静电场基本方程
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
静电场定义由静止电荷(相对于观察者静止的电荷)激发的电场。
静电场性质根据静电场的高斯定理:静电场的电场线起于正电荷或无穷远,终止于负电荷或无穷远,故静电场是有源场.从安培环路定理来说它是一个无旋场.根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场力所做的功都为零,因此静电场是保守场.根据库仑定律,两个点电荷之间的作用力跟它们的电荷量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即F=(k·q1q2)/r²;,其中q1、q2为两电荷的电荷量(不计正负性)、k为静电力常量,约为9.0e+09(牛顿·米²)/(库伦²;),r为两电荷中心点连线的距离。
注意,点电荷是不考虑其尺寸、形状和电荷分布情况的带电体。
是实际带电体的理想化模型。
当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的点电荷。
静电场的泊松方程由于静电场是无旋场,故可用标量电位φ表征静电场(见电位)。
电位与电场强度的关系是式中Q点为电位参考点,可选在无穷远处;P点为观察点。
上式的微分形式为电场强度等于电位的负梯度,即E=-墷φ在ε为常数的区域,式中墷·墷可记作墷2,在直角坐标中分别为一阶与二阶微分算符。
这样,可得电位φ所满足的微分方程称为泊松方程。
如果观察点处自由电荷密度ρ为0,则墷2φ=0称为拉普拉斯方程。
泊松方程和拉普拉斯方程描述了静电场空间分布的规律性。
可以证明,当已知ρ、ε及边界条件时,泊松方程或拉普拉斯方程的解是惟一的,可以设法求解电位φ,再求出场中各处的E。
静电场知识点一、库仑定律①元电荷:元电荷是指最小的电荷量,用e表示,大小为②库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
表达式:,其中静电力常量二、电场①电场的产生:电荷的周围存在着电场,产生电场的电荷叫做源电荷。
静电场基本方程
班级:电气121班
姓名:徐鹏学号:2012230106 姓名:邵辉学号:2012230158 姓名:王天宇学号:2012230102
静电场的基本方程.分界面边界条件
静电场基本方程分界面上的衔接条件
静电场的基本方程
总结静电场环量特性及闭合面通量特性,得到了反映静电场基本特性的方程
0=dl⋅lE (2.5.1)
q=dS⋅SD (2.5.2)
0=E⨯∇(2.5.3)
ρ=D⋅∇(2.5.4)
称之为静电场的基本方程,方程(2.5.1)和(2.5.2)是基本方程的积分形式,它们从整体上以表明静电场的无旋性(守恒性)和静电场的有散性(有源性)这两个基本特征。
方程(2.5.3)和(2.5.4)是以上两基本方程对应的微分形式,它们更为直接地描述静电场的无旋性和有散性的分布特性。
基本方程的微分形式显得更为重要。
一方面,可以从散度和旋度角度描述静电场中各点场与源的关系;另一方面,在计算上反映静电场域空间各点场与源的变化情况。
从计算角度看:基本方程的积分形式适用于大范围的分析计算,它们在静电场的任何区域都成立;而微分形式适合于在同种介质中求解场量(指E、D、φ)的分布,在不同介质分界面上它不成立。
由唯一性定理可知,散度和旋度再加上边界条件共同唯一地确定静电场,这边界条件还需要基本方程的积分来推求。
研究介质极化的影响,有
D = ε0
E + P (2.5.5a)
D = ε
E (2.5.5b)
方程(2.5.5a)和(2.5.5b)是联系D、E的媒质的构成方程,它们不是基本方程,但其重要性是不言而喻的。
(2.5.5a)对任何介质均成立,方程(2.5.5b)只适用于各向同性线性介质。
介质分界面上的衔接条件
在不同介质的分界面上,可能存在极化电荷和自由电荷,它们使场量的大小和方向。