预热式加热炉和蓄热式加热炉的应用对比
- 格式:docx
- 大小:38.75 KB
- 文档页数:7
蓄热式燃烧技术在加热炉中的应用一、引言蓄热式燃烧技术自20世纪90年代从国外引进到国内,被广泛应用于钢铁行业,特别是在轧钢加热炉的应用上,通过不断消化吸收和创新改进,在节能减排方面取得了突出的成效。
高炉煤气作为高炉炼铁的副产品,由于热值低,常规情况下不能形成稳定燃烧,大量多余的高炉煤气不得不直接放散,造成了大气污染和能源浪费。
通过蓄热式燃烧技术的应用,将高炉煤气、助燃空气双蓄热后,能使高炉煤气及空气达到1000℃的高温,从而形成良好的燃烧效果。
该技术在轧钢加热炉上的应用取得了显著效果,将原先放散的高炉煤气变废为宝,降低了钢铁企业的整体能耗,减少了大气污染。
本文结合加热炉的设计工作实际,从烧嘴结构形式、火焰组织、换向阀优化布置等方面,探讨蓄热式燃烧技术在加热炉上的应用。
二、概况大冶某钢铁公司有一台高炉煤气双蓄热式加热炉,由我公司设计建造,于2019年元月建成投产,采用高炉煤气作为燃料,低热值为850×4.18kJ/Nm3,设计产能为120t/h(冷坯),主要钢种有10#,20#,45#,40Cr,Q345B,27SiMn,37Mn5等,钢坯规格主要有:150×150×7000—9000mm、180×220×7000—9000mm。
钢坯出炉温度为1200℃,单位热耗:≤1.3 GJ/t,氧化烧损:≤1%。
在设计中,我们采用的炉型为高炉煤气、空气双蓄热步进式加热炉,进出料方式为侧进侧出,单排布料,炉底水管冷却方式为汽化冷却,炉底步进机构由液压驱动,燃烧控制方式采用了先进的全分散脉冲燃烧控制技术。
三、蓄热式烧嘴的结构形式蓄热式烧嘴是蓄热式燃烧技术核心设备,主要由喷嘴、蓄热室、气室组成。
喷嘴是燃气和助燃空气喷入炉内的通道,也是烟气被吸入蓄热室的入口。
蓄热室内安装有挡砖和蜂窝体,挡砖为多孔的刚玉质砖,安装在靠近喷嘴的前端,对蜂窝体起到稳定和保护的作用。
蜂窝体一般采用刚玉莫来石质材料制成,其比表面积大,是蓄热小球的3-4倍,换热效率高,结构紧凑,受到越来越多用户的青睐和选择。
电锅炉储热蓄能采暖方式的选择比较电锅炉储热蓄能采暖方式的选择比较.、八、一前言随着我国国民经济的不断发展和社会进步,能源需求加大的同时能源的科学使用对缓解供需矛盾显得尤为重要。
城市区域对电力资源的科学合理使用的重要举措是转移电力高峰用电量,平衡电网峰谷差,因此可以减少新建电厂投资,提高现有发电设备和输变电设备的使用率,同时,可以减少能源使用(特别是对于火力发电)引起的环境污染,充分利用有限的不可再生资源,有利于生态平衡。
近年来随着城市化进程的不断发展,城市建筑能耗呈现加速增长的趋势。
据统计,国内部分大城市的高峰用电量中空调用电就占了30%以上,这样使得电力系统峰谷差急剧增加,电网负荷率明显下降,这极大影响了发电的成本和电网的安全运行。
电锅炉储能蓄热采暖是以电锅炉为热源利用供电峰、谷时段电价差在谷电时段开启电锅炉以水为热媒进行循环加热,并将额定温度的热水储存在蓄热水箱中,在电力高峰时段关闭电锅炉,将储存在蓄热水箱中热水经循环泵向系统供热。
相应地,减少电锅炉和水泵等的装机容量和功率。
而不必像常规空调系统那样按高峰负荷配备设备。
相应地,设备满负荷运行比例增大,可充分提高设备利用率。
减少一次电力设备的初投资费用。
由于蓄能系统设备装机功率下降,电增容、变压器和高低压配电柜等费用均可减少。
目前市场普遍采用的电锅炉蓄热采暖系统通常分为常压蓄热系统和高温承压蓄热系统两类,而高温承压蓄热又细分为一体式和分体式。
电锅炉储热蓄能采暖方式的选择比较分析如下:1.常压蓄热系统由电热锅炉、蓄热罐、{ 蓄热罐与大气联通保持常压状态} ,循环水泵、板式热交换器及控制系统组成的蓄热系统。
常压蓄热系统在夜间低谷电时段,依靠电锅炉将蓄热循环水加热至90C,(常压)并以热能形式储存在蓄热水箱内供白天峰电时段使用,(放热至55C),以达到完全避峰或减少高峰时段用电量,起到削峰填谷,减少运行费用目的。
1.1.系统组成:由电热水锅炉,常压蓄热水箱,电热锅炉热水循环泵,放热循环泵及补水定压设备等组成。
1、步进式加热炉节能技术1.1加热炉采用空气蓄热和煤气换热综合燃烧技术,煤气经过麻花插件管式换热器预热,煤气预热温度350℃空气采用蓄热式燃烧技术,把20℃的助燃空气预热到850〜900高温,达到烟气余热的极限回收,提高燃烧介质物理热,从而降低燃料消耗,提高加热炉热效率30%,是节能、环保的新技术。
采用蓄热式燃烧技术,炉内火焰流动与传统加热炉比有很大的区别,废气横向流动,烧嘴成对工作,烧嘴布置于加热炉两侧,其中一侧烧嘴工作时另一侧烧嘴排烟蓄热。
(轧钢之家ID:zhagangzhijia)一侧烧嘴喷出的火焰被对侧烧嘴吸引,这相当于加长了火焰长度,因此加热炉宽度方向的温度较传统加热炉均匀。
采用蓄热式燃烧技术后,加热温度均匀,钢坯加热质量好,不发生粘炉事故煤气、空气蓄热后,采用低氧扩散燃烧技术,形成与传统火焰迥然不同的新型火焰型,炉内燃烧气氛较好,钢坯升温较快,钢坯氧化烧损可减少0.3%〜0.5%。
1.2棒材厂型钢车间加热炉采用空气单蓄热上下组合式烧嘴,共计52个单蓄热烧嘴单蓄热组合式烧嘴,每段烧嘴可以单独调节,蓄热式烧嘴成对工作,二者交替变换燃烧和排烟工作状态,烧嘴内的蓄热体相应变换放热和吸热状态成对的烧嘴分设于炉膛的A侧和B侧,当A侧烧嘴燃烧时,空气流经积蓄了热量的蓄热体而被加热,与此同时,B侧烧嘴排烟,烟气热量被蓄热体吸收进行蓄热如此周而复始,通过蓄热体这一媒介,出炉烟气的余热被转换成空气的物理热,而得到回收利用,见图1蓄热式烧嘴的空气喷口和煤气喷口为上下组合,烧嘴安装在炉膛上部时,空气喷口在上,煤气喷口在下,空、煤气流上下斜交混合,烧嘴安装在炉膛下部时则反之,是煤气喷口在上,空气喷口在下,也就是靠近坯料上表面和下表面的都是煤气流。
(轧钢之家ID:zhagangzhijia)空、煤气混合燃烧有一个短暂的过程,在这个过程中,与坯料表面接触的气氛是还原性或微还原性的,坯料氧化较缓慢,氧化烧损减少0.45%,这是组合式蓄热式烧嘴的明显特性。
一、引言蓄热式加热炉是用于轧钢厂的一种新型的加热炉,具有高效燃烧、回收利用烟气及低二氧化碳排放等优点。
在工业企业中广泛应用,对节能减排工作起着重要的促进作用。
二、蓄热式加热炉的工作原理及其特点蓄热式加热炉的高效蓄热式燃烧系统主要由蓄热式烧嘴和换向系统组成。
它分为预热段、加热段和均热段三个主体。
其原理是采用蓄热室预蓄热全,达到在最大程度上回收调温烟气的湿热,提高助燃空气温度的效果。
新型蓄热式加热炉的蓄热室现在普遍采用陶瓷小球或蜂窝体作为蓄热体,其表面积大,极大的提高了传热系统,使蓄热室内的体积大大缩小。
再加上新型可靠的自动控制技术及预热介质预热温度高,废气预热得到接近极限的回收。
是一种新型的高效、节能的加热炉。
参与控制的主要现场设备有:各段炉温测量热电偶;煤气预热器前后烟气温度测量热电偶;各段烟气及排烟机前烟气温度测量热电偶;各段煤气、空气及烟气流量测量孔板及差压变送器;各段煤气、空气及烟气流量调节阀;各段两侧烧嘴前煤气切断阀及空气/烟气三通换向阀;炉压测量微差压变送器及用于炉压调节的烟道闸板;用于风压调节的风机入口进风阀;煤气总管切断阀及压力调节阀;其它安全保护连锁设备等。
三、换向原理换向装置是加热炉的重要部件,整个燃烧过程都是靠抽象向装置完成的。
可以说它是整个加热炉的心脏。
它的换向原理是:初始状态下,换向装置处于某一固定状态时,向炉子一侧的燃烧器输送煤气、空气,在炉内实现混合燃烧,同时从炉子另一侧的燃烧器排出烟气,经过一个周期(120s-180s)改变方向,实现周期换向。
换向装置一般采用双气缸、二位四通换向阀,它内有四个通道,每次动作开启两具通道,同时关闭两个通道以实现供气和排水气的周期性换向。
四、自动控制系统蓄热式加热炉控制系统一般有:⑴换向控制系统;⑵炉温控制系统;⑶炉内压力控制系统;⑷安全保护控制系统;⑸烟空比控制;⑹HMI人机对话界面的功能。
1、换向控制系统设备的选型换向控制是整个加热炉燃烧、控制系统的重中之重,是燃烧控制的关键控制系统。
蓄热式燃烧技术在工业炉上的应用1 引言20世纪90年代初始,蓄热式余热回收技术得到了快速发展:在蓄热体材质、构造、蓄热性能等方面都得到了许多改进;单位体积的传热面积由过去的10-40m2/m3提高到200-1300 m2/m3,因而体积显著减小;换向阀和控制系统可靠性也得到改善,换向时间由过去的30min左右缩短至几分或几十秒钟,热效率大幅提高至80%一90%左右,助燃空气预热温度大幅提高至1000℃以上,而排出的烟气温度可降低至200℃以下,接近烟气的露点温度。
由于助燃空气预热温度高达1000℃,远高于传统的500 --- 6001C,从而改变了传统的燃料燃烧方式,出现了一项全新的燃烧技术—高温空气燃烧(HTAC)技术。
该技术的关键在于通过高效的蓄热式余热回收可实现高温低氧的燃烧过程,形成与传统燃烧迥然不同的火焰特性,从而达到节能与环保的双重效益。
随着90年代末期该技术的逐步推广应用,近两年迅速成为一项炙手可热的节能环保新技术,在不同工业炉上得到快速应用。
至2002年已投产各种蓄热式工业炉50多台。
本文通过对目前应用情况的分析,为使用者提供一些参考。
2 在不同炉型工业炉上的应用分析目前该技术已应用于推钢式连续轧钢加热炉、步进式连续加热炉、室式加热炉、台车炉、钢管连续退火炉、钢包烘烤器、罩式炉以及倒焰窑等。
现在以连续轧钢加热炉为主,其产生的经济效益也最明显,投资回收期最短,尤其是“以气代油”的企业,基本在半年内就可收回全部投资。
2.1推钢式连续加热炉该炉型主要用于普线厂、部分中板厂和中型厂,加热钢种以普钢和低合金钢为主,也有优质碳素钢和高合金钢。
3种蓄热实现形式都有,各有其优缺点。
2.1.1普线厂普线厂由于加热无特殊要求,故采用集中蓄热、集中换向的方式较多,优点是设备简单,可靠性好,操作方便。
最有代表性的有韶钢三轧厂2#加热炉[1]。
其主要特点是:(1)取消了在普通加热炉上用来回收烟气余热的预热段,使被加热钢坯在最大可能的辐射温压下进行快速加热,缩短钢坯在炉内的加热时间,减少钢坯的氧化烧损。
管理及其他M anagement and other 蓄热式加热炉的蓄热燃烧技术应用及操作优化探析高 阳摘要:当前许多钢厂的轧钢产线加热炉仍使用的是三段式步进蓄热加热炉,与其他类型加热炉相比,三段式步进蓄热加热炉具有加热均匀,温度可控,余热可回收,废气排放量低、燃料选择面广等优点,适合高炉煤气、转炉煤气、焦炉煤气、天然气等各种燃料,并且可以有效利用本厂产生的高炉煤气、焦炉煤气或者转炉煤气等作为燃料,既保证了加热质量,有效降低钢坯的氧化烧损,又实现了节能减排,降本创效,受到了国内许多钢厂的青睐。
本文主要介绍了蓄热式加热炉及蓄热燃烧技术的原理,并简述了蓄热式加热炉蓄热燃烧技术在河钢张宣科技型材作业区的应用效果及操作优化相关情况。
蓄热式加热炉及其蓄热燃烧技术的广泛应用不仅仅给大多数钢铁企业带来了巨大的经济效益,更重要的是其技术的应用在节能环保方面也起到了巨大的作用。
关键词:蓄热式加热炉;蓄热燃烧;蓄热体;技术应用;节能;环保;操作优化1 概述河钢张宣科技型材作业区设计产能为70万吨/年,生产钢种为碳素结构钢、优质碳素结构钢、低合金钢等,为适应轧线工艺和燃气条件的要求、提高钢坯加热质量、降低钢坯氧化烧损及控制脱碳,河钢张宣科技型材作业区选用的是三段式步进梁式蓄热加热炉,自投产以来,本加热炉生产运行安全稳定,有效利用了本单位炼钢厂产生的转炉煤气,加热质量指标优良,生产运行成本低,节能环保,但是在实际操作使用管理当中仍然存在一些例如操作不当、管理不到位问题,这些问题的存在直接影响了加热炉的炉况寿命、经济指标、节能降耗和使用效率。
下面就以上问题重点对蓄热式加热炉、蓄热燃烧技术应用和操作优化及节能环保进行探析。
2 蓄热式加热炉首先,对蓄热式加热炉进行一个简单的介绍,蓄热式加热炉主要由加热炉炉体本身、换向系统、蓄热室蓄热体、供风系统、燃料、汽化冷却、液压润滑和排烟及各种管路等系统构成。
实质上就是蓄热式换热器与常规加热炉的结合体。
加热设备的类型及选用摘要:随着冶金行业发展,加热炉的技术不断地提高,因此加热炉的类型越来越多,例如有均热炉、连续加热炉、两段式加热炉、三段式加热炉等。
加热炉是对各种形状不同的锭坯进行加热,从而是锭坯的温度更加均匀和表面质量更加完善。
在这么多加热炉中,如何选用加热炉对锭坯进行加热是一个很关键的问题。
现在最常用的加热炉是步进式加热炉和蓄热式加热炉,而本文主要说明的是这两种炉子,重点阐述步进式加热炉和蓄热式加热炉的类型和选用。
关键词:均热炉、连续加热炉、步进式炉、蓄热式加热炉前言:随着我国冶金行业的发展,经过漫长的积累,我国的冶金工业已经完成了从无到有、从有到精,并逐步开始与世界冶金强国比列前茅。
在这种前提下,加热设备的运用是冶金行业所要学习的一门课程。
1均热炉均热炉是初轧厂加热钢锭的工艺设备。
均热炉的炉型,按空气预热方式分蓄热式和换热式;按燃烧方式分上部燃烧式和下部燃烧式。
现代的均热炉大多为上部单侧烧嘴换热式均热炉,换热器与炉膛分开设置。
每座炉子多由2~4个炉膛组成,几座炉子纵向并列。
1.1均热炉的类型均热炉类型有以下几种:中心烧嘴换热式均热炉,上部四角供热换热式加热炉,上部单侧烧嘴换热式均热炉。
1.1.1中心烧嘴换热式均热炉中心烧嘴换热式均热炉的结构如图1所示图1 中心烧嘴换热式均热炉中心烧嘴换热式均热炉的炉膛尺寸波动范围为:长3.7~5.7m,宽3.7~4.8m,高2.8~3.3m。
为了避免炉墙在高温下向内膨胀,将炉墙砌成弧形。
每组两个炉坑,每个炉坑可以装10~20根钢锭,沿炉墙四周直立放置。
炉子只有一个烧嘴,位于炉底中心,炉膛两侧各有一个陶质管砖的换热器。
空气在换热器预热到700~800℃后,经热风道送往烧嘴。
中心烧嘴换热式均热炉的炉底温度较低,一般可采用干出渣。
干出渣是在炉坑底上铺200~300mm厚的5~20mm大小的焦碳粉,氧化铁皮及杂质基础上不溶化,部分融化的被焦碳粉吸收,不致粘结在炉底上。
蓄热式加热炉工作原理
蓄热式加热炉是一种常见的加热设备,它利用蓄热材料的热量来加热物体。
其
工作原理主要包括热量的吸收、储存和释放三个过程。
首先,蓄热式加热炉通过外部热源向蓄热材料提供热量,蓄热材料吸收热量后
温度上升,将热量储存起来。
蓄热材料通常采用高热容量的材料,如陶瓷、石墨等,能够有效地吸收和储存热量。
其次,当需要加热物体时,蓄热材料释放储存的热量,将其传递给待加热物体。
这一过程可以通过调节蓄热材料的温度和表面积来控制加热炉的加热效果,从而实现对物体的精准加热。
最后,蓄热式加热炉还可以通过再次吸收外部热源的热量,重新充实蓄热材料
的热量储备,实现循环加热的目的。
蓄热式加热炉工作原理的优势在于其能够高效地利用热能资源,实现能量的储
存和再利用,降低能源消耗。
同时,由于蓄热材料的热容量较大,加热过程中温度变化较缓和,可以实现对物体的均匀加热,避免热量不均匀导致的损坏。
总的来说,蓄热式加热炉工作原理简单而高效,能够满足各种加热需求,是一
种非常实用的加热设备。
在未来的发展中,随着材料科学和加热技术的不断进步,蓄热式加热炉将会有更广泛的应用前景。
蓄热式加热炉在韶钢的应用及对比分析针对韶关钢铁板材厂现有两座蓄热式加热炉的现状分析,对两座加热炉进行对比,分析各自的优缺点,并对使用中存在的问题及改进措施进行论述。
标签:蓄热式加热炉;换向系统;改进引言韶钢板材厂有两座蓄热式加热炉,其中2003年建成3号炉,2007年建成2号炉,运行至今也有较长年限,均未进行过大修,目前炉况整体良好。
但在日常生产运行中还是存在许多蓄热炉存在的问题,对正常生产也构成了一定的影响,通过近几年的摸索改进和提高管理,问题均得到有效改善,获得了较好的运行效果。
1 两座加热炉主要技术指标韶钢板材厂的这两座加热炉均为同一公司设计建造,均采用蓄熱小球为蓄热体,内置通道式,主要技术指标如下:2 两座加热炉对比存在的问题及改进措施蓄热式加热炉有许多公认的优点,如可以使用低热值的高炉煤气、排烟温度低、钢温均匀、加热速度快等,但由于国内是在九十年代才开始应用,理论研究滞后,板材厂这两座蓄热式加热炉建成投产的时候也存在许多问题,但通过对比、摸索、学习而逐步改进,目前日常运行也基本正常,炉况保持良好。
以下就近几年来遇到的主要问题及改进措施进行对比分析。
2.1 换向时炉压波动大蓄热式加热炉由于两侧频繁交替换向,给炉压控制带来了较大难度,二号炉由于各段采用单独换向阀,执行分段延时换向,炉压较常规换热炉仍有波动,但相对稳定,影响较小,而三号炉由于采用集中换向阀,执行集中换向,炉压波动巨大,难以控制,且对炉内温度的均匀性控制也难以实现,对比二号炉,若要改为单独换向阀,管道改动较大,工程投资巨大,只能从自动控制方面入手。
炉压在换向时会出现负压,主要是由于换向时煤气停止输送,而排烟风机继续强制排烟,通过对变频排烟风机控制程序改进,在换向前的10s降低排烟气输出频率,减少烟气排出量,换向后再恢复至正常频率,以保证炉压在换向时维持在正常炉压范围内。
2.2 蓄热室问题蓄热室堵塞问题几乎是所有的蓄热式加热炉存在的通病,目前不能从根本上解决,但可以通过一些改进延长蓄热室维修周期。
蓄热式加热炉的自动化控制特点及应用蓄热式加热炉是一种沿用自古老的中央煤炉技术演变而来,利用蓄热体在被加热的过程中把热量蓄积存储起来的一种取暖装置。
蓄热式加热炉能够以低压燃烧的方式以较低的成本来实现室温的非常稳定地加热,从而节省更多的能源,其有着众多的优势非常受到消费者的喜爱。
蓄热式加热炉的控制可以分为两个类,一种是用恒定温度控制系统,另一种是采用智能化控制系统。
恒定温度控制系统是一种常见的控制系统,通常包括一个温度控制器、一个加热装置和一个冷却系统,并且通常采用电控炉来帮助加热。
这种控制系统的主要特点是采用一定的硬件组件,比如电控炉、温度探头、温度传感器等,来实现恒定温度的控制,使用非常方便。
智能化控制系统由微处理器控制,是蓄热式加热炉自动化控制的一种技术。
它不仅可以实现室温的自动控制,而且可以实现智能调温等功能,如预热、负荷调节、功率限制、交流电路等功能,在保证室温的稳定性的同时,也可以节约能源和提高热效率。
蓄热式加热炉的自动化控制特点和应用广泛,可以应用于家居中,用于取暖室温,也可以应用于一些工业设备中,用来加热液体或气体进行工艺加热。
它可以有效地控制室温,提高热效率,节约能源,确保较高的加热安全性。
因此,蓄热式加热炉的自动化控制特点和应用受到了越来越多的认可和重视。
蓄热式加热炉的自动化控制特点及应用越来越多地受到重视,不仅仅体现在家居中的取暖,更重要的是在工业领域的应用,如热力发电、仪表加热、工业烘干、加热液体及气体等。
如果采用恒定温度控制系统,由于室温的参量变化较大,很容易引起室温的不稳定。
而智能化控制系统则可以采用微处理器的自动控制,能够使室温变化在很小的范围内,从而达到节省能源和提高热效率的目的。
此外,蓄热式加热炉的自动化控制也为环境保护提供了保障。
它采用低压燃烧,排放的废气中气态污染物和微粒污染物浓度均低于国标,减少了对环境的污染,有利于环境保护。
综上所述,蓄热式加热炉的自动化控制特点及其应用受到欢迎和认可,它在家居温控,工业温控以及环境保护方面都具有重要的作用,是一种能够实现高效、可靠、节能的取暖装置。
蓄热式换热器在多种工业领域都有应用。
蓄热式换热器一般用于对介质混合要求比较低的场合。
例如,在冶金工业中,蓄热式换热器用于炼钢平炉的蓄热室。
在化学工业中,蓄热式换热器用于煤气炉中的空气预热器或燃烧室,以及人造石油厂中的蓄热式裂化炉。
此外,蓄热式换热器在太阳能热水器和空气能热水器等领域也得到了广泛的应用。
在上述应用中,蓄热式换热器能够通过其内部的固体填充物来储存热量,从而实现热量的高效利用和回收。
这种设备在处理高温烟气余热方面具有优势,可以直接回收各种工业窑炉排放的850-1400℃高温烟气余热,以获得高温助燃空气或工艺气体。
请注意,使用蓄热式换热器时应确保操作安全,并遵循相关行业标准和规定。
蓄热式加热炉、蓄热式加热炉的分类和特点:1、分类蓄热式加热炉按预热介质种类分为如下两种方式:同时预热空热方式。
按结构型式来分,则蓄热式加热炉分为烧嘴式和通道式。
其中向和群组换向两种;通道式也可分为单通道和双通道两种方式按运料方式来分,蓄热式加热炉分为推钢式和步进式。
全分散换向烧嘴式蓄热式加热炉能够实现单个烧嘴自动控制,能够满足各钢种对炉温的不同要求,实现炉温的灵活控制;群组换向蓄热式加热炉一般将某一段的烧嘴作为一个整体进行集中控制,这种控制方式能够实现各段炉温的灵活控制,也能满足大多数钢种对炉温的不同要求;通道式蓄热式加热炉一般是全通道整体控制,不能实现炉温的灵活调整,只能满足少数钢种(如普碳钢)的加热要求,而不能满足大多数钢种(如合金钢)加热的需求。
2、蓄热式加热炉的优点蓄热式加热炉有如下优点:①能将空气、煤气预热②充分利用烟气余热,③排烟温度低,氮氧化④每对烧嘴交替燃烧,到800~1000C的高温,有利于低热值燃料的利用; 节约燃料;物含量少,环境污染少; 炉内温度均匀,可提高钢坯加热质量。
二、蓄热式加热炉燃烧系统简介1、蓄热式加热炉的蓄热体蓄热式加热炉的蓄热体有两种型式,一种是陶瓷小球,另一种是陶瓷蜂窝体。
蜂窝体单位体积的换热面积大,在相同条件下,蜂窝体的传热能力是陶瓷小球的4〜5倍。
同样换热能力时,蜂窝状蓄热体的体积只需陶瓷小球蓄热体1/3〜1/4。
采用蜂窝体的烧嘴结构紧凑轻巧。
蜂窝体体内气流通道是直通道,而陶瓷小球蓄热体的通道是迷宫式的,因此蜂窝体的阻力较小,陶瓷小球蓄热体阻力较大,前者仅为后者的1/3 左右。
蜂窝体壁薄,仅为0.5〜1.2mm,透热深度小,蓄热放热速度快,换向时间仅需40〜80 秒,换向时间短,被预热介质的平均温度高,热回收效率高。
气和煤气式和空气单预烧嘴式又分为全分散换与常规加热炉操作类似,由于换向时间短,因此换热周期内的炉温波动小,有利于炉温和钢坯加热温度的控制。
蓄热式与换热式加热炉比较!按余热回收方式划分,现有的加热炉主要包括换热式加热炉(常规加热炉)和蓄热式加热炉两种方式。
换热式加热炉的显著特征就是在加热炉上采用了一种在烟道内回收烟气余热的装置―换热器(又称预热器、热交换器)。
换热器是利用炉膛排出的废气(热流体)预热助燃空气、煤气(冷流体)的热工设备。
工作时,高温烟气和被预热空(煤)气同时流过间壁的两侧,烟气以对流和辐射传热方式将热量传给间壁的一侧(高温侧),经过间壁的导热传给间壁的另一侧(低温侧),再以对流或辐射传热方式将热量传给被预热空(煤)气。
蓄热式加热炉的烟气余热回收主要是通过炉体两侧的蓄热室来实现。
助燃空气经切换阀进入右侧通道,而后流经右侧的蓄热室吸收蓄热体储存的热量,把助燃空气预热到800℃-1100℃,再经过烧嘴喷入炉内;与此同时左侧切换阀与引风机相通,这样燃烧产物对物料加热后进入左侧通道,在蓄热室内将烟气热量大部分传递给蓄热体后,以150℃左右的温度经引风机排入大气中。
间隔一定时间(蓄热式燃烧技术常用的换向时间为30s200s)后系统运行进入后半周期,控制系统发出指令,切换阀动作,此时煤气和助燃空气从左侧烧嘴喷出并混合燃烧,这时右侧烧嘴变为烟道。
高温烟气经引风机的作用通过右侧,将其蓄热体加热后,以150℃左右的温度进入切换阀和引风机排入大气中,完成一个换向周期。
应用中两类加热炉均存在一定的问题和不足。
换热式加热炉主要存在的问题有:加热炉不能以低热值的纯高炉煤气为燃料;不能充分回收烟气余热,加热炉的热效率低等。
蓄热式加热炉主要存在的问题有:炉压高且波动大,炉口和炉体冒火严重,炉门易烧损;炉况难于控制;加热炉寿命短等。
随着企业生产工艺流程的改造,加热炉大型化成为满足现代化生产所必需,采用何种炉型何种方式实现加热炉的大型化值得期待。
若通过增加炉子长度或宽度的方法来实现加热炉大型化,有可能导致加热炉性能下降,因而此方法不可取。
若采用蓄热式加热炉炉型结构实现加热炉大型化,应考虑扩大蓄热室容积并增加引风机的排烟能力。
蓄热式加热炉一、蓄热式加热炉的分类和特点:1、分类蓄热式加热炉按预热介质种类分为如下两种方式:同时预热空气和煤气式和空气单预热方式。
按结构型式来分,则蓄热式加热炉分为烧嘴式和通道式。
其中烧嘴式又分为全分散换向和群组换向两种;通道式也可分为单通道和双通道两种方式。
按运料方式来分,蓄热式加热炉分为推钢式和步进式。
全分散换向烧嘴式蓄热式加热炉能够实现单个烧嘴自动控制,与常规加热炉操作类似,能够满足各钢种对炉温的不同要求,实现炉温的灵活控制;群组换向蓄热式加热炉一般将某一段的烧嘴作为一个整体进行集中控制,这种控制方式能够实现各段炉温的灵活控制,也能满足大多数钢种对炉温的不同要求;通道式蓄热式加热炉一般是全通道整体控制,不能实现炉温的灵活调整,只能满足少数钢种(如普碳钢)的加热要求,而不能满足大多数钢种(如合金钢)加热的需求。
2、蓄热式加热炉的优点蓄热式加热炉有如下优点:①能将空气、煤气预热到800~1000℃的高温,有利于低热值燃料的利用;②充分利用烟气余热,节约燃料;③排烟温度低,氮氧化物含量少,环境污染少;④每对烧嘴交替燃烧,炉内温度均匀,可提高钢坯加热质量。
二、蓄热式加热炉燃烧系统简介1、蓄热式加热炉的蓄热体蓄热式加热炉的蓄热体有两种型式,一种是陶瓷小球,另一种是陶瓷蜂窝体。
蜂窝体单位体积的换热面积大,在相同条件下,蜂窝体的传热能力是陶瓷小球的4~5倍。
同样换热能力时,蜂窝状蓄热体的体积只需陶瓷小球蓄热体1/3~1/4。
采用蜂窝体的烧嘴结构紧凑轻巧。
蜂窝体体内气流通道是直通道,而陶瓷小球蓄热体的通道是迷宫式的,因此蜂窝体的阻力较小,陶瓷小球蓄热体阻力较大,前者仅为后者的1/3左右。
蜂窝体壁薄,仅为0.5~1.2mm,透热深度小,蓄热放热速度快,换向时间仅需40~80秒,换向时间短,被预热介质的平均温度高,热回收效率高。
由于换向时间短,因此换热周期内的炉温波动小,有利于炉温和钢坯加热温度的控制。
蜂窝体内部是直通道,在高速气流的正吹反吹的频繁作用下,通道不容易积灰和堵塞。
预热式加热炉和蓄热式加热炉的应用对比
1. 前言
- 对预热式加热炉和蓄热式加热炉这两种不同类型的加热设备进行介绍;
- 说明论文的目的和意义。
2. 预热式加热炉的原理及应用
- 介绍预热式加热炉的工作原理和特点;
- 分析预热式加热炉的应用领域和优缺点;
- 举例说明预热式加热炉的应用效果。
3. 蓄热式加热炉的原理及应用
- 介绍蓄热式加热炉的工作原理和特点;
- 分析蓄热式加热炉的应用领域和优缺点;
- 举例说明蓄热式加热炉的应用效果。
4. 预热式加热炉与蓄热式加热炉的对比
- 从能耗、效率、使用寿命、应用场景等多个角度,对预热式加热炉和蓄热式加热炉进行对比分析;
- 探讨预热式加热炉和蓄热式加热炉各自的优劣势。
5. 结论与建议
- 总结预热式加热炉和蓄热式加热炉的应用对比;
- 提出未来研究的方向和可行性建议。
第一章前言
加热炉是工业生产中一个重要的热能设备,广泛应用于冶金、化工、纺织、造纸等行业。
随着我国工业化的发展和对环保的
重视,加热炉的能耗和效率越来越受到关注。
在推进绿色、低碳、节能的方针下,预热式加热炉和蓄热式加热炉慢慢地成为了替代传统加热炉的一种新型加热设备。
本文将对这两种加热炉进行对比分析,以期为加热设备的选择提供一些参考。
第二章预热式加热炉的原理及应用
预热式加热炉,又称为预热炉,是一种基于工作介质的热能储存和传递原理的加热设备。
其原理大致是:将工作介质(如氧气、氮气等)通过加热器中流动,在加热器中与高温燃烧产生的废气进行热交换。
当工作介质达到一定温度时,即可进入下一步工艺要求的加热状态,从而实现节能效果。
预热式加热炉存在广泛的应用领域,适用于液态、气态等不同状态的介质加热。
在石油、石化、化工等行业中,预热式加热炉可以用于原料的加热、再生制氢等特殊工艺,达到提高生产效率和降低成本的目的。
在电力、钢铁等行业中,预热式加热炉也广泛应用于焙烧窑、炉前加热以及环保降低排放等方面。
预热式加热炉有其独特的优缺点。
由于采用了工作介质的热能存储转换原理,使得其能够满足不同介质的加热要求,具有较高的加热效率,节约了能源成本,并且减少了环境污染。
但是,由于其结构和原理多样,需要使用者高水平的技术知识和使用保养技巧,同时,加热效果也会受到介质流量、质量等因素的影响。
第三章蓄热式加热炉的原理及应用
蓄热式加热炉,又称为蓄热炉,是一种以小段时间高强度加热、长时间低强度放热的原理,利用储热材料(如蓄热砖、蓄热体等)进行热储能,并在需要加热时进行放热的加热设备。
蓄热式加热炉在工作时,会通过燃料燃烧等方式将工作介质加热至一定温度,然后通过储热材料进行储存,当需要加热时,再将储热材料中的热能释放出来,实现加热的目的。
蓄热式加热炉应用广泛,不仅适用于固态介质的加热,也可以用于液态介质的加热,如水的加热。
在制冷设备的蓄热技术中,蓄热式加热炉也得到了广泛的应用,通过降低用电高峰时段的能耗,提高了制冷设备的能源效率,实现了可持续发展。
蓄热式加热炉的优缺点也显而易见。
由于采用了蓄热材料的热储存和释放转换原理,使得其能够灵活地应用于不同介质的加热,具有节约能源和保护环境的优势。
同时,蓄热式加热炉的储存和释放热能是实现节能目标的重要手段。
但是,由于其采用的储热材料种类、形态和装置不同,不同的蓄热式加热炉具有不同的储热效率,且储热材料的寿命对其加热效果有着重要影响。
(注:本文剩余部分请参照需求,或者您再提出明确的要求。
)第四章预热式加热炉与蓄热式加热炉的对比及优缺点分析
预热式加热炉和蓄热式加热炉都是新型的加热设备,它们在结构和工作原理上都与传统加热炉有所不同,也都具有自己的优缺点。
下面分别对预热式加热炉和蓄热式加热炉进行对比分析。
4.1 结构和工作原理的对比
预热式加热炉和蓄热式加热炉的结构和工作原理存在很大的区别。
预热式加热炉基于工作介质的热能储存和传递原理,将工作介质通过加热器中流动,在加热器中与高温燃烧产生的废气进行热交换。
当工作介质达到一定温度时,即可进入下一步工艺要求的加热状态,从而实现节能效果。
蓄热式加热炉则是基于蓄热材料的热储存和释放转换原理,利用储热材料进行热储能,并在需要加热时进行放热的加热设备。
4.2 加热效率对比
预热式加热炉和蓄热式加热炉在加热效率方面也存在一定的不同。
预热式加热炉在进行加热时,采用工作介质流动的方式,具有较高的加热效率,在节约能源方面具有一定的优势。
而蓄热式加热炉则采用蓄热材料的热储存和释放转换原理,其加热效率较高,可以灵活地应用于不同介质的加热。
4.3 设备成本对比
预热式加热炉和蓄热式加热炉在设备成本方面也存在差异。
预热式加热炉采用工作介质流动的方式进行加热,使用环节较少,设备成本相对较低。
而蓄热式加热炉则需要采用较多的蓄热材料进行热储存和释放转换,设备成本相对较高。
4.4 维修保养对比
预热式加热炉和蓄热式加热炉在维修保养方面也存在着一定的差异。
预热式加热炉由于采用工作介质的热能存储转换原理,因此其使用和维护方面需要更高水平的技术人员。
而蓄热式加热炉则需要保养蓄热材料的热储存与释放效率,因此在使用中需要注意蓄热材料的选择及保养。
4.5 优缺点分析
综合以上对比分析,我们可以得出预热式加热炉和蓄热式加热炉各自的优缺点。
预热式加热炉的优点在于其采用了工作介质的热能存储转换原理,使得能量转换效率高,能够满足不同介质的加热要求,具有较高的加热效率,节约了能源成本,并且减少了环境污染。
但是,由于其结构和原理多样,需要使用者高水平的技术知识和使用保养技巧,同时,加热效果也会受到介质流量、质量等因素的影响。
蓄热式加热炉的优点在于其采用了蓄热材料的热储存和释放转换原理,使得能量转换效率高,能够灵活地应用于不同介质的加热,具有节约能源和保护环境的优势。
同时,蓄热式加热炉的储存和释放热能是实现节能目标的重要手段。
但是,由于其采用的储热材料种类、形态和装置不同,不同的蓄热式加热炉具有不同的储热效率,且储热材料的寿命对其加热效果有着重要影响。
综合对比分析可以看出,预热式加热炉和蓄热式加热炉各有其
独特的优缺点,根据不同加热设备的需求选择相应的加热设备,将有助于提高生产效率和节约能源成本。
第五章加热炉的开发和应用前景
预热式加热炉和蓄热式加热炉的出现,为加热设备的开发和应用带来了新的思路和前景。
在工业生产中,加热炉是十分重要的热能设备,处于核心地位。
加热炉的效率越高,能源消耗越少,环保越好,对于企业的生产经营和国家的经济可持续发展都具有重要的意义。
未来,预热式加热炉和蓄热式加热炉的发展方向可能会涉及以下方面:
5.1 小型化
随着人们对环保和资源节约的要求越来越高,加热炉的小型化将是一大趋势。
预热式加热炉和蓄热式加热炉的小型化,将有助于缩小设备的体积和重量,提高设备使用的便利性和灵活性。
5.2 智能化
随着智能化的发展,加热炉的智能化将会逐步实现。
智能化加热炉能够自动进行加热温度、加热时间、节电模式等操作,为使用者提供更加便捷的服务。
5.3 能效提升
加热炉的能效提升是未来的主导方向之一。
预热式加热炉和蓄热式加热炉的不断发展和改进,使得其能够提高加热效率,降低能源消耗,减少环境污染,将更好地满足生产和环保需求。
总之,加热炉的发展和应用前景十分广阔,预热式加热炉和蓄热式加热炉作为新型加热设备,将会逐步普及和推广。
在不断发展和完善的过程中,不断提高其加热效率和能源使用效率,实现可持续发展,将会更好地服务于各行各业的生产需求。