯方程。
泊松方程和拉普拉斯方程描述了静电场空间分布的规律性。
可以证明,当已知ρ、ε及边界条件时,泊松方程或拉普拉斯方程的解是惟一的,可以设法求解电位φ,再求出场中各处的E。
静电场知识点一、库仑定律①元电荷:元电荷是指最小的电荷量,用e表示,大小为②库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
表达式:,其中静电力常量二、电场①电场的产生:电荷的周围存在着电场,产生电场的电荷叫做源电荷。
静电场的拉格朗日方程
拉格朗日电场方程(LFE)是电学理论中最重要的方程之一,它是用来研究电场中分布的静态电势的基本方程。
它是由法国物理学家Laplesi在1798年提出的,此后被广泛应用于物理学,特别是用于描述和解释静电场的情况。
拉格朗日电场方程的模型是下面的函数表达式:
V(x,y,z)= ∇²V(x,y,z)=0
在该方程中,V(x,y,z)表示电场中电势的分布,∇²V(x,y,z)是一个拉格朗日算子(二重梯度),表示在某个给定点处,电势的变化量。
拉格朗日电场方程可以帮助我们确定电荷在电场中的情况,因为其能够帮助分析电场中极其重要的电势分布,从而可以用它来确定电荷在电场中的具体位置和分布。
根据这个方程,我们可以算出电场中的电势的值,以此来计算电荷的位置和分布。