山东省临沂市中考数学模拟试题5
- 格式:doc
- 大小:706.02 KB
- 文档页数:13
中考数学模拟试卷题号得分一二三四总分一、选择题(本大题共14 小题,共42.0 分)1.下列各数中,比1 大的是()A. 2B. 0C. -1D. -22.一种液体每升含有36 000 000 个有害细菌,把36 000 000 用科学记数法表示应该是()A. 3.6×107 C. 36×106B. 3.6×106 D. 0.36×1083.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A. 22°B. 28°C. 32°D. 38°4.下列计算正确的是()A. a2+a3=a5 C. 4x2-3x2=1B. a6÷a3=a2D. (-2x2y)3=-8x6y35.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A. a>cB. b>cC. a2+4b2=c2D. a2+b2=c26.为了解居民用水情况,在某小区随机抽查了10 户家庭的月用水量,结果如下表:月用水量(吨)户数526672则关于这10 户家庭的月用水量,下列说法错误的是()A. 众数是6B. 极差是2C. 平均数是6D. 方差是47.计算(-2)的结果是()A. B. C. D. -8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A. B. C. D. 69.若不等式组A. a>-1有解,则B. a≥-1a的取值范围是()C. a≤1D. a<110.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A. B. C. D. 111.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B. 60,2C. 60,D. 60,与正比例12.二次函数y=ax2+bx+c的图象如图所示,反比例函数函数y=bx在同一坐标系内的大致图象是()A. B. C. D.13.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A. 2DE=3MNB. 3DE=2MNC. 3∠A=2∠FD. 2∠A=3∠F14.如图,已知点A是直线y=x与反比例函数y= (k>0,x>0)的交点,B是y= 图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A. C.B.D.二、填空题(本大题共 5 小题,共 15.0 分) 15. 分解因式:a 3-4a 2b +4ab 2=______.16. 关于 则方程 a (x +m +2)2+b =0 的解是______.4 的圆形铁皮,要从中剪出一个最大圆心角为x 的方程 a (x +m )2+b =0 的解是 x =-2,x =1,(a ,m ,b 均为常数,a ≠0),1 217. 有一直径为 60°的扇形 ABC ,用此剪下的扇形铁皮围成一个圆锥,该圆 锥的底面圆的半径 r =______.18. 如图,菱形 ABCD 的对角线 AC 、BD 相交于点 O ,且 AC =8,BD =6,过点 O 作 OH丄 AB ,垂足为 H ,则点 0 到边 AB 的距离 OH =______.19. 定义:给定关于 x 的函数 y ,对于该函数图象上任意两点(x ,y ),(x ,y ),1122当 x =-x 时,都有 y =y ,称该函数为偶函数,根据以上定义,可以判断下面所给 1 2 1 2的函数中,是偶函数的有______(填上所有正确答案的序号) ①y =2x ;②y =-x +1;③y =x 2;④y =- ; 三、计算题(本大题共 3 小题,共 25.0 分)20. 计算:( )-2-(π-3.14)0+-|2- |.21. 某企业为了增收节支,设计了一款成本为 20 元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)每天销售量y(件)……30 40 50 60 ……500 400 300 200(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45 元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?22.如图,已知△ABC内接于⊙O,过点B作直线EF∥AC,又知∠ACB=∠BDC=60°,AC= cm.(1)请探究EF与⊙O的位置关系,并说明理由;(2)求⊙O的周长.四、解答题(本大题共3 小题,共31.0 分)23.贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是______.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3 的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.25.如图,设抛物线y=ax2+bx+c与x轴交于两个不同的点A(-1,0),B(m,0),与y轴交于点C(0,-2),且∠ACB=90 度.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1 交抛物线于另一点E,求点D和点E的坐标;(3)在x轴上是否存在点P,使以点P,B,D为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵2>1,∴选项A符合题意;∵0<1,∴选项B不符合题意;∵-1<1,∴选项C符合题意;∵-2<1,∴选项D不符合题意.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此类题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】A【解析】解:把36 000 000 用科学记数法表示应该是3.6×107.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1 时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图,∵a∥b,∴∠1=∠C=50°,又180°-∠1=180°-∠A-∠B,∴∠A=∠1-∠B=50°-22°=28°,故选:B.如图,由平行线的性质可求得∠1=∠C,再根据领补角与三角形内角和可求得∠A.本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同们角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.4.【答案】D【解析】解:A、a2+a3=a5 不是同类项,不能合并,故A选项错误;B、a6÷a3=a3,故B选项错误;C、4x2-3x2=x2,故C选项错误;D、(-2x2y)3=-8x6y3,故D选项正确.故选D.根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.分别计算即可.本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质和法则是解题的关键.5.【答案】D【解析】解:根据勾股定理,a2+b2=c2.故选:D.由三视图知道这个几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形.本题由物体的三种视图推出原来几何体的形状,考查了圆锥的高,母线和底面半径的关系.6.【答案】D【解析】解:A、6 出现的次数最多,出现了6 次,则众数是6,故本选项正确;B、最大数是7,最小数是5,极差=7-5=2,故本选项正确;C、平均数是(5×2+6×6+7×2)÷10=6,故本选项正确;D、方差是:[2×(5-6)2+6×(6-6)2+2×(7-6)2]=0.25,故本选项错误;故选:D.根据众数、极差、平均数和方差的定义及公式分别进行解答,即可得出答案.此题考查了众数、极差、平均数和方差,一般地设n个数据,x,x,…x的平均数为1 2 n,则方差S2= [(x- )2+(x- )2+…+(x- )2],众数是一组数据中出现次数最多的1 2 n数,极差是最大数减去最小数.7.【答案】D【解析】解:(-2)===- ,故选:D.根据分式的减法和乘法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.【答案】A【解析】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3在Rt△AOE中,设OE=x,则AE=3 -x,AE2=AO2+OE2,即(3 -x)2=32+x2,解得x= ,- =2 .∴AE=EC=3故选:A.先根据图形翻折变换的性质求出AC的长,AE=CE,再由勾股定理即可得出结论.本题考查的是翻折变换,勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.9.【答案】A【解析】解:由(1)得x≥-a,由(2)得x<1,∴其解集为-a≤x<1,∴-a<1,即a>-1,∴a的取值范围是a>-1,故选:A.先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.10.【答案】B【解析】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2 个;则P(中心对称图形)= = .故选B.先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.此题考查了概率公式和中心对称图形的定义,要弄清概率公式适用的条件方可解题:(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等.11.【答案】C【解析】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2 ,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD= AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD= AB=2,∴DF是△ABC的中位线,∴DF= BC= ×2=1,CF= AC= ×2 = ,∴S阴影= DF×CF= ×= .故选:C.先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF 是△ABC的中位线,由三角形的面积公式即可得出结论.本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.12.【答案】B【解析】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,∴x=- <0,∴b<0,∴反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b的取值范围,然后就可以确定反比例函数与正比例函数y=bx在同一坐标系内的大致图象.此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2 个条件:开口向下a<0;对称轴的位置即可确定b的值.13.【答案】B【解析】【分析】本题考查的是位似变换.位似变换的两个图形相似.位似是特殊的相似,相似图形对应边的比相等.根据相似多边形对应边成比例得DE:MN=2:3.【解答】解:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选B.14.【答案】B【解析】解:设点P的运动速度为v,①由于点A在直线y=x上,故点P在OA上时,四边形OMPN为正方形,四边形OMPN的面积S= (vt)2,②点P在反比例函数图象AB时,由反比例函数系数几何意义,四边形OMPN的面积S=k;③点P在BC段时,设点P运动到点C的总路程为a,则四边形OMPN的面积=OC•(a-vt)=-OC•vt+OC•a,纵观各选项,只有B选项图形符合.故选:B.根据点P的位置,分①点P在OA上时,四边形OMPN为正方形;②点P在反比例函数图象AB段时,根据反比例函数系数的几何意义,四边形OMPN的面积不变;③点P 在BC段,设点P运动到点C的总路程为a,然后表示出四边形OMPN的面积,最后判断出函数图象即可得解.本题考查了动点问题函数图象,读懂题目信息,根据点P的运动位置的不同,分三段表示出函数解析式是解题的关键.15.【答案】a(a-2b)2【解析】解:原式=a(a2-4ab+4b2)=a(a-2b)2.故答案是:a(a-2b)2.首先提公因式a,然后利用完全平方公式即可分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.【答案】x=-4,x=-13 4【解析】解:∵关于x的方程a(x+m)2+b=0 的解是x=-2,x=1,(a,m,b均为常数1 2,a≠0),∴方程a(x+m+2)2+b=0 变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2 或x+2=1,解得x=-4 或x=-1.故答案为:x=-4,x=-1.3 4把后面一个方程中的x+2 看作整体,相当于前面一个方程中的x求解.此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.17.【答案】【解析】解:连接OA,作OD⊥AB于点D.则∠DAO= ×60°=30°,OD=1,则AD= OD=∴AB=2.,则扇形的弧长是:根据题意得:2πr= 解得:r= .= ,,故答案是:.连接OA,作OD⊥AB于点D,利用含30°角的直角三角形的性质以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.本题考查了扇形的弧长公式,垂径定理,正确求得AB的长是关键.18.【答案】【解析】解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO= AB•OH,OH= .故答案为:.因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.19.【答案】③【解析】解:在①中,y=2x,y=2x=-2x,此时y≠y,∴y=2x不是偶函数,1 12 2 1 1 2在②中,y=-x+1,y=-x+1=x+1,此时y≠y,∴y=-x+1 不是偶函数,1 12 2 1 1 2在③中,y=x2,y=x2=(-x)2=x2,此时y=y,∴y=x2 是偶函数,1 12 2 1 1 1 2在④中,y=- ,y=- =- = ,此时y≠y,∴y=- 不是偶函数,1 2 1 2∴是偶函数的为③,故答案为:③.根据所给的定义,把x和x分别代入函数解析式进行判断即可.1 2本题考查一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,理解题目中偶函数的定义是解题的关键.20.【答案】解:原式=4-1+2 - +2= +5.【解析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,解得:,∴函数关系式是:y=-10x+800.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000,(20<x<80)当x=50 时,W有最大值9000.所以,当销售单价定为50 元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000 元.(3)函数W=-10(x-50)2+9000 的对称轴为x=50故当x≤45时,W的值随着x值的增大而增大,当x=45 时利润最大,最大利润为8750 元.∴销售单价定为45 元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750 元.【解析】(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)利润=销售总价-成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数的取值范围内的增减性,可得出函数的最值.此题主要考查了二次函数的应用,根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.22.【答案】解:(1)EF与⊙O相切.理由如下:延长BO交AC于H,如图,∵∠BAC=∠BDC=60°,而∠ACB=60°,∴△ABC为等边三角形,∵点O为△ABC的外心,∴BH⊥AC,∵AC∥EF,∴BH⊥EF,∴EF为⊙O的切线;(2)连结OA,如图,∵△ABC为等边三角形,∴OA平分∠ABC,∴∠OAH=30°,∵OH⊥AC,∴AH=CH= AC= ,,在Rt△AOH中,∵cos∠OAH=∴OA= =1,∴⊙O的周长=2π×1=2π(cm).【解析】(1)延长BO交AC于H,如图,先证明△ABC为等边三角形,利用点O为△ABC的外心得到BH⊥AC,由于AC∥EF,所以BH⊥EF,于是根据切线的判定定理即可得到EF为⊙O的切线;(2)连结OA,如图,根据等边三角形的性质得∠OAH=30°,AH=CH= AC= ,再在Rt△AOH中,利用三角函数和计算出OA=1,然后根据圆的周长公式计算.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的判定与性质.23.【答案】(1)10%(2)200 份;图见解析。
山东省临沂市中考数学模拟试卷(5月份姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,数轴上点A所表示的数的倒数是()A . -2B . 2C .D . -2. (2分)计算1+2+22+23+…+22014的值为()A . 22015﹣1B . 22015+1C . (22015﹣1)D . (22015+1)3. (2分)截止2008年6月7日12时,全国各地支援四川地震灾区的临时安置房已经安装了40600套.这个数用科学记数法表示为()A . 套B . 套C . 套D . 套4. (2分)(2016·德州) 图中三视图对应的正三棱柱是()A .B .C .D .5. (2分)黄河农场各用10块面积相同的试验田种植甲、乙两种麦子,收获后对两种麦子产量(单位:吨/亩)的数据统计如下:=0.61,=0.59,S甲2=0.01,S乙2=0.002,则由上述数据推断乙种麦子产量比较稳定的依据是()A . >B . S甲2>S乙2C . >S甲2D . >S乙26. (2分)如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠2=30°,则∠1是()A . 20°B . 60°C . 30°D . 45°7. (2分) (2020九上·港南期末) 正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A . (﹣1,﹣2)B . (﹣2,﹣1)C . (1,2)D . (2,1)8. (2分)(2018·达州) 如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF= AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A .B .C .D . 19. (2分) (2020九下·凤县月考) 二次函数,自变量与函数的对应值如下表: x…-5-4-3-2-10…y…40-2-204…下列说法正确的是()A . 抛物线的开口向下B . 当时,y随x的增大而增大C . 二次函数的最小值是-2D . 抛物线的对称轴是x=10. (2分)如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A . (-2,0)B . (4,0)C . (2,0)D . (0,0)二、填空题 (共6题;共6分)11. (1分)(2017·贵港模拟) 分解因式:a3﹣ a=________.12. (1分)若代数式8﹣x的值大于0,则x的取值范围为________13. (1分)(2016·宁夏) 如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为________.14. (1分)如图1,正方形ABCD中,点P从点A出发,以每秒2厘米的速度,沿A→D→C方向运动,点Q 从点B出发,以每秒1厘米的速度,沿BA向点A运动,P、Q同时出发,当点P运动到点C时,两动点停止运动,若△PAQ的面积y(cm2)与运动时间x(s)之间的函数图象为图2,若线段PQ将正方形分成面积相等的两部分,则x的值为________ .15. (1分)(2019·抚顺模拟) ⊙O的内接正三角形和外切正方形的边长之比是________.16. (1分)如图,在菱形ABCD中,DE⊥AB,cosA= ,BE=2,则BC=________.三、解答题 (共8题;共75分)17. (5分)(2017·平川模拟) 计算:2﹣2﹣(π﹣)0+|﹣3|﹣cos60°.18. (10分)(2019·玉林) 如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2 ,EB=4,tan∠GEH=2 ,求四边形EHFG的周长.19. (3分)某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:笔试总成绩=(笔试总成绩+加分)÷2考和总成绩=笔试总成绩+面试总成绩现有甲、乙两名应聘者,他们的成绩情况如下:应聘者成绩笔试成绩加分面试成绩甲117385.6乙121085.1(1)甲、乙两人面试的平均成绩为________ ;(2)甲应聘者的考核总成绩为________ ;(3)根据上表的数据,若只应聘1人,则应录取________ .20. (7分) (2017七下·枝江期中) 在平面直角坐标系中,A、B、C三点的坐标分别为:A(﹣5,5)、B(﹣3,0)、C(0,3).(1)①画出△ABC,它的面积为多少;②在△ABC中,点A经过平移后的对应点A′(1,6),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出B′、C′的坐标;(2)点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=________,n=________.21. (10分)(2016·义乌模拟) 图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα= .(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.22. (15分)(2018·绍兴模拟) 阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.23. (15分)(2017·昌乐模拟) 甜甜水果批发商销售每箱进价为30元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱40元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)如果批发商平均每天获得的销售利润为1008元,那么每箱苹果的销售价是多少元?24. (10分) (2016九上·鼓楼期末) 如图(1),在矩形ABCD中,AB=3,BC=4,连接BD.现将一个足够大的直角三角板的直角顶点P放在BD所在的直线上,一条直角边过点C,另一条直角边与AB所在的直线交于点G.(1)是否存在这样的点P,使点P、C、G为顶点的三角形与△GCB全等?若存在,画出图形,并直接在图形下方写出BG的长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,如果图形不够用,请自己画图)(2)如图(2),当点P在BD的延长线上时,以P为圆心、PB为半径作圆分别交BA、BC延长线于点E、F,连EF,分别过点G、C作GM⊥EF,CN⊥EF,M、N为垂足.试探究PM与FN的关系.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共75分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-2、。
山东省临沂市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A .12B .25C .35D .7182.下列各式正确的是( )A .0.360.6±=±B .93=±C .33(3)3-=D .2(2)2-=-3.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(3,2)B .(4,1)C .(4,3)D .(4,23)4.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )A .B .C .D .5.化简a 1a 11a +--的结果为( ) A .﹣1 B .1 C .a 1a 1+- D .a 11a+- 6.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A .140元B .150元C .160元D .200元7.若a 与5互为倒数,则a=( )A .15B .5C .-5D .15- 8.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是( )A .63B .123C .183D .2439.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是( )A .28B .29C .30D .3110.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( )A .三条高的交点B .重心C .内心D .外心11.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a =8;②b =92;③c =1.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程15x 12x 1=-+的解为 . 14.计算52a a ÷的结果等于_____________.15.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_____秒钟.16.如果一个正多边形的中心角为72°,那么这个正多边形的边数是.17.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.18.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,AB ,水面最深下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽16cm地方的高度为4cm,求这个圆形截面的半径.20.(6分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。
山东省临沂市2019-2020学年中考数学仿真第五次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,比﹣1大1的是( )A .0B .1C .2D .﹣32.下列方程中是一元二次方程的是( )A .20ax bx c ++=B .2211x x +=C .(1)(2)1x x -+=D .223250x xy y --=3.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC 的延长线上且BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②△OAE ∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( )A .0B .1C .2D .34.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .33﹣23=3D .(a+2)(a ﹣2)=a 2+4 5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .66.如图,等腰△ABC 中,AB =AC =10,BC =6,直线MN 垂直平分AB 交AC 于D ,连接BD ,则△BCD 的周长等于( )A.13 B.14 C.15 D.167.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.8.下列图案是轴对称图形的是()A.B.C.D.9.下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a410.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.11.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF 为折痕,则sin∠BED的值是()A.53B.35C.22D.2312.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A .2 B.2 C.3 D .23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.14.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E ,F ,要使折痕始终与边AB ,AD 有交点,BP 的取值范围是_____.15.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为AB 的中点,将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A′处,点D 落在点D′处,则D′B 长为_____.16.化简:+3=_____.17.已知x 1,x 2是方程x 2-3x-1=0的两根,则1211x x =______. 18.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD 中,∠BAC=∠ACD=90°,∠B=∠D .(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.20.(6分)已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)(1)若关于x的反比例函数y=2ax过点A,求t的取值范围.(2)若关于x的一次函数y=bx过点A,求t的取值范围.(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.21.(6分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?22.(8分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).23.(8分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分120﹣111 110﹣101 100﹣91 90以下成绩等级 A B C D请根据以上信息解答下列问题:(1)这次统计共抽取了名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A 等级学生数可提高40%,B 等级学生数可提高10%,请估计经过训练后九年级数学成绩在B 等级以上(含B 等级)的学生可达多少人?24.(10分)A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B 手中的概率;(2)求三次传球后,球恰在A 手中的概率.25.(10分)菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.26.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_______,图①中m 的值是_____ ;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h 的人数. 27.(12分)如图,AC 是O e 的直径,点B 是O e 内一点,且BA BC =,连结BO 并延长线交O e 于点D ,过点C 作O e 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O e 的直径长8,4sin BCE 5∠=,求BE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】用-1加上1,求出比-1大1的是多少即可.【详解】∵-1+1=1,∴比-1大1的是1.故选:A .【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.2.C【解析】【分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【详解】解:A 、当a=0时,20ax bx c ++=不是一元二次方程,故本选项错误;B 、2211x x+=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确;D 、223250x xy y --=是二元二次方程,故本选项错误;故选:C .【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.3.C【解析】【分析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出.【详解】详解:∵四边形ABCD 是正方形,∴AD=BC,90DAB ABC ∠=∠=o ,∵BP=CQ ,∴AP=BQ , 在△DAP 与△ABQ 中, AD AB DAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ ,∴∠P=∠Q ,∵90Q QAB ∠+∠=o,∴90P QAB ∠+∠=o ,∴90AOP ∠=o ,∴AQ ⊥DP ;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴4BQ AP ==,5,AQ ==,DFO BAQ ∠=∠ ∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C .【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.4.C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a,故B 选项错误;C 、﹣C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.5.C【解析】【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C .考点:勾股定理的证明.6.D【解析】【分析】由AB 的垂直平分MN 交AC 于D ,根据线段垂直平分线的性质,即可求得AD=BD ,又由△CDB 的周长为:BC+CD+BD=BC+CD+AD=BC+AC ,即可求得答案.【详解】解:∵MN 是线段AB 的垂直平分线,∴AD =BD ,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.7.C【解析】【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.8.C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.9.C【解析】【分析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.10.B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.11.B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.12.C【解析】【分析】由OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,易得△OCP 是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE 的值,继而求得OP 的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM 的长.【详解】解:∵OP 平分∠AOB ,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°,∴CE=12CP=1,∴=,∴∵PD ⊥OA ,点M 是OP 的中点,∴DM=12 故选C .考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23【解析】【分析】先求出球的总数,再根据概率公式求解即可.【详解】∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=23.故答案为23.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.14.1≤x≤1【解析】【分析】此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;【详解】解:如图:①当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=5;在Rt△PFC中,PF=5,FC=1,则PC=4;∴BP=x min=1;②当E、B重合时,BP的值最大;由折叠的性质可得BP=AB=1.所以BP的取值范围是:1≤x≤1.故答案为:1≤x≤1.【点睛】此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.1513.【解析】【详解】试题分析:解:∵在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D 为AB 的中点,∴CD=AD=BD=AB=2.5,过D′作D′E ⊥BC ,∵将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A′处,点D 落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=, 故答案为.考点:旋转的性质.16.【解析】试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.17.﹣1.【解析】 试题解析:∵1x ,2x 是方程2310x x --=的两根,∴123x x +=、121x x =-,∴1211x x +=1212x x x x +=31- =﹣1.故答案为﹣1.18.(3,2)【解析】【分析】根据平移的性质即可得到结论.【详解】∵将线段AB 沿x 轴的正方向平移,若点B 的对应点B′的坐标为(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)从运动开始经过2s 或53s 或125s 或685 s 时,△BEP 为等腰三角形. 【解析】【分析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P 在BC 和DA 上的情况求出t 的值.【详解】解:(1)∵∠BAC=∠ACD=90°,∴AB ∥CD ,∵∠B=∠D ,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB ,∴AD ∥BC ,∴四边形ABCD 是平行四边形.(2)∵∠BAC=90°,BC=5cm ,AB=3cm ,′由勾股定理得:AC=4cm ,即AB 、CD 间的最短距离是4cm ,∵AB=3cm ,AE=13AB , ∴AE=1cm ,BE=2cm ,设经过ts 时,△BEP 是等腰三角形,当P 在BC 上时,①BP=EB=2cm ,t=2时,△BEP 是等腰三角形;②BP=PE ,作PM⊥AB于M,∴BM=ME=12BE=1cm∵cos∠ABC=35 AB BMBC BP==,∴BP=53 cm,t=53时,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,则BP=2BN,∴cosB=35 BNBE=,∴3 25 BN=,BN=65 cm,∴BP=125,∴t=125时,△BEP是等腰三角形;当P在CD上不能得出等腰三角形,∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQ⊥BA于Q,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=21325,AP=5x=35-cm,∴t=5+5+3﹣35=685-,答:从运动开始经过2s或53s或125s时,△BEP为等腰三角形.【点睛】本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.20.(1)t≤﹣34;(2)t≤3;(3)t≤1.【解析】【分析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.(2)把点A的坐标代入一次函数解析式求得a=1b;然后利用二次函数的最值的求法得到t的取值范围.(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.【详解】解:(1)把A(a,1)代入y=2ax得到:1=2aa,解得a=1,则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣12)2﹣34.因为抛物线t=﹣(b﹣12)2﹣34的开口方向向下,且顶点坐标是(12,﹣34),所以t的取值范围为:t≤﹣34;(2)把A(a,1)代入y=bx得到:1=ab,所以a=1b,则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+1b)2+3≤3,故t的取值范围为:t≤3;(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,所以ab=1﹣(a2+b2),则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,故t的取值范围为:t≤1.【点睛】本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.21.(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.22作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小【解析】【分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.【详解】解:(1)AC=221+2=5. 故答案为5.(2)作线段AB 关于AC 的对称线段AB′,作BQ′⊥AB′于Q′交AC 于P ,作PQ ⊥AB 于Q ,此时PQ+QB 的值最小.故答案为作线段AB 关于AC 的对称线段AB′,作BQ′⊥AB′于Q′交AC 于P ,作PQ ⊥AB 于Q ,此时PQ+QB 的值最小.【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.23.(1)1人;补图见解析;(2)10人;(3)610名.【解析】【分析】(1)用总人数乘以A 所占的百分比,即可得到总人数;再用总人数乘以A 等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D 等级人数,据此可补全条形图;(2)用总人数乘以(A 的百分比+B 的百分比),即可解答;(3)先计算出提高后A ,B 所占的百分比,再乘以总人数,即可解答.【详解】解:(1)本次调查抽取的总人数为15÷108360=1(人), 则A 等级人数为1×72360=10(人),D 等级人数为1﹣(10+15+5)=20(人), 补全直方图如下:故答案为1.(2)估计该校九年级此次数学成绩在B 等级以上(含B 等级)的学生有1000×101550=10(人); (3)∵A 级学生数可提高40%,B 级学生数可提高10%,∴B 级学生所占的百分比为:30%×(1+10%)=33%,A 级学生所占的百分比为:20%×(1+40%)=28%, ∴1000×(33%+28%)=610(人),∴估计经过训练后九年级数学成绩在B 以上(含B 级)的学生可达610名.【点睛】考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)14;(2) 14. 【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B 手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A 手中的结果有2种,即可求出三次传球后,球恰在A 手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C ,A→B→A ,A→C→B ,A→C→A .每种结果发生的可能性相等,球球恰在B 手中的结果只有一种,所以两次传球后,球恰在B 手中的概率是14; (2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A 手中的结果有A→B→C→A ,A→C→B→A 这两种,所以三次传球后,球恰在A 手中的概率是2184=. 考点:用列举法求概率.25.3m =-.【解析】【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.【详解】解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根, 设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∴AC BD ⊥,在Rt AOB V 中:由勾股定理得:222OA OB AB +=,∴222125+=x x ,则()21212225x x x x +-=, 由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∴[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵>0∆,∴()22(21)430--+>m m ,解得114m <-, ∴3m =-.【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.26.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h ;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m 值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h 的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人, m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h ), 众数为1.5h ,中位数为=1.5h ;(3)估计每天在校体育锻炼时间大于等于1.5h 的人数约为250000×=160000人. 【点睛】本题主要考查数据的收集、 处理以及统计图表.27.(1)证明见解析;(2)25BE 6=. 【解析】【分析】 ()1先利用等腰三角形的性质得到BD AC ⊥,利用切线的性质得CE AC ⊥,则CE ∥BD ,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【详解】()1证明:BA BC =Q ,AO CO =, BD AC ∴⊥,CE Q 是O e 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=.BC Q 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O Q e 的直径长8,CO 4∴=.4OCsin 3sin 25BC ∠∠∴===,BC 5∴=,BE CE Q =,15BF BC 22∴==,在Rt BEF V 中,EF 4sin 3sin 1BE 5∠∠===设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=, 25BE 5x 6∴==. 故答案为(1)证明见解析;(2)256BE =. 【点睛】 本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形.。
山东省临沂市2019-2020学年中考数学五模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩2.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.﹣12<m<2 D.54<m<23.如图所示的几何体的主视图正确的是()A.B.C.D.4.下列实数中,为无理数的是()A.13B.2C.﹣5 D.0.31565.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm36.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.7.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0 C .x=﹣23 D .x=﹣18.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )A .B .C .D .9.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或1010.下表是某校合唱团成员的年龄分布,对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) 年龄/岁13 14 15 16 频数 5 15 x10- x A .平均数、中位数 B .众数、方差C .平均数、方差D .众数、中位数 11.下列安全标志图中,是中心对称图形的是( )A .B .C .D .12.如图,△ABC 中,AB>AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE=∠B B .∠EAC=∠C C .AE ∥BCD .∠DAE=∠EAC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =40°,则∠OAC =____度.14.如果23a b =,那么22242a b a ab--的结果是______. 15.如图,要使△ABC ∽△ACD ,需补充的条件是_____.(只要写出一种)16.在直角坐标系平面内,抛物线y=3x 2+2x 在对称轴的左侧部分是_____的(填“上升”或“下降”) 17.计算(2a )3的结果等于__.18.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,抛物线L :y=x 2+bx+c 与x 轴交于点A 和点B (-3,0),与y 轴交于点C (0,3). (1)求抛物线L 的顶点坐标和A 点坐标.(2)如何平移抛物线L 得到抛物线L 1,使得平移后的抛物线L 1的顶点与抛物线L 的顶点关于原点对称? (3)将抛物线L 平移,使其经过点C 得到抛物线L 2,点P (m ,n )(m >0)是抛物线L 2上的一点,是否存在点P ,使得△PAC 为等腰直角三角形,若存在,请直接写出抛物线L 2的表达式,若不存在,请说明理由.20.(6分)(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC=∠BOD ,求证:AO=OB ;(2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA=40°,求∠ABC 的度数.21.(6分)已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE=BF .求证:EA ⊥AF .22.(8分)如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE =CD .23.(8分)如图,在△ABC 中,AB=AC ,∠BAC=120°,EF 为AB 的垂直平分线,交BC 于点F ,交AB 于点E .求证:FC=2BF .24.(10分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1. 25.(10分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O .画出△AOB 平移后的三角形,其平移后的方向为射线AD 的方向,平移的距离为AD 的长.观察平移后的图形,除了矩形ABCD 外,还有一种特殊的平行四边形?请证明你的结论.26.(12分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)27.(12分)已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点.求一次函数和反比例函数的解析式;求△AOB 的面积;观察图象,直接写出不等式kx+b ﹣m x >0的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.2.D【解析】【分析】根据一元二次方程的根的判别式的意义得到m -2≠0且Δ=(2m -1)2-4(m -2)(m -2) >0,解得m >54且m≠﹣2,再利用根与系数的关系得到2m m -1-2, m ﹣2≠0,解得12<m <2,即可求出答案. 【详解】解:由题意可知:m -2≠0且Δ=(2m ﹣1)2﹣4(m ﹣2)2=12m ﹣15>0,∴m >54且m≠﹣2, ∵(m ﹣2)x 2+(2m ﹣1)x+m ﹣2=0有两个不相等的正实数根, ∴﹣2m m -1-2>0,m ﹣2≠0, ∴12<m <2,∵m>54,∴54<m<2,故选:D.【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.3.D【解析】【分析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.4.B【解析】【分析】根据无理数的定义解答即可.【详解】选项A、13是分数,是有理数;选项B是无理数;选项C、﹣5为有理数;选项D、0.3156是有理数;故选B.【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.5.A【解析】试题分析:0.001219=1.219×10﹣1.故选A.考点:科学记数法—表示较小的数.6.B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.7.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.8.A【解析】【分析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.9.B【解析】【分析】【详解】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.故选B10.D【解析】【分析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定. 【详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化. 故选D.11.B【解析】试题分析:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不合题意;故选B.考点:中心对称图形.12.D【解析】【分析】【详解】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50【解析】【分析】根据BC 是直径得出∠B =∠D =40°,∠BAC =90°,再根据半径相等所对应的角相等求出∠BAO ,在直角三角形BAC 中即可求出∠OAC【详解】∵BC 是直径,∠D =40°,∴∠B =∠D =40°,∠BAC =90°.∵OA =OB ,∴∠BAO =∠B =40°,∴∠OAC =∠BAC ﹣∠BAO =90°﹣40°=50°.故答案为:50【点睛】本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键14.1【解析】【分析】 令23a b ==k ,则a=2k ,b=3k ,代入到原式化简的结果计算即可. 【详解】 令23a b ==k ,则a=2k ,b=3k ,∴原式()()()222a b a b a a b +-=-2a b a +=262k k k +=82k k==1. 故答案为:1.【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.15.∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB【解析】试题分析:∵∠DAC=∠CAB∴当∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB 时,△ABC ∽△ACD .故答案为∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB .考点:1.相似三角形的判定;2.开放型.16.下降【解析】【分析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的,故答案为下降.【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.17.8 【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方18..【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==, ∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x 2-103x+3, 2239y x x =++,y=x 2-4x+3, 2833y x x =++. 【解析】【分析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【详解】{0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. Q 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1) Q 抛物线L 1的顶点与抛物线L 的顶点关于原点对称,1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆Q 是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒Q ,1CAO P AE ∴∠=,190PEA COA =∠=︒Q , ()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得2,1P -,3,4P -,3,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【点睛】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.20.(1)证明见解析;(2)25°. 【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒. 21.见解析【解析】【分析】根据条件可以得出AD=AB ,∠ABF=∠ADE=90°,从而可以得出△ABF ≌△ADE ,就可以得出∠FAB=∠EAD ,就可以得出结论.证明:∵四边形ABCD 是正方形,∴AB=AD ,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF 和△DAE 中,AB AD ABF ADE BF DE ⎧⎪∠∠⎨⎪⎩=== ,∴△BAF ≌△DAE (SAS ),∴∠FAB=∠EAD ,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA ⊥AF .22.证明见解析.【解析】【分析】由AD ∥BC 得∠ADB =∠DBC,根据已知证明△AED ≌△DCB (AAS ),即可解题.【详解】解:∵AD ∥BC∴∠ADB =∠DBC∵DC ⊥BC 于点C ,AE ⊥BD 于点E∴∠C =∠AED =90°又∵DB =DA∴△AED ≌△DCB (AAS )∴AE =CD【点睛】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.23.见解析【解析】【分析】连接AF ,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF ,可证得结论.证明:连接AF ,∵EF 为AB 的垂直平分线,∴AF=BF ,又AB=AC ,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC ,∴FC=2BF .【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.24.a 2+2a ,2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a 2+2a−2=2,即可解答本题.【详解】 解:242a a a a ⎛⎫--÷ ⎪⎝⎭ =2242a a a a -⋅- =2(2)(2)2a a a a a +-⋅- =a (a+2)=a 2+2a ,∵a 2+2a ﹣2=2,∴a 2+2a =2,∴原式=2.【点睛】【解析】【分析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.26.客车不能通过限高杆,理由见解析【解析】【分析】根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=DFDE,求出DF的值,即可判断.【详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=DF DE,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.27.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.。
山东省临沂市数学中考模拟试卷(5月)姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)比较-32与(-2)3大小,正确的是()A . -32>(-2)3B . -32=(-2)3C . -32<(-2)3D . 不能比较2. (2分) (2020八上·武汉月考) 如图,C处在A处的南偏西40°方向,E处在A处的南偏东20°方向,E 处在C处的北偏东80°的方向,则∠AEC的度数是()A . 60°B . 80°C . 90°D . 100°3. (2分) (2017八上·南安期末) 下列算式中,结果等于a6的是()A . a4+a2B . a2+a2+a2C . a2•a3D . a2•a2•a24. (2分) (2017七上·北票期中) 一个几何体的三视图如图所示,则该几何体的表面积为()A .B .C .D .5. (2分) (2018九上·平顶山期末) 一元二次方程x2+8x﹣1=0配方后变形为()A . (x+4)2=1B . (x+8)2=1C . (x+4)2=17D . (x+8)2=656. (2分)(2017·响水模拟) 如图,AB是⊙O直径,点C为⊙O上一点,∠C=20°,则∠BOC度数为()A . 20°B . 30°C . 40°D . 60°7. (2分) (2019八下·余杭期末) 某班30名学生的身高情况如下表:身高(m)1.451.481.501.531.561.60人数x y6854关于身高的统计量中,不随x、y的变化而变化的有()A . 众数,中位数B . 中位数,方差C . 平均数,方差D . 平均数,众数8. (2分)(2020·新疆模拟) 暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A .B .C .D .9. (2分)如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A作AE∥BP,交BQ于点E,则下列结论正确的是()A . BP•BE=2B . BP•BE=4C . =D . =二、填空题 (共6题;共6分)10. (1分)分解因式:2ab2+4ab+2a=________.11. (1分) (2020八下·惠州期末) 函数y=的自变量取值范围是________.12. (1分) (2019九上·秀洲期中) 在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为________.13. (1分)如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P从A点开始沿AB边向点B以1 cm/s 的速度移动,点Q从B点开始沿BC边向点C以2 cm/s的速度移动,则P、Q分别从A、B同时出发,经过________秒钟,使△PBQ的面积等于8 cm2.14. (1分)(2020·宁波模拟) 如图,点A、C、B是双曲线y= (k>0,x>0)上从右至左得三点,连结OA,OB,OC,AC,BC,△OBC和△ACO的面积相等,若A、B两点横坐标的比为4:1,则A、C两点的纵坐标的比值为________。
临沂市中考数学模拟精品试题附答案一、选择题1. 某班级中有男生和女生,男生人数是女生人数的4倍,如果将班级中男生人数和女生人数都减少1,那么男生人数将是女生人数的5倍。
求该班级男生和女生的总人数。
A. 28B. 35C. 42D. 562. 一个长方体的外表面积是48平方厘米,体积是20立方厘米。
则该长方体的体对角线的长度是多少厘米?A. 4B. 20C. 24D. 323. 一批产品运往目的地,开始时车上有产品555箱,经过每一个分销中心,产品数量减少的百分之十。
经过5个分销中心后,剩余产品317.52箱。
请问运往目的地的产品数量为多少?A. 800B. 900C. 1000D. 12004. 若正方形的面积是121平方厘米,那么这个正方形的对角线长是多少厘米?A. 11B. 11√2C. 22D. 22√25. 一根长方形的钢筋长70厘米,钢筋上有两个标记,分别距离钢筋一端15厘米和45厘米,这两个标记的所在位置之间距离是多少厘米?A. 20B. 25C. 30D. 60二、填空题6. 有8个正整数,这8个数的和是180,平均数是22.5,有6个数都是奇数,另外两个数的平均数是几?答案:357. 某物业小区的绿地面积占总面积的10%,道路面积占总面积的30%,楼房面积占总面积的40%,停车场占总面积的20%。
若停车场的面积是400平方米,则该小区总面积是多少平方米?答案:20008. 已知函数 f(x)=3x^3-10x^2+5x-7,求 f(2) 的值。
答案:39. 小明的年龄是小芳的3/2倍,今年小明的年龄是小芳的3倍减15岁,那么小明今年多大?答案:3010. 若 a:b=3:4,b:c=5:7,则 a:b:c 的比是多少?答案:15:20:28三、解答题11. 一组数据为:12,15,x,19,25,30。
(1)数据的平均数是多少?(2)若这组数据的中位数等于20,求 x 的值。
(1)数据的平均数是:(12 + 15 + x + 19 + 25 + 30)/6 = 20 + x/6 = 20将等式两边同时乘以6得:6 * 20 = 120则 x = 120 - 6 * 20 = 120 - 120 = 0(2)若中位数等于20,则有:x = 2012. 已知一架飞机始终以恒定的速度前进,从最初的位置出发,4小时后到达A地,再飞行2小时后到达B地。
山东省临沂市数学中考模拟试卷(5 月)姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2019 七上·越城月考) 如果一个数的绝对值等于这个数的相反数,那么这个数一定是( )A . 正数B . 负数C . 非正数D . 非负数2. (2 分) (2018 七上·嵩县期末) 地球平均半径约等于 6 400 000 米,6 400 000 用科学记数法表示为( )A . 64×105B . 6.4×105C . 6.4×106D . 6.4×1073. (2 分) 下列计算正确的是( )A . a+2a=3a2B . (a5)2=a7C . a2×a3=a5D . a6÷a3=a24. (2 分) 如图,在 4×4 正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )A. B. C. D. 5. (2 分) (2017 七下·桥东期中) 我市为了创建全国文明城市,经统一规划,将一正方形草坪的南北方向 增加 2m,东西方向缩短 2m,则改造后的长方形草坪面积与原来正方形草坪面积相比 ( )第 1 页 共 17 页A . 减少 4m2 B . 增加 4m2 C . 保持不变 D . 无法确定 6. (2 分) (2017 九下·六盘水开学考) 为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同 学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升国旗离旗杆顶端的距离与时间的关系( )A.B.C.D. 7. (2 分) 二次函数 y=2x2﹣8x+m 满足以下条件:当﹣2<x<﹣1 时,它的图象位于 x 轴的下方;当 6<x<7 时,它的图象位于 x 轴的上方,则 m 的值为( ) A.8 B . ﹣10 C . ﹣42 D . ﹣24 8. (2 分) 如图,把长为 8 cm 的矩形纸片按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰 梯形,剪掉部分的面积为 6 cm2 , 则打开后梯形的周长是( )A . (10+2 )cm B . (10+ )cm第 2 页 共 17 页C . 22 cmD . 18 cm9. (2 分) 如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为 2,第②个 图 形 的 面 积 为 6 , 第 ③ 个 图 形 的 面 积 为 12 , … , 那 么 第 ⑧ 个 图 形 面 积 为 ()A . 42 B . 56 C . 72 D . 90 10. (2 分) 下列如图是由 5 个相同大小的正方体搭成的几何体,则它的俯视图是( )A.B.C.D.二、 填空题 (共 6 题;共 6 分)11. (1 分) (2018 九下·鄞州月考) 分解因式:x2-4=________. 12. (1 分) 分式方程 = 的解是________ . 13. (1 分) (2017 七下·钦北期末) 如图(1),在边长为 a 的大正方形中剪去一个边长为 b 的小正方形,再 将图中的阴影部分剪拼成一个长方形,如图(2).这个拼成的长方形的长为 30,宽为 20.则图(2)中Ⅱ部分的面 积是________.第 3 页 共 17 页14. (1 分) (2017·莒县模拟) 设计一个商标图形(如图 8 所示),在△ABC 中,AB=AC=2cm,∠B=30°,以 A为圆心,AB 为半径作,以 BC 为直径作半圆,则商标图案(阴影)面积等于________ cm2 .15. (1 分) (2016 八下·余干期中) 如图,将菱形纸片 ABCD 折叠,使点 A 恰好落在菱形的对称中心 O 处, 折痕为 EF,若菱形 ABCD 的边长为 2cm,∠A=120°,则 EF=________cm.16. (1 分) 如图所示,在正方形网格上有 6 个斜三角形,①△ABC,②△BCD,③△BDE,④△BFG,⑤△FGH, ⑥△EFK,在②~⑥中,与三角形①相似的有________(填序号)三、 解答题 (共 8 题;共 86 分)17. (10 分) 已知 10-2α=3,10-β= ,求 108α+3β 的值. 18. (11 分) (2017 七下·宜城期末) 解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜 爱程度,随机抽取了部分学生进行调查(每人限选 1 项),现将调查结果绘制成如下两幅不完整的统计图,根据图 中所给的信息解答下列问题.第 4 页 共 17 页(1) 喜爱动画的学生人数和所占比例分别是多少? (2) 请将条形统计图补充完整; (3) 若该校共有学生 1000 人,依据以上图表估计该校喜欢体育的人数约为多少? 19. (10 分) (2019 七上·新吴期末) 利用网格画图:(1) ①过点 C 画 AB 的平行线; ②过点 C 画 AB 的垂线,垂足为 E; (2) 连接 CA、CB,在线段 CA、CB、CE 中,________线段最短,理由:________; (3) 点 C 到直线 AB 的距离线段 CE 的长度. 20. (10 分) (2019 八上·顺德月考) 已知一次函数 y=2x﹣4第 5 页 共 17 页(1) 在平面直角坐标系中画出图象; (2) 该直线与 x 轴相交于点 A,与 y 轴相交于点 B,线段 AB 上有点 C( 1,-2),在 y 轴上有一动点 P,请求 出 PA+PC 的最小值。
山东省临沂蒙阴县联考2024届中考五模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .25πcmB .210πcmC .215πcmD .220πcm2.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x--=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( )A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<3.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°4.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )A .B .C .D .5.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( )A .B .C .D .6.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A .y =(x -1)2+2 B .y =(x +1)2+2 C .y =(x -1)2-2 D .y =(x +1)2-27.如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°8.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )A .3,-1B .1,-3C .-3,1D .-1,39.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°10.已知抛物线y=ax 2﹣(2a+1)x+a ﹣1与x 轴交于A (x 1,0),B (x 2,0)两点,若x 1<1,x 2>2,则a 的取值范围是( )A .a <3B .0<a <3C .a >﹣3D .﹣3<a <0二、填空题(本大题共6个小题,每小题3分,共18分)11.已知抛物线2y ax bx c =++开口向上且经过点()1,1,双曲线1y 2x=经过点()a,bc ,给出下列结论:bc 0①>;b c 0+>②;b ③,c 是关于x 的一元二次方程()21x a 1x 02a+-+=的两个实数根;a b c 3.--≥④其中正确结论是______(填写序号) 12.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____.13.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.14.在Rt △ABC 纸片上剪出7个如图所示的正方形,点E ,F 落在AB 边上,每个正方形的边长为1,则Rt △ABC 的面积为_____.15.如图,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在点'A 处,且点'A 在△ABC 的外部,则阴影部分图形的周长为_____cm.16.如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π).三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数k y x=的图象上,将这两点分别记为A ,B ,另一点记为C ,(1)求出k 的值;(2)求直线AB 对应的一次函数的表达式;(3)设点C 关于直线AB 的对称点为D ,P 是x 轴上的一个动点,直接写出PC +PD 的最小值(不必说明理由).18.(8分)如图,菱形ABCD 中,,E F 分别是,BC CD 边的中点.求证:AE AF .19.(8分)如图,已知A (3,0),B (0,﹣1),连接AB ,过B 点作AB 的垂线段BC ,使BA =BC ,连接AC .如图1,求C 点坐标;如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角△BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA =CQ ;在(2)的条件下若C 、P ,Q 三点共线,求此时∠APB 的度数及P 点坐标.20.(8分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC .求作:△ABC 的边BC 上的高AD .作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.21.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.22.(10分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.23.(12分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.24.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=27252360π⨯⨯=10π .故选B.2、B【解题分析】解:根据题意可得:210a --∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x <0时y >0,当x >0时,y <0,∴2y <3y <1y .3、A【解题分析】∵AB ∥CD ,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A .4、B【解题分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【题目详解】解:主视图,如图所示:.故选B .【题目点拨】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.5、C【解题分析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【题目详解】A 、不是中心对称图形,是轴对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既不是中心对称图形,也不是轴对称图形,故本选项正确;D 、是中心对称图形,不是轴对称图形,故本选项错误,故选C .【题目点拨】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.6、A【解题分析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选A.考点:二次函数图象与几何变换.7、C【解题分析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【题目详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【题目点拨】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.8、A【解题分析】根据题意可得方程组2127a ba b+=⎧⎨-=⎩,再解方程组即可.【题目详解】由题意得:21 27 a ba b+=⎧⎨-=⎩,解得:31 ab=⎧⎨=-⎩,故选A.9、D【解题分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【题目详解】解:∵l 1∥l 2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D .【题目点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.10、B【解题分析】由已知抛物线2(21)1y ax a x a =-++-求出对称轴212a x a+=+, 解:抛物线:2(21)1y ax a x a =-++-,对称轴212a x a +=+,由判别式得出a 的取值范围. 11<x ,22x >, ∴21122a a+<<, ①2(21)4(1)0a a a ∆=+-->,18a ≥-.②由①②得0<<3a .故选B .二、填空题(本大题共6个小题,每小题3分,共18分)11、①③【解题分析】试题解析:∵抛物线2y ax bx c =++开口向上且经过点(1,1),双曲线12y x =经过点(a ,bc ),∴0112a a b c bc a ⎧⎪>⎪++=⎨⎪⎪=⎩,∴bc >0,故①正确;∴a >1时,则b 、c 均小于0,此时b +c <0,当a =1时,b +c =0,则与题意矛盾,当0<a <1时,则b 、c 均大于0,此时b +c >0,故②错误; ∴21(1)02x a x a+-+=可以转化为:2()0x b c x bc +++=,得x =b 或x =c ,故③正确; ∵b ,c 是关于x 的一元二次方程21(1)02x a x a +-+=的两个实数根,∴a ﹣b ﹣c =a ﹣(b +c )=a +(a ﹣1)=2a ﹣1,当a >1时,2a ﹣1>3,当0<a <1时,﹣1<2a ﹣1<3,故④错误;故答案为①③.12、45a ≤<【解题分析】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1,∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解,∴a 的范围为45a ≤<,故答案为45a ≤<.【题目点拨】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.13、13. 【解题分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【题目详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:21243=+, 故答案为13. 【题目点拨】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14、494【解题分析】如图,设AH=x ,GB=y ,利用平行线分线段成比例定理,构建方程组求出x ,y 即可解决问题.【题目详解】解:如图,设AH =x ,GB =y ,∵EH ∥BC , AH EH AC BC∴=, 135x x y∴=++① ∵FG ∥AC ,FG BG AC BC∴= 135y x y=++②, 由①②可得x =12,y =2, ∴AC =72,BC =7, ∴S △ABC =494, 故答案为494. 【题目点拨】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.15、3【解题分析】由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【题目详解】∵△A 'DE 与△ADE 关于直线DE 对称,∴AD =A 'D ,AE =A 'E ,C 阴影=BC +A 'D +A 'E +BD +EC = BC +AD +AE +BD +EC =BC +AB +AC =3cm .故答案为3.【题目点拨】由图形轴对称可以得到对应的边相等、角相等.16、23π. 【解题分析】图中阴影部分的面积就是两个扇形的面积,圆A ,B 的半径为2cm ,则根据扇形面积公式可得阴影面积.【题目详解】()2260423603603A B πππ∠+∠⨯⨯==(cm 2). 故答案为23π. 考点:1、扇形的面积公式;2、两圆相外切的性质.三、解答题(共8题,共72分)17、(2)2;(2)y=x+2;(3【解题分析】(2)确定A 、B 、C 的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D 关于x 轴的对称点D′(0,-4),连接CD′交x 轴于P ,此时PC+PD 的值最小,最小值=CD′的长.【题目详解】解:(2)∵反比例函数y=k x的图象上的点横坐标与纵坐标的积相同, ∴A (2,2),B (-2,-2),C (3,2)∴k=2.(2)设直线AB 的解析式为y=mx+n ,则有221m n m n ++⎧⎨-+-⎩=, 解得11m n ⎧⎨⎩==, ∴直线AB 的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值223+5=34【题目点拨】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.18、证明见解析.【解题分析】根据菱形的性质,先证明△ABE≌△ADF,即可得解.【题目详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵点E,F分别是BC,CD边的中点,∴BE=12BC,DF=12CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.19、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解题分析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【题目详解】(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,∵AB ⊥BC ,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).【题目点拨】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.20、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解题分析】利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【题目详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【题目点拨】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.21、(1)作图见解析;(2)证明见解析;【解题分析】(1)分别以B、D为圆心,以大于12BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.【题目详解】解:(1)如图:(2)∵四边形ABCD为矩形,∴AD ∥BC ,∴∠ADB=∠CBD ,∵EF 垂直平分线段BD ,∴BO=DO ,在△DEO 和三角形BFO 中,{ADB CBDBO DO DOE BOF∠=∠=∠=∠,∴△DEO ≌△BFO (ASA ),∴DE=BF .考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.22、(1)1月份B 款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解题分析】试题分析:(1)用一月份A 款的数量乘以,即可得出一月份B 款运动鞋销售量;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A 款的数量乘以:50×=40(双).即一月份B 款运动鞋销售了40双;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A 款运动鞋销售量逐月增加,比B 款运动鞋销量大,建议多进A 款运动鞋,少进或不进B 款运动鞋.考点:1.折线统计图;2.条形统计图.23、(1)50(2)420(3)P=58【解题分析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;(2)由题意可求得130~145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有1450×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:816=12.考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频24、(1)111,51;(2)11.【解题分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【题目详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:40040042x x-=解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+180010050y×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.。
2015年临沂市初中学生学业考试数学模拟试题(五)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.⒈计算-4×(-2)的结果是(A)8 (B)-8 (C)6 (D)-22. 如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是(A)两点确定一条直线(B)两点之间线段最短(C)垂线段最短(D)在同一平面内,过一点有且只有一条直线与已知直线垂直3.苹果开始采摘啦!每筐苹果以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐苹果的总质量是(A )19.7千克 (B )19.9千克 (C )20.1千克 (D )20.3千克 4.如图,四边形ABCD ,AEFG 都是正方形,点E ,G 分别在AB ,AD 上,连接FC ,过点E 作EH∥FC 交BC 于点H .若AB=4,AE=1,则BH 的长为(A )1(B )2(C )3 (D )35. 已知x 2—2x —3=0,则2x 2—4x 的值为( )(A )—6 (B )6 (C )—2或6, (D )—2或30 6. 在下面四种图形中,与右边三视图相对应的几何体是7. 不等式组⎩⎨⎧>+≤-- ,x x x x 3427)1(3的解集是(A )-2<x <4 (B )x <4或x ≥-2 (C )-2≤x <4 (D )-2<x ≤48. 在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.501.601.651.701.751.80(第7题图)人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是(A)1.70,1.65 (B)1.70,1.70(C)1.65,1.70 (D)3,49 .如图,AB是⊙O的直径,∠AOC=110°,则∠D=(A)25°(B)35°(C)55°(D)70°10.“服务他人,提升自我”,五一学校积极开展四德教育服务活动,来自九年级的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()(A)16(B)15(C)25(D)3511.如图,RtΔABC中,AB=9,BC=6,∠B=90°,将ΔABC折叠,使A点与BC的中点D重合,折痕为MN,则线段B N的长为(A)35(B)25(C)4 (D)512.如图,在平面直角坐标系中,抛物线221xy=经过平移得到抛物线xxy2212-=,其对称轴与两段抛物线弧所围成的阴影部分的面积为()(A)2 (B)4 (C)8(D)1613.某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()(A)120012002120x x-=(-%)(B)120012002120x x-=+(%)(C)120012002120x x-=(-%)(D)120012002120x x-=+(%)(第9题图)14.如图,已知BA、是反比例函数(0,0)ky k xx=>>上的两点,BC∥x轴,交y轴于C ,动点P从坐标原点O出发,沿O A B C→→→(图中“→”表示路线)匀速运动,终点为C,过运动路线上任意一点P作PM x⊥轴于M,PN y⊥轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分,共15分)15.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.16.若扇形的圆心角为60°,弧长为2π,则扇形的半径为.17.如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD= .18.分式方程xxx-=--23124的解是______________.19.若存在一种函数)(xf,定义为()231f xx=+,例如:23113)1(2=+=f,那么()2f= __________.三、解答题(本大题共7小题,共63分)20. (本题满分7分)计算:)23()23(32125255232+---+-⨯-.A'CEFBA D(第17题图)21. (本题满分7分)某市对九年级学生进行“综合素质”评价,评价的结果为A (优)、B (良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为14:9:6:1,评价结果为D 等级的有2人,请你回答以下问题:(1)共抽测了多少人?(2)样本中B 等级的频率是多少?C 等级的频率是多少?(3)如果要绘制扇形统计图,A 、D 两个等级在扇形统计图中所占的圆心角分别是多少度? (4)该校九年级的毕业生共300人,假如“综合素质”等级为A 或B 的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?22. (本题满分7分)如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC(1)求证:AD EC =;(2)当∠BAC =90°时,求证:四边形ADCE 是菱形; (3)在(2)的条件下,若AB AO =,求tan OAD ∠的值.(第21题图)(第22题图)BEDO CA23. (本题满分9分)如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且30CDB OBD ∠=∠=°,DB=63cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)24. (本题满分9分)小聪和小明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O →A →B →C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟;(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?25. (本题满分11分)在ABC Rt ∆中,5==BC AB ,︒=∠90B ,将一块等腰直角三角板的直角顶点放在斜边AC 的中点O 处,将三角板绕点O 旋转,三角板的两直角边分别交AB 、BC 或其延长线于E 、(第23题图)s (千米) t (分钟)ABDC 304515O24 小聪 小明 (第24题图)F 两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O 旋转,FOC ∆是否能成为等腰直角三角形?若能,指出所有情况(即给出FOC ∆是等腰直角三角形时BF 的长),若不能,请说明理由;(2)三角板绕点O 旋转,线段OE 和OF 之间有什么数量关系?用图①或②加以证明; (3)若将三角板的直角顶点放在斜边上的点P 处(如图③),当4:1:=PC AP 时,PE 和PF 有怎样的数量关系?证明你发现的结论.26. (本题满分13分)如图,点A 的坐标为(-8,0),点P 的坐标为74⎛⎫- ⎪⎝⎭,,直线34y x b =+过点A ,交y 轴于点B ,以点P 为圆心,以PA 为半径的圆交x 轴于点C .(1)判断点B 是否在⊙P 上?说明理由.(2)求过A 、B 、C 三点的抛物线的解析式;并求抛物线与⊙P 另外一个交点为D 的坐标.(第25题图)(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q的坐标,若不存在,请说明理由.(第26题图)2015年临沂市初中学生学业考试数学模拟试题(五)参考答案一、选择题:AACCB ,BCABD ,CBDA ;二、填空题:15.70;16.6;17.2;18.35-=x ; 19.1. 三、解答题 20 . 解:原式=()232351----+………………………6分 =-51……………………………………………7分21.解:⑴60人…………………………………………………2分⑵B 等级的频率是30%,C 等级的频率是20%.………………………………………4分 ⑶168°、12°………………………………………5分 ⑷有230名.………………………………………7分 22.解:⑴∵AE ∥BC ,DE ∥AB , ∴四边形ABDE 是平行四边形∴AE ∥BD ,AE =BD ,………………………………2分 ∵AD 是BC 边上的中线, ∴BD =DC , ∴AE ∥DC ,AE =DC ,∴四边形ADEC 是平行四边形,∴AD =EC.………………………………3分 ⑵∵∠BAC =90°, ∴AD =DC ,∴四边形ADEC 是菱形,∠OAD =∠OCD ,………………………………5分 ⑶∵AB =AO , ∴AC =2AB ,∴1tan 2OAD ∠=………………………………7分 23.解:(1)证明:连接CO ,交DB 于E , ∴∠O =2∠D =60°,又∵∠OBE =30°∴∠BEO=180°-60°-30°=90°,∵AC ∥BD ∴∠ACO =∠BEO =90°, ∴AC 是⊙O 的切线……………………………………………4分 (2)解:OE DB ⊥Q ∴1332EB DB ==, 在Rt △EOB 中,30cos °EBOB=∴3336OB =÷=又∵∠D =∠DBO ,DE =BE ,∠CED =∠OEB∴CDE ∆≌)(ASA OBE ∆OBE CDE S S ∆∆= 26066360OCB S S ππ∴=⋅==阴影扇形2()cm ……………………………………9分 24.解:(1)15,154. ………………………2分 (2)由图象可知,s 是t 的正比例函数,设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454=,解得:454=k ………………………4分 ∴s 与t 的函数关系式t s 454=(450≤≤t )………………………5分 (3)由图象可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为nmt s +=(0≠m ).将B (30,4),C (45,0)代入得:⎩⎨⎧=+=+045430n m n m ,解得:⎪⎩⎪⎨⎧=-=12154n m ,∴12154+-=t s (4530≤≤t ).………………………7分令t t 45412154=+-,解得4135=t ; 当4135=t 时,34135454=⨯=S ………………………9分答:当小聪与小明迎面相遇时,他们离学校的路程是3千米. ………………………10分25.解:(1)FOC ∆能成为等腰直角三角形.…………1分 ①当F 为BC 的中点时,∵O 点为AC 的中点, ∴OF ∥AB .∴25==OF CF . ∵5==BC AB ,∴25=BF . ………………………3分②当B 与F 重合时,∵225==OC OF , ∴0=BF .………………5分(2)OE =OF .以图(1)证明如下: 如图,连接OB ,∵由(1)的结论可知,225==OC OB , ∵FOC BOF EOB ∠=∠-︒=∠90,C EBO ∠=︒=∠45, ∴OEB ∆≌OFC ∆(ASA ).∴OE =OF .……………7分 (3)4:1:=PC AP .证明如下:如图(2),过点P 作AB PM ⊥,BC PN ⊥, ∵︒=∠+∠=∠+∠90FPN EPN EPN EPM ∴FPN EPM ∠=∠.∵︒=∠=∠90FNP FMP ,∴PEM ∆∽PNF ∆.∴PFPE PN PM = ………………9分 ∵APM ∆和PNC ∆为等腰直角三角形,∴APM ∆∽PNC ∆, ∴PCAPPN PM =. ……………10分 ∵4:1:=PC AP , ∴4:1:=PF PE . ………11分 26.解:⑴∵A(-8,0)在直线34y x b =+上,则有b =6 ∴点B (0,6),即OB =6,………………………………………2分在Rt △BOP 中,由勾股定理得PB =2225OP OB 4+=,则PB =PA , ∴点B 在⊙P 上. …………………………………4分 ⑵AC =2PA =252,则OC =92,点C 902⎛⎫⎪⎝⎭,,………………………………5分 抛物线过点A 、C ,则设所求抛物线为()982y a x x ⎛⎫=+-⎪⎝⎭,代入点C 902⎛⎫⎪⎝⎭,,则有a =16-, 抛物线的解析式为2176612y x x =--+………………………………8分 图(1)图(2)直线x =74-是抛物线和圆P 的对称轴,点B 的对称点为D ,由对称可得D 762⎛⎫- ⎪⎝⎭,.…………9分⑶当点Q 在⊙P 上时,有PQ =PA =254, 如图1所示,假设AB 为菱形的对角线,那么PQ ⊥AB 且互相平分,由勾股定理得PE =154,则2PE≠PQ,所以四边形APBQ 不是菱形. …………………10分 如图2所示,假设AB 、AP 为菱形的邻边,则AB≠AP ,所以四边形APQB 不是菱形.…………11分如图3所示,假设 AB 、BP 为菱形的邻边,则AB≠BP,所以四边形AQPB 不是菱形.xyCE Q OBAPxyCEQOBAPxyCEQO BA P图1 图2 图3 综上所述,⊙P 上不存在点Q ,使以A 、P 、B 、Q 为顶点的四边形………………………………12分。