高一数学三角函数学案与单元检测(含答案
- 格式:doc
- 大小:4.59 MB
- 文档页数:54
章末检测(五) 三角函数 基础卷(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·四川成都外国语学校高一开学考试(理))若1sin 44p a æö+=ç÷èø,则sin 2a =( )A .78B .78-C .34D .34-【答案】B【解析】设4b pa =+,则1sin 4b =,4pa b =-,故27sin 2sin 2cos 22sin 148p a b b b æö=-=-=-=-ç÷èø.故选:B2.(2020·浙江绍兴一中高三)若函数2()cos sin f x x a x b =++在0,2p éùêúëû上的最大值为M ,最小值为m ,则M m -的值( ).A .与a 有关,且与b 有关B .与a 有关,且与b 无关C .与a 无关,且与b 有关D .与a 无关,且与b 无关【答案】B【解析】由题意22()cos sin sin sin 1f x x a x b x a x b =++=-+++,因为0,2x p éùÎêúëû,令sin [0,1]t x =Î,则()()22211[0,1]24a ah t t at b t b t æö=-+++=--+++Îç÷èø,【答案】C【解析】q 是第二象限角,即22,2k k k Z pp q p p +<<+Î,422k k pqpp p +<<+,2q在第一、三象限,又1cos022q=-<,∴2q 是第三象限角,∴23sin 1cos 222q q =--=-,∴222sin cos 2sin cos1sin 22222cos1cos 2cos 2sin 222qq q qq qq q q+--=+-+cos sin1222222cos2sin22q qqq-===-.故选:C .5.(2020·山西高一期中)函数()cos 26f x x p æö=+ç÷èø在区间[0,]p 上的零点个数为( )A .0B .3C .1D .2【答案】D【解析】令()cos 206f x x p æö=+=ç÷èø,解得2()62x k k Z p p p +=+Î,即()62k x k Z p p =+Î.∵[0,]x p Î,∴0k =,6x p=;1k =,23x p =.故选D.6.(2020·全国高一课时练习)如果1|cos |5q =,532p q p <<,那么sin 2q的值为( )A .105-B .105C .155-D .155【答案】C【解析】由532pq p <<可知q 是第二象限角,1cos 5q \=-,53422p q p <<Q,2q \为第三象限角,1cos 15sin 225q q -\=-=-.故选:C 7.(2020·湖南高二期末(理))已知函数()()2sin 210()6f x x p w w =-->在区间,124p p éùêúëû内单调递增,则w 的最大值是( )A .12B .32C .23D .43【答案】D【解析】令22,2,622x k k k Z pp p w p p éù-Î-++Îêúëû,又函数在,124x p p éùÎêúëû单增,故有26626222k k k Z p pp p w pw p p p -+ïì-³ïïÎíï-£î+,,解得212,443k k Z k w w ³-+ìïÎí£+ïî,又0>w ,当0k =时w 取到最大值43故选:D8.(2020·重庆市育才中学高一月考)已知tan 2tan A B =,()1sin 4A B +=,则()sin A B -=( )A .13B .14C .112D .112-【答案】C【解析】因为tan 2tan A B =,即sin sin 2cos cos A BA B=,所以sin cos 2sin cos A B B A =,因为()1sin sin cos cos sin 4A B A B A B +=+=,即13cos sin 4A B =,解得11cos sin ,sin cos 126A B A B ==,因为()sin A B -=sin cos cos sin A B A B -,所以()111sin 61212A B -=-=.故选:C 二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)1.(2020·海南临高二中高二期末)下列结论正确的是( )A .76p-是第三象限角B .若圆心角为3p的扇形的弧长为p ,则该扇形面积为32p C .若角a 的终边过点()3,4P -,则3cos 5a =-D .若角a 为锐角,则角2a 为钝角【答案】BC 【解析】选项A :76p -终边与56p相同,为第二象限角,所以A 不正确;选项B :设扇形的半径为,,33r r r pp =\=,扇形面积为13322pp ´´=,所以B 正确;选项C :角a 的终边过点()3,4P -,根据三角函数定义,3cos 5a =-,所以C 正确; 选项D :角a 为锐角时,0<<,02pa a p <<,所以D 不正确,故选:BC2.(2020·山东高三其他)若将函数()cos 212f x x p æö=+ç÷èø的图象向左平移8p个单位长度,得到函数()g x 的图象,则下列说法正确的是( )A .()g x 的最小正周期为pB .()g x 在区间0,2p éùêúëû上单调递减C .12x p=不是函数()g x 图象的对称轴D .()g x 在,66p p éù-êúëû上的最小值为12-【答案】ACD【解析】()cos 2cos 28123g x x x p p p éùæöæö=++=+ç÷ç÷êúèøèøëû.()g x 的最小正周期为p ,选项A 正确;当0,2x p éùÎêúëû时,42,333x p p p éù+Îêúëû 时,故()g x 在0,2p éùêúëû上有增有减,选项B 错误;012g p æö=ç÷èø,故12x p=不是()g x 图象的一条对称轴,选项C 正确;当,66x p p éùÎ-êúëû时,220,33x p p éù+Îêúëû,且当2233x p p +=,即6x p =时,()g x 取最小值12-,D正确.故选:ACD3.(2020·江苏海安高级中学高二期末)关于函数()sin cos f x x x =+()x R Î,如下结论中正确的是( ).A .函数()f x 的周期是2pB .函数()f x 的值域是0,2éùëûC .函数()f x 的图象关于直线x p =对称D .函数()f x 在3,24p p æöç÷èø上递增【答案】ACD【解析】A .∵()sin cos f x x x =+,∴sin cos cos sin cos sin ()222f x x x x x x x f x p p p æöæöæö+=+++=+-=+=ç÷ç÷ç÷èøèøèø,【解析】由函数图像可知:22362T p pp =-=,则222T p p w p===,所以不选A,当2536212x pp p +==时,1y =-\()5322122k k Z p p j p ´+=+Î,解得:()223k k j p p =+ÎZ ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x p p p p p p æöæöæöæö=++=++=+=-ç÷ç÷ç÷ç÷èøèøèøèø.而5cos 2cos(2)66x x p pæö+=--ç÷èø,故选:BC.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2016·上海市控江中学高三开学考试)函数()sin cos f x ax ax =的最小正周期是p ,则实数a =________【答案】±1【解析】1()sin cos =sin 22f x ax ax ax =,周期22T a p p ==,解得1a =±.故答案为:±114.(2020·广东高二期中)已知角a 的终边与单位圆交于点(3455,-),则3cos(2)2pa +=__________.【答案】2425-【解析】因为角a 的终边与单位圆交于点(3455,-),所以43sin ,cos 55a a ==-,所以4324sin 22sin cos 25525a a a æö=×=´´-=-ç÷èø,所以324cos(2)sin 2225p a a +==-,故答案为:2425-15.(2016·湖南高一学业考试)若sin 5cos a a =,则tan a =____________.【答案】5【解析】由已知得sin tan 5cos aa a==.故答案为:5.16.(2020·浙江高一期末)已知a 为锐角,3cos(),65pa +=则cos()3p a -=_______.【答案】45【解析】∵3cos(),65pa +=且2663p p p a <+<,∴)in(4s 65p a +=;∵()()326ppp a a -=-+,∴4cos()cos[()]sin()32665p p p p a a a -=-+=+=.故答案为:45.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(2020·天津静海一中高一期末)(1)已知sin(2)cos 2()cos tan()2f p p a a a p a p a æö-+ç÷èø=æö-++ç÷èø,求3f p æöç÷èø;(2)若tan 2a =,求224sin 3sin cos 5cos a a a a --的值;(3)求()sin 5013tan10°°+的值;(4)已知3cos 65p a æö-=ç÷èø,求2sin 3p a æö-ç÷èø.结合题目的解答过程总结三角函数求值(化简)最应该注意什么问题?【解析】(1)用诱导公式化简等式可得sin (sin )()cos sin tan f a a a a a a -´-==,代入3p a =可得1cos 332f p p æö==ç÷èø.故答案为12.(2)原式可化为:2222224sin 3sin cos 5cos 4sin 3sin cos 5cos sin cos a a a aa a a a a a----=+224tan 3tan 5tan 1a a a --=+,把tan 2a =代入,则原式44325141´-´-==+.故答案为1.(3)()()sin 1030cos103sin10sin5013tan10sin50sin50cos10cos10°°°°°°°°°°+++=×=×cos 40sin 40sin801cos102cos102°°°°°===故答案为12.(4)令6x pa =-,则6xpa =-22sin sin sin 3632x x p pp p a æöæöæö-=--=--ç÷ç÷ç÷èøèøèø3sin cos 25x x p æö=-+=-=-ç÷èø.解题中应注意角与角之间的关系.18.(2020·全国高三期中(理))已知函数()sin (0)f x x w w =>的图象关于直线94x =对称,且()f x 在[0,2]上为单调函数.(1)求w ;(2)当210,8x éùÎêúëû时,求sin cos x x w w +的取值范围.【解析】(1)因为函数()sin f x x w =的图像关于直线94x =对称.则9()42k k Z p w p =+Î,所以42()9k k Z p p w +=Î. 又()f x 在[0]2,上为单调函数,所以022pw <´…,即04pw <…,当20,9k p w ==满足题意,当1k -…或1,k w …不满足题意.故29pw =.(2)设()sin cos g x x x w w =+,则()2sin 4g x x p w æö=+ç÷èø,由(1)得2()2sin 94g x x pp æö=+ç÷èø,因为210,8x éùÎêúëû,则25,9446x p p p p éù+Îêúëû,所以21sin ,1942x p p æöéù+Îç÷êúèøëû.故2(),22g x éùÎêúëû.所以sin cos x x w w +取值范围是2,22éùêúëû.19.(2020·贵州高一期末)已知函数()()(2sin 03)x x f pw w =+>的最小正周期为p ,将()f x 的图象向右平移6p个单位长度,再向上平移1个单位长度得到函数()g x 的图象.(1)求函数()g x 的解析式;(2)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,若24A g æö=ç÷èø,且4b c +=,求ABC V 周长l 的取值范围.【解析】(1)周期2T pp w==,2w =,()2sin(2)3f x x p=+.将()f x 的图象向右平移6p个单位长度,再向上平移1个单位长度得到2sin )]12sin 22)1[3(6x y x pp ++=-=+.所以()2sin 21g x x =+.(2)2sin22()14A A g =+=,1sin 22A =.因为022A p <<,所以26A p=,3A p =.22222cos()31633a b c bc b c bc bc p=+-=+-=-.因为2()44b c bc +£=,所以04bc <£.所以416316bc £-<,即2416a £<,24a £<.所以[6,8)l a b c =++Î.20.(2020·全国高一课时练习)已知函数cos 2(0)6y a b x b p æö=-+>ç÷èø的最大值为2,最小值为12-.(1)求a ,b 的值;(2)求函数()4sin 3g x a bx p æö=--ç÷èø的最小值,并求出对应的x 的集合.【解析】(1)由题知cos 2[1,1]6x p æö+Î-ç÷èø,∵0b >,∴0b -<.∴max min3,21,2y b a y b a ì=+=ïïíï=-+=-ïî∴1,21.a b ì=ïíï=î(2)由(1)知()2sin 3g x x p æö=--ç÷èø,∵sin [1,1]3x p æö-Î-ç÷èø,(1)求w ,j 及图中0x (2)设()()cos g x f x =-w p \=;又()00sin 16f x x p p æö=+=-ç÷èø,且0706x -<<,∴062x ppp +=-,得023x =-,综上所述:w p =,6π=j ,023x =-;(2)()()cos sin cos 6g x f x x x x p p p p æö=-=+-ç÷èøsin cos cos sin cos 66x x x p pp p p =+-31sin cos sin 226x x x p p p p æö=-=-ç÷èø,∵12,2x éùÎ--êúëû,∴132663x p p pp -£-£-,所以当362x ppp -=-时,()max 1g x =;当263x pp p -=-,()min 32g x =-.22.(2020·上海华师大二附中高一期中)已知(),0,a b p Î,并且()7sin 52cos 2p a p b æö-=+ç÷èø,()()3cos 2cos a p b -=-+,求,a b 的值.【解析】()7sin 52cos sin 2sin 2p a p b a bæö-=+\=ç÷èøQ ()()3cos 2cos 3cos 2cos a p b a b-=-+\=Q 平方相加得22212sin 3cos 2cos ,cos 22a a a a +=\==±因为()0,a p Î,所以3,44p pa =当4pa =时,3cos (0,)26p b b p b =Î\=Q 当34p a =时,35cos (0,)26pb b p b =-Î\=Q 因此4pa =,6πβ=或34pa =,56p b =。
一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知曲线1:sin C y x =,曲线2:sin 23C y x π⎛⎫=-⎪⎝⎭,则下列结论正确的是( ) A .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C B .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C C .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C D .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C 3.下列三个关于函数()sin 2sin 23f x x x π⎛⎫=-+ ⎪⎝⎭的命题:①只需将函数()2g x x =的图象向右平移6π个单位即可得到()f x 的图象;②函数()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称; ③函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增. 其中,真命题的个数为( ) A .3B .2C .1D .04.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R5.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( ) A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定6.已知角θ终边经过点)P a ,若6πθ=-,则a =( )AB .3C .3-D .7.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=8.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C D .129.函数πsin 25y x ⎛⎫=- ⎪⎝⎭的最小正周期是( ) A .2π B .πC .2πD .4π10.sin15cos15+=( )A .12B .2C .2D .211.已知1sin()43πα-=,则cos()4πα+=( )A .13-B .13C .D 12.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A .0.00873B .0.01745C .0.02618D .0.03491二、填空题13.已知定义在[],a a -上的函数()cos sin f x x x =-是减函数,其中0a >,则当a 取最大值时,()f x 的值域是______.14.方程2sin 2cos 20x x ++=的解集为________.15.若1sin cos (0)5x x x π+=-≤<,则cos2x =___________. 16.函数f (x )=sin 2x +sin x cos x +1的最大值是________.17.方程21sin cos 2x x x +=在[0,]4π上的解为___________18.已知函数()sin cos f x x a x =+的图象关于直线6x π=对称,1x 是()f x 的一个极大值点,2x 是()f x 的一个极小值点,则12x x +的最小值为______. 19.已知sin θ+cos θ=15,则tan θ+cos sin θθ的值是____________________. 20.已知7sin cos 5αα+=-,22sin cos 5αα-=-,则cos2=α_______.三、解答题21.函数()()()f x g x h x =+,其中()g x 是定义在R 上的周期函数,()h x ax b =+,,a b 为常数(1)()sin g x x =,讨论()f x 的奇偶性,并说明理由;(2)求证:“()f x 为奇函数“的一个必要非充分条件是”()f x 的图象有异于原点的对称中心(),m n ”(3)()sin cos g x x x =+,()f x 在[]0,3x π∈上的最大值为M ,求M 的最小值.22.若函数2cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合.23.已知向量1cos 2cos 2m x x x ⎛⎫=- ⎪ ⎪⎝⎭,311,sin cos 2n x x ⎛⎫=- ⎪ ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 取得最大值时x 取值的集合;(2)设A ,B ,C 为锐角三角形ABC 的三个内角,若3cos 5B =,()14f C =-,求cos A 的值.24.已知函数212()2cos sin 1f x x x ωω=+-. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,21ω=; ②11ω=,22ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[,]26ππ-上的最小值,并求函数()f x 的最小正周期.25.已知2sin ()cos(2)tan()()sin()tan(3)f παπαπααπααπ-⋅-⋅-+=-+⋅-+.(1)化简()fα;(2)若()18f α=,且42ππα<<,求cos sin αα-的值26.如图,设矩形()ABCD AB BC >的周长为m ,把ABC 沿AC 翻折到AB C ',AB '交DC 于点P ,设AB x =.(1)若CP =2PD ,求x 的值; (2)求ADP △面积的最大值.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 A.根据332()f x x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断.【详解】 A. 332()f x x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】根据三角函数的伸缩变换与平移变换原则,可直接得出结果. 【详解】因为sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以将sin y x =图象上各点的横坐标缩短为原来的12,纵坐标不变,可得sin 2y x =的图象,再将sin 2y x =的图象向右平移6π个单位,即可得到sin 23y x π⎛⎫=- ⎪⎝⎭的图象. 故选:D.3.C解析:C 【分析】先对函数()f x 进行化简,得到()26f x x π⎛⎫- ⎪⎝⎭,对于①运用三角函数图像平移进行判断;对于②计算出函数()f x 的对称中心进行判断;对于③计算出函数()f x 的单调增区间进行判断. 【详解】因为1()sin 2sin 2sin 22sin 232f x x x x x x π⎛⎫=-+=+ ⎪⎝⎭3sin 2222x x =-26x π⎛⎫=- ⎪⎝⎭对于①,将函数()2g x x =的图像向右平移6π个单位可得函数23y x π⎛⎫=- ⎪⎝⎭的图像,得不到()26f x x π⎛⎫=- ⎪⎝⎭,故①错误; 对于②,令()26x k k Z ππ-=∈,解得()122k x k Z ππ=+∈,故无论k 取何整数,函数()f x 的图像不会关于点5,012π⎛⎫⎪⎝⎭对称,故②错误;对于③,当()222262k x k k Z πππππ-+≤-≤+∈,即()63k x k k Z ππππ-+≤≤+∈时函数()f x 递增,当0k =时,()f x 的一个递增区间为,63ππ⎡⎤-⎢⎥⎣⎦,故③正确.只有1个命题正确. 故选:C 【点睛】思路点睛:解答此类题目需要熟练掌握正弦型函数的单调性、对称性,以及三角函数的图像平移,在计算单调区间和对称中心时要能够通过整体代入计算求出结果,如()222262k x k k Z πππππ-+≤-≤+∈等.4.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B5.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .6.C解析:C 【分析】根据三角函数的定义,列出方程,即可求解. 【详解】由题意,角θ终边经过点)P a ,可得OP =,又由6πθ=-,根据三角函数的定义,可得cos()6π-=且0a <,解得3a =-. 故选:C.7.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D8.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.9.B解析:B 【分析】按照三角函数的周期公式求最小正周期即可. 【详解】解:函数πsin 25y x ⎛⎫=- ⎪⎝⎭的最小正周期为22T ππ==.故选:B.10.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 602+=+==. 故选:D.11.A解析:A 【分析】 运用α-、2πα-的诱导公式,计算即可得到.【详解】 解:1sin()43πα-=,即为1sin()43πα-=-, 即有1sin[()]243ππα-+=-, 即1cos()43πα+=-. 故选:A.12.B解析:B 【分析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解. 【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈, 故选:B二、填空题13.【分析】先求出函数单调减区间的一般形式根据函数在的单调性可得利用整体法可求当取最大值时的值域【详解】令则故的减区间为由题设可得为的子集故且故故当时故故的值域为故答案为:【点睛】关键点点睛:正弦型函数解析:⎡⎣【分析】先求出函数单调减区间的一般形式,根据函数在[],a a -的单调性可得max 4a π=,利用整体法可求当a 取最大值时,()f x 的值域. 【详解】()cos sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭,令22,242k x k k Z πππππ-≤-≤+∈,则322,44k x k k Z ππππ-≤≤+∈, 故()f x 的减区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 由题设可得[],a a -为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦的子集, 故0k =且4340a a a ππ⎧-≥-⎪⎪⎪≤⎨⎪>⎪⎪⎩,故04a π<≤,故max 4a π=,当44x ππ-≤≤时,024x ππ-≤-≤,故0sin 4x π⎛⎫≤-≤ ⎪⎝⎭故()fx 的值域为⎡⎣. 故答案为:⎡⎣.【点睛】关键点点睛:正弦型函数在给定范围(含参数)上的单调性可由单调区间的一般形式得到参数满足的条件,这是解决此类问题的通法.14.【分析】原方程化为关于的一元二次方程求得即可求解【详解】由得即解得或(舍去)所以故答案为: 解析:{}2,x x k k Z ππ=+∈【分析】原方程化为关于cos x 的一元二次方程,求得cos 1x =-,即可求解. 【详解】由2sin 2cos 20x x ++= 得21cos 2cos 20x x -++=, 即2cos 2cos 30x x --=,解得cos 1x =-或cos 3x =(舍去), 所以2,x k k Z ππ=+∈故答案为:{}2,x x k k Z ππ=+∈15.【分析】将已知等式两边平方可得结合已知的范围可得从而可求进而利用二倍角公式平方差公式即可求解【详解】解:因为两边平方可得可得所以可得所以故答案为: 解析:725【分析】将已知等式两边平方,可得242sin cos 025x x =-<,结合已知x 的范围可得sin 0x ≥,cos 0x <,从而可求7cos sin 5x x -==-,进而利用二倍角公式,平方差公式即可求解. 【详解】解:因为1sin cos (0)5x x x π+=-≤<,两边平方,可得112sin cos 25x x +=,可得242sin cos 025x x =-<,所以sin 0x ≥,cos 0x <,可得7cos sin 5x x -===-,所以22177cos 2cos sin (cos sin )(cos sin )()5525x x x x x x x =-=+-=-⨯-=. 故答案为:725. 16.【分析】先根据二倍角公式辅助角公式将函数化为基本三角函数再根据三角函数有界性求最值【详解】因为函数f (x )=sin2x+sinxcosx+1所以因为所以即函数的最大值为故答案为:解析:32+ 【分析】先根据二倍角公式、辅助角公式将函数化为基本三角函数,再根据三角函数有界性求最值. 【详解】因为函数f (x )=sin 2x +sin x cos x +1,所以113()(1cos 2)sin 21)22242f x x x x π=-++=-+, 因为sin(2)14x π-≤,所以3()2f x +≤,即函数的最大值为32+,故答案为:32+ 17.【分析】由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论【详解】由得得∴又∴故答案为:【点睛】方法点睛:本题考查求解三角方程解题方法:(1)利用三角函数的恒等变换公式化方程为的形式然后解析:12π 【分析】 由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论. 【详解】由21sin cos 2x x x =得1cos 212222x x -+=,得sin 206x π⎛⎫-= ⎪⎝⎭, ∴26x k ππ-=,,212k x k Z ππ=+∈, 又0,4x π⎡⎤∈⎢⎥⎣⎦,∴12x π=. 故答案为:12π.【点睛】方法点睛:本题考查求解三角方程,解题方法:(1)利用三角函数的恒等变换公式化方程为sin()x k ωϕ+=的形式,然后由正弦函数的定义得出结论.(2)用换元法,如设sin x t =,先求得方程()0f t =的解0t ,然后再解方程0sin x t =.18.【分析】根据图象关于对称分析得到为函数最值由此分析计算出的值并化简根据条件表示出然后分析出的最小值【详解】因为的图象关于对称所以所以解得所以又因为所以所以又因为所以所以所以所以显然当时有最小值所以故 解析:23π 【分析】 根据图象关于6x π=对称,分析得到6f π⎛⎫⎪⎝⎭为函数最值,由此分析计算出a 的值并化简()f x ,根据条件表示出12,x x ,然后分析出12x x +的最小值.【详解】因为()f x 的图象关于6x π=对称,所以162f π⎛⎫==⎪⎝⎭,所以解得a =()sin 2sin 3f x x x x π⎛⎫=+=+ ⎪⎝⎭,又因为()112sin 23f x x π⎛⎫=+= ⎪⎝⎭,所以1112,32x k k Z πππ+=+∈,所以1112,6x k k Z ππ=+∈,又因为()222sin 23f x x π⎛⎫=+=- ⎪⎝⎭,所以2222,32x k k Z πππ+=-+∈所以22252,6x k k Z ππ=-+∈, 所以121212522,,66x x k k k Z k Z ππππ+=+-+∈∈, 所以()12121222,,3x x k k k Z k Z ππ+=-++∈∈,显然当120k k +=时有最小值, 所以12min2233x x ππ+=-=, 故答案为:23π. 【点睛】思路点睛:已知正、余弦型函数的一条对称轴求解参数的两种思路:(1)根据对称轴对应的是正、余弦型函数的最值,代入计算出函数值等于对应的最值,由此计算出参数值;(2)已知对称轴为x a =,则根据()()2f a x f x -=,代入具体x 的值求解出a 的值.19.【分析】先通过已知求出再化简tanθ+即得解【详解】由sinθ+cosθ=得tanθ+故答案为:【点睛】关键点睛:解答本题的关键是把sinθ+cosθ=两边平方得到 解析:2512-【分析】先通过已知求出12sin cos 25θθ=-,再化简tan θ+cos sin θθ即得解. 【详解】 由sin θ+cos θ=15得1121+2sin cos ,sin cos 2525θθθθ=∴=-. tan θ+cos sin θθsin cos 125cos sin sin cos 12θθθθθθ=+==-.故答案为:2512- 【点睛】关键点睛:解答本题的关键是把sin θ+cos θ=15两边平方得到12sin cos 25θθ=-. 20.【分析】联立方程组求得的值结合余弦的倍角公式即可求解【详解】由题意知:联立方程组求得所以故答案为: 解析:725【分析】联立方程组,求得sin ,cos αα的值,结合余弦的倍角公式,即可求解. 【详解】由题意知:7sin cos 5αα+=-,22sin cos 5αα-=-,联立方程组,求得34sin ,cos 55αα=-=-,所以2247cos 22cos 12()1525αα=-=⨯--=. 故答案为:725. 三、解答题21.(1)0b =,奇函数;0b ≠,非奇非偶函数;(2)证明见解析;(3. 【分析】(1)就0,0b b =≠分类讨论,后者利用反例说明()f x 为非奇非偶函数.(2)通过反例说明非充分性成立,设()g x 的周期为2T m =,可以证明当()f x 为奇函数时()()224f x m f x m am ++-+=成立,从而可得()f x 有异于原点的对称中心. (3)先考虑0ab时,M =,再通过反证法可证明M <min M =,也可以利用绝对值不等式证明M ≥成立,结合0a b时,M =可得min M . 【详解】(1)()sin f x x ax b =++,0b =时,()()()sin f x x ax f x -=--=-,()f x 为奇函数,0b ≠时,∵()00f ≠,∴()f x 不是奇函数.()1sin1f a b =++,()1sin1f a b -=--+,()2sin 22f a b =++, ()2sin 22f a b -=--+.若()f x 为偶函数,则()()()()1122f f f f ⎧=-⎪⎨=-⎪⎩即sin11sin 22a a =-⎧⎪⎨=-⎪⎩, 因为1sin1sin 22-≠-,故sin11sin 22a a =-⎧⎪⎨=-⎪⎩无解, ∴()f x 不是偶函数,所以()f x 是非奇非偶函数. (2)非充分性:举反例,()()()cos ,1,cos 1g x x h x f x x ===+有异于原点的对称中心,12π⎛⎫⎪⎝⎭,但()f x 不是奇函数;必要性:设奇函数()()f x g x ax b =++,且()()g x T g x +=,令2T m = ,()()()()2222f x m g x m a x m b g x ax b am +=++++=+++,而()()()()()22222f x m f x m g x m a x m b g x ax am b -+=--=-----=--+-, 故()()224f x m f x m am ++-+=, 令2n am =,则()f x 的图象关于(),m n 对称. (3)法一:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭,取0a b ,则()4f x x π⎛⎫=+ ⎪⎝⎭,∴()max 4M f x f π⎛⎫=== ⎪⎝⎭M的最小值为,反证法:假设M <()4f x x ax b π⎛⎫==+++ ⎪⎝⎭,∵4f M π⎛⎫≤< ⎪⎝⎭∴4a b π++<∴044a b a b ππ+<+<,①;同理∵54f M π⎛⎫≤< ⎪⎝⎭,∴504a b π+>②;∵94f M π⎛⎫≤<⎪⎝⎭,∴904a b π+<,③; ②-①得0a π>,③-②得0a π<,矛盾,所以假设不成立,得证.法二:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭5922444a b a b a b πππ⎛⎫⎛⎫⎫++-+++= ⎪ ⎪⎪⎝⎭⎝⎭⎭ 592444a b a b a b πππ⎫⎛⎫⎫∴=+-+++⎪ ⎪⎪⎭⎝⎭⎭592444a b a b a b πππ≤+++++ 5924444f f f M πππ⎛⎫⎛⎫⎛⎫=++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,M ∴≥当0ab 时, |()|4f x x π⎛⎫=+ ⎪⎝⎭,max min ()4f x M f M π⎛⎫==⎪⎭== ⎝【点睛】 方法点睛:(1)说明一个函数为非奇非偶函数,一般利用反例来说明;(2)如果函数()f x 满足()()2f a x f a x b -++=,则()f x 的图象有对称中心(),a b . (3)双重最值问题,可以利用绝对值不等式先求出范围,再验证等号可以成立. 22.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题.23.(1)|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2 【分析】(1)利用三角函数公式和平面向量数量积对函数简化,再根据三角函数的性质求得函数取得最大值时x 取值的集合;(2)根据已知条件求得的B ,C 大小,然后利用()cos cos A B C =-+展开即可求解. 【详解】(1)21()cos 2cos 2f x m n x x x ⎫=⋅=+-⎪⎪⎝⎭2231cos 2sin cos sin cos 442x x x x x =++-31cos 211cos 2cos 224242x x x x -+=+⨯+⨯-311cos 2sin 22442223x x x π⎛⎫=-+=-- ⎪⎝⎭, 要使函数()f x 取得最大值,需要满足sin 23x π⎛⎫- ⎪⎝⎭取得最小值, 所以()2232x k k Z πππ-=-+∈,所以12x k ππ=-()k Z ∈,所以当()f x 取得最大值时x 取值的集合为|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭, (2)因为A ,B ,C 为锐角三角形ABC 的三个内角,3cos 5B =所以4sin 5B ==,由()11sin 22234f C C π⎛⎫=--=- ⎪⎝⎭,得sin 232C π⎛⎫-=⎪⎝⎭, 因为22333C πππ-<-<所以233C ππ-=,解得3C π=,所以()314cos cos cos cos sin sin 525A B C B C B C =-+=-+=-⨯+=所以cos A = 【点睛】关键点点睛:本题的关键点是熟记两角和差的正弦余弦公式,辅助角公式,诱导公式,同角三角函数基本关系,向量的数量积的坐标表示,注意三角形是锐角三角形以确定角的范围.24.(Ⅰ)1;(Ⅱ)选择条件①,最小正周期为2π,在[,]26ππ-取得最小值2-;选择条件②,最小正周期为π,在[,]26ππ-取得最小值. 【分析】(I)将0x =代入求值即可;(II)①121,1ωω==,()222cos sin 2sin sin 2f x x x x x =+=-++利用抛物线知识求解②用二倍角和辅助角公式化简可得()+)+14f x x π=,再由[,]26x ππ∈-可得372[,]4412x πππ+∈-,结合正弦函数图象求解最值; 【详解】解:(Ⅰ)2(0)2cos 0sin 011f =+-=. (Ⅱ)选择条件①.()f x 的一个周期为2π.2()2cos sin 1f x x x =+-22(1sin )sin 1x x =-+-2192(sin )48x =--+.因为[,]26x ππ∈-,所以1sin [1,]2x ∈-.所以 当sin =1x -时,即π=2x -时,()f x 在[,]26ππ-取得最小值2-.选择条件②.()f x 的一个周期为π.2()2cos sin 21f x x x =+-sin2+cos2x x =2(22)22x x =+2)4x π=+(. 因为[,]26x ππ∈-,所以372+[,]4412x πππ∈-.当2=42x ππ+-时,即3π=8x -时,()f x在[,]26ππ-取得最小值.【点睛】本题考查三角恒等变换在三角函数图象和性质中的应用.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成sin()A xk 或cos()A xk 的形式;(2)根据自变量的范围确定x ωϕ+的范围,根据相应的正弦曲线或余弦曲线求值域或最值.(3)换元转化为二次函数研究最值.25.(1)sin cos αα⋅;(2). 【分析】(1)由诱导公式运算即可得解;(2)由平方关系可得()23cos sin 4αα-=,再由cos sin αα<即可得解. 【详解】(1)由诱导公式()2sin cos tan ()sin cos sin tan f αααααααα⋅⋅==⋅-⋅-; (2)由()1sin cos 8f ααα==可知 ()222cos sin cos 2sin cos sin αααααα-=-+1312sin cos 1284αα=-=-⨯=,又∵42ππα<<,∴cos sin αα<,即cos sin 0αα-<,∴cos sin 2αα-=-. 26.(1)(34m ;(2)(2316m ⋅-. 【分析】(1)设CAB CAP θ∠=∠=,求得222PAD APD πθθ∠=-∠=,,得到且tan 23tan θθ=,结合正切的二倍角公式,即可求解.(2)设CAB CAP θ∠=∠=,则2APD θ∠=,且()tan 01θ∈,,由()tan 2x x m θ+⨯=,求得x 得值,求得()tan 21tan m AD BC θθ==+,1tan 4PD m θ-=,设1tan t θ+=,得到()12t ∈,,利用三角形的面积公式和二次函数的性质,即可求解. 【详解】(1)由题意,在ABC 中,可设CAB CAP θ∠=∠=, 则由角度关系可得222PAD APD πθθ∠=-∠=,,设BC y = ,且tan tan 23tan 3y yx xθθθ===,, 则有22tan tan 23tan 1tan θθθθ==-,解得tan θ=,则有y x =,所以23x x m ⎛⎫+= ⎪ ⎪⎝⎭,解得(34x m =. (2)设CAB CAP θ∠=∠=,则222PAD APD πθθ∠=-∠=,,且()tan 01θ∈,,则有()tan 2x x m θ+⨯=,解得()21tan m x θ=+,即()tan 21tan m AD BC θθ==+,所以()2tan 1tan 1tan tan 221tan 2tan 4AD PD m m θθθθθθ--==⋅=+, 则S △ADP =()2221tan 1tan tan tan 221tan 4161tan m m θθθθθθ--⋅⋅=⋅++,令()1tan 12t t θ+=∈,, 所以S △ADP =()22222113223161616t t m m t t m t t t t ---⎡⎤-+-⎛⎫⋅=⋅=⋅-++ ⎪⎢⎥⎝⎭⎣⎦(2316m ≤⋅-,当且仅当2t t t==,时取等号.则ADP △面积的最大值为(2316m ⋅-.【点睛】对于三角函数模型的应用问题,解答的关键是建立符合条件的函数模型,结合示意图,然后再由三角形中的相关知识进行求解,解题时要注意综合利用所学的三角恒等变换的公式及三角函数的性质求解.。
一、选择题1.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725-C .7-D .17-2.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-3.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=4.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .B .12-C D .125.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦6.sin15cos15+=( )A .12B .2 C D 7.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .2C D .18.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .439.若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+ ⎪⎝⎭等于( ).A .79-B .13-C .13D .7910.已知1cos 2α=,322παπ<<,则sin(2)πα-=( )A .B .12C .12-D .211.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______.15.已知函数()log (21)3a f x x =-+的图象过定点P ,且角α的终边过点P ,始边与x 轴的正半轴重合,则tan3α的值为__________. 16.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________.17.设函数2()2cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 18.若函数()πsin 26g x x ⎛⎫=+ ⎪⎝⎭在区间0,3a ⎡⎤⎢⎥⎣⎦和7π4,6a ⎡⎤⎢⎥⎣⎦上均递增,则实数a 的取值范围是______.19.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________. 20.设函数()()2sin 0,2f x x πωφφφ⎛⎫=+><⎪⎝⎭的部分图象如图.若对任意的()()2x R f x f t x ∈=-,恒成立,则实数t 的最小正值为____.三、解答题21.已知函数()sin cos f x a x b x =+,其中0ab ≠.(1)若1b =,是否存在实数a 使得函数()f x 为偶函数,若存在,求出a 的值;若不存在,请说明理由; (2)若34x π=为函数()f x 的对称轴,求函数()f x 的单调增区间. 22.已知()π2sin cos 23cos 44f x x x x x π⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的单调递减区间:(2)若函数()()42sin 2g x f x k x =--在区间7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围.23.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭求sin()αβ+,cos()αβ-,tan2α的值.24.已知()sin (sin 3)f x x x x =,ABC ∆中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间; (2)若3()2f A =,2a =,求ABC ∆周长的最大值 25.已知()()cos 0f x x ωω=>(1)若f (x )的周期是π,求ω,并求此时()12f x =的解集; (2)若()()()21,32g x f x x f x πω⎛⎫==+-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,求()g x 的值域.26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.2.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-,∴sin 3tan cos 4ααα==-. 故选:A .3.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D4.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.5.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.6.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 602+=+==. 故选:D.7.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒= 故选:C .8.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案. 【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin 5α===±, 又0πα<<,所以α为第二象限角,所以4sin 5α 所以sin tan s 43co ααα==-. 故选:A .9.A解析:A 【分析】 根据1sin 63πα⎛⎫-=⎪⎝⎭,利用诱导公式得到cos 3πα⎛⎫+ ⎪⎝⎭,再由2cos 2cos 233ππαα⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用二倍角公式求解. 【详解】 因为1sin sin 6233πππαα⎛⎫⎛⎫⎛⎫-=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1cos 33πα⎛⎫+=⎪⎝⎭, 所以227cos 2cos 22cos 13339πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=+=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选:A10.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】 解:因为1cos 2α=,322παπ<<,所以sin α==,所以sin(2)sin 2παα-=-=. 故选:D .11.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12-【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】 若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 15.【分析】先求出定点为再利用正切函数的两角和公式求解即可【详解】函数的图象过定点可得定点为又由角的终边过点且始边与轴的正半轴重合故答案为: 解析:913【分析】先求出定点P 为(1,3),再利用正切函数的两角和公式求解即可 【详解】函数()log (21)3a f x x =-+的图象过定点P ,可得定点P 为(1,3),又由角α的终边过点P ,且始边与x 轴的正半轴重合,3tan 31α,22tan 3tan 21tan 4ααα∴==--, tan 2tan 9tan 31tan 2tan 13ααααα+==-故答案为:91316.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值.【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 17.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案.【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.18.【分析】由的范围求出的范围结合正弦函数性质得不等关系【详解】时时由题意又解得故答案为:【点睛】方法点睛:本题考查正弦型复合函数的单调性在中则的单调性与的单调性一致因此对一个区间我们只要求得的范围它应解析:π7π,624⎡⎫⎪⎢⎣⎭【分析】由x 的范围求出26x π+的范围,结合正弦函数性质得不等关系.【详解】0,3a x ⎡⎤∈⎢⎥⎣⎦时,22,6636a x πππ⎡⎤+∈+⎢⎥⎣⎦,7π4,6x a ⎡⎤∈⎢⎥⎣⎦时,528,662x a πππ⎡⎤+∈+⎢⎥⎣⎦,由题意23623862a a ππππ⎧+≤⎪⎪⎨⎪+≥⎪⎩,又03746aa π⎧>⎪⎪⎨⎪<⎪⎩,解得7624a ππ≤<.故答案为:π7π,624⎡⎫⎪⎢⎣⎭. 【点睛】方法点睛:本题考查正弦型复合函数的单调性,在sin()y A x ωϕ=+中,0,0A ω>>,则sin()y A x ωϕ=+的单调性与sin y x =的单调性一致,因此对一个区间[,]a b ,我们只要求得x ωϕ+的范围,它应在sin y x =的单调区间内,那么sin()y A x ωϕ=+在[,]a b 上就有相同的单调性.这是一种整体思想的应用.19.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,cos 1a ≤≤2cos 2a ≤≤,则1122cos 2a ≤≤,即122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,sin 1a ≤≤,即k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.20.【分析】由图象求得再根据求得从而求得函数解析式再根据由函数图象的对称轴为直线x=t 求解【详解】由图象知:即则由五点法得所以即因为所以所以又因为所以函数图象的对称轴为直线x=t 则所以解得当k=0时t 取 解析:12π【分析】 由图象5556124T ππ⎛⎫--= ⎪⎝⎭,求得ω,再根据506f π⎛⎫= ⎪⎝⎭,求得φ,从而求得函数解析式,再根据()()2f x f t x =-,由函数()f x 图象的对称轴为直线x =t 求解. 【详解】 由图象知:5556124T ππ⎛⎫--= ⎪⎝⎭,即T π=, 则22Tπω==, 由“五点法”得552sin 063f ππφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()53k k Z πφπ+=∈,即()53k k Z πφπ=-∈, 因为2πφ<,所以3πφ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭, 又因为()()2f x f t x =-,所以函数()f x 图象的对称轴为直线x =t , 则()2sin 223f t t π⎛⎫=+=± ⎪⎝⎭, 所以23t π+()2k k Z ππ=+∈,解得()212k t k Z ππ=+∈, 当k =0时,t 取到了最小正值为12π. 故答案为:12π. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=;(3)取特殊点代入函数可求得ϕ的值.三、解答题21.(1)不存在,理由见解析;(2)0a >时,单调增区间是32,244k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,0a <时,单调增区间是372,244k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈.【分析】(1)利用函数奇偶性的定义可得答案;(2)由条件结合辅助角公式可得22a -=,化简可得=-b a ,()()sin cos sin 4f x a x x x π⎛⎫=-=- ⎪⎝⎭,然后分0a >、0a <两种情况讨论.【详解】(1)当1b =时,()sin cos f x a x x =+若存在实数a 使得函数()f x 为偶函数,则()()f x f x -=恒成立, 即()()sin cos sin cos a x x a x x -+-=+恒成立, 整理得sin 0a x =恒成立,所以0a =,与0ab ≠矛盾, 故不存在;(2)结合三角函数的性质知,三角函数在对称轴处取最值,又由辅助角公式知()f x 的最值为所以3422f a π⎛⎫=-=⎪⎝⎭两边平方,得22221122a b ab a b +-=+,所以2211022a b ab ++=, 即()2102a b +=,所以=-b a ,所以()()sin cos sin 4f x a x x x π⎛⎫=-=- ⎪⎝⎭,当0a >时,令22242k x k πππππ-≤-≤+,k Z ∈,解得32244k x k ππππ-≤≤+,k Z ∈, 所以单调增区间是32,244k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,当0a <时,令322242k x k πππππ+≤-≤+,k Z ∈, 解得372244k x k ππππ+≤≤+,k Z ∈, 所以单调增区间是372,244k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈.22.(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭.【分析】(1)化简()f x ,利用正弦函数的递减区间列式可解得结果; (2)转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象可得结果. 【详解】(1)()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 244x x x πππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 44x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭sin 222x x π⎛⎫=++ ⎪⎝⎭sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,令3222232k x k πππππ+≤+≤+,k Z ∈,解得:71212k x k ππππ+≤≤+,k Z ∈, ∴()f x 的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由(1)知,函数2n 2)3(si f x x π⎛⎫=+⎪⎝⎭, ()g x =2sin 242sin 23x k x π⎛⎫+-- ⎪⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点等价于12sin 2sin 2sin 2cos 2cos 23226k x x x x x ππ⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪⎝⎭⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一实根,设()cos 26h x x π⎛⎫=+⎪⎝⎭,7,1212x ππ⎡⎤∈⎢⎥⎣⎦,依题意可知2y k =与()y h x =的图象有唯一交点,函数()h x 在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知实数k 应满足11222k -<≤或21k =-, ∴1144k -<≤或12k =-,故实数k 的取值范围11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭. 【点睛】关键点点睛:转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象求解是解题关键.23.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解.【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以2234cos 1sin 155αα⎛⎫=-=--=- ⎪⎝⎭,因为3,2πβπ⎛⎫∈ ⎪⎝⎭,12cos 13, 所以22125sin 1cos 11313ββ⎛⎫=--=---=- ⎪⎝⎭, 所以3124516sin()sin cos cos sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为sin 3tan cos 4ααα==-,所以22322tan 244tan 21tan 7314ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭, 综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan 27α=-. 24.(1)2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈;(2)23+. 【分析】(1)首先利用降幂公式和辅助角公式化简函数()1sin 226f x x π⎛⎫=-+ ⎪⎝⎭,再求函数的单调递增区间;(2)先求角A ,再根据余弦定理和基本不等式求周长的最大值. 【详解】(1)()2111sin cos (cos22)sin(2)2226f x x x x x x x π==-=-+, ∴()f x 在3222262k x k πππππ+≤+≤+上单调递增, ∴2[,]63x k k ππππ∈++,k Z ∈ (2)()13sin(2)262f A A π=-+=,得32262A k k Z πππ+=+∈,,即23A k ππ=+,0A π<<,则23A π=, 而2a =,由余弦定理知:2222cos 4a b c bc A =+-=,有22()()444b c b c bc ++=+≤+,所以03b c <+≤当且仅当b c =时等号成立, ∵周长2l a b c b c =++=++, ∴周长最大值为2+【点睛】思路点睛:已知一边及一边所对角求解三角形面积或周长的最大值时,可利用余弦定理构造方程,再利用基本不等式求所需的两边和或乘积的最值,代入三角形周长或面积公式,求得结果.25.(1)2ω=;{|,}6ππ=±∈x x k k Z ;(2)1[-,1]2. 【分析】(1)由条件求出2ω=,然后可得答案;(2)将()g x 化为()1cos(2)32g x x π=++,然后可算出其值域.【详解】 (1)由2T ππω==得2ω=;此时令1()cos22f x x ==得223x k ππ=±,6x k k Z ππ∴=±∈ 所求方程的解集为{|,}.6x x k k Z ππ=±∈(2)()2cos )cos()2g x x x x π=-+2cos sin x x x =1cos212cos(2)232x x x π+==++ 4022333x x ππππ≤≤∴≤+≤11cos(2)32x π∴-≤+≤ 11cos(2)1232x π∴-≤++≤即()g x 的值域为1[-,1]226.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-,又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。
三角函数数学试卷一、 选择题(本大题共12小题;每小题3分;共36分;在每小题给出的四个选项中;只有一个是符合要求的;把正确答案的代号填在括号内.) 1、600sin 的值是( ))(A ;21 )(B ;23 )(C ;23- )(D ;21-2、),3(y P 为α终边上一点;53cos =α;则=αtan ( ))(A 43-)(B 34)(C 43± )(D 34±3、已知cos θ=cos30°;则θ等于( )A. 30°B. k ·360°+30°(k ∈Z)C. k ·360°±30°(k ∈Z)D. k ·180°+30°(k ∈Z)4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( )5、函数的递增区间是6、函数)62sin(5π+=x y 图象的一条对称轴方程是( ) )(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x7、函数的图象向左平移个单位;再将图象上各点的横坐标压缩为原来的;那么所得图象的函数表达式为8、函数|x tan |)x (f =的周期为( )A. π2B. πC. 2πD. 4π9、锐角α;β满足41sin sin -=-βα;43cos cos =-βα;则=-)cos(βα( )A.1611-B.85C.85-D.161110、已知tan(α+β)=25;tan(α+4π)=322; 那么tan(β-4π)的值是( )A .15B .14 C .1318 D .132211.sin1;cos1;tan1的大小关系是( )A.tan1>sin1>cos1 an1>cos1>sin1C.cos1>sin1>tan1D.sin1>cos1>tan112.已知函数f (x )=f (π-x );且当)2,2(ππ-∈x 时;f (x )=x +sin x ;设a =f (1);b =f (2);c =f (3);则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b 二、填空题(本大题共4小题;每小题3分;共12分;把最简单结果填在题后的横线上.13.比较大小 (1)0508cos 0144cos ;)413tan(π- )517tan(π-。
高一数学三角函数部分单元试卷班级________ 姓名__________学号________一、 选择题(每题5分)1. 集合|,24k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,|,42k N x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭( ) (A)M N = (B)M N ≠⊂ (C) N M ≠⊂ (D)M N φ=2.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )(A )sin ||y x =-(B )cos ||y x =(C )sin(2)2y x π=+ (D )cos(2)2y x π=+ 3.如果1cos()2A π+=-,那么sin()2A π+的值是 ( )(A ).12-(B )12(C )4.已知1sin 1a a θ-=+,31cos 1a aθ-=+,若θ为第二象限角,则下列结论正确的是( ) (A ).1(1,)3a ∈- (B ). 1a = (C). 119a a ==或 (D). 19a = 5. 方程cos x x =在(,)-∞+∞内 ( )(A).没有根 (B).有且只有一个根 (C).有且仅有两个根 (D).有无穷多个根 6. 设将函数()cos (0)f x x ωω=>的图像向右平移3π个单位后与原图像重合,则ω的最小值是 (A )13(B ) 3 (C ) 6 (D ) 9 7.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 ( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位8.已知函数()sin(2),f x x ϕ=+其中ϕ为实数. 若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 ( )A . ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C . 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D . ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦二、填空题(每题4分)9.函数sin y x ω=和函数tan (0)y x ωω=>的最小正周期之和为π,则ω=________ 10.已知α、β∈[-π2,π2]且α+β<0,若sin α=1-m ,sin β=1-m 2,则实数m 的取值范围是_________________11.令tan a θ=,sin b θ=,cos c θ=,若在集合π3π,44θθθ⎧-<<≠⎨⎩ππ0,,42⎫⎬⎭中,给θ取一个值,,,a b c三数中最大的数是b ,则θ的值所在范围是____________ 12.若函数()2sin (01)f x x ωω=<<在闭区间0,3π⎡⎤⎢⎥⎣⎦2,则ω的值为______ 13.22sin120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒=_______三、解答题(每题10分)14. 已知tan 2α=,计算①2cos()cos()2sin()3sin()2παπαπαπα+----+ ②33sin cos sin 2cos αααα-+15. 已知函数3)62sin(3)(++=πx x f(1(2)指出)(x f16.已知在ABC ∆中,17sin cos 25A A += ①求sin cos A A②判断ABC ∆是锐角三角形还是钝角三角形 ③求tan A 的值17.已知函数lg cos(2)y x ,(1)求函数的定义域、值域; (2)讨论函数的奇偶性;(3)讨论函数的周期性 (4)讨论函数的单调性高一数学三角函数部分试卷参考答案一、 选择题(每小题3分,共40分)二、 填空题(每小题4分,共20分)9. 3 10.11. 3(,)24ππ 12. 3413. 1三.解答题:(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤) 14.解 (1)tan 2α=2sin cos 2tan 13cos 3sin 13tan 7αααααα-+-+∴==-++原式=(5分)(2)322322sin cos (sin cos )sin 2cos sin cos αααααααα-+=++原式()3232tan tan 11tan 2tan 26αααα--==++ (10分) 15解:(1)图略 (5分) (2)04,3,6T A ππϕ===,22()3x k k Z ππ=+∈对称轴 3ππ对称中心(-+2k ,3), (10分)16解:(1)17sin cos 25A A +=两边平方得 21712sin cos 25A A ⎛⎫+= ⎪⎝⎭336sin cos 625A A =-.......(3分)(2)17sin cos 125A A +=< 2A π∴>,ABC ∆为钝角三角形 ..................(6分)(3)2217sin cos 25sin cos 1A A A A ⎧+=⎪⎨⎪+=⎩ 得24sin 257cos 25A A ⎧=⎪⎪⎨-⎪=⎪⎩24tan 7∴=- ....(10分)17. 解(1)定义域(,)()44k k k Z ππππ-++∈ 值域(,0]-∞ ....(3分)(2) 偶函数 ........(5分) (3)T π= ........(8分) (4)增区间(,)()4k k k Z πππ-+∈减区间(,)()4k k k Z πππ+∈ ........(10分)。
一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725-C .7-D .17-3.先将函数()sin (0)f x x ωω=>的图象向左平移2π个单位长度,再向上平移2个单位长度后得到函数()g x 的图象,若方程()()f x g x =有实根,则ω的值可以为( )A .12B .1C .2D .44.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-5.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定6.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-7.计算cos 20cos80sin160cos10+=( ). A .12B 3C .12-D .3 8.要得到函数3224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数322y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度9.sin15cos15+=( ) A .12B .22C .32D .6210.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .411.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A .25B .2525 C .25或2525D .25-12.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________14.设函数22(1)sin(2)()(2)1x x f x x -+-=-+的最大值为M ,最小值为m ,则M m +=_________.15.化简cos()sin()2sin()cos()πααπααπ+-=--___________.16.设ABC 的内角,,A B C 所对的边分别为,,,a b c 若2sin cos sin A B C =,则ABC 的形状为________.17.已知α是第一象限角,且4tan 3α=,则sin 2α=_______ 18.已知函数()log (21)3a f x x =-+的图象过定点P ,且角α的终边过点P ,始边与x 轴的正半轴重合,则tan3α的值为__________. 19.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________. 20.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,且在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数,则ω的取值范围为______. 三、解答题21.已知向量()cos ,sin m x x =,()cos x n x =,设函数()12f x m n =⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦. (1)讨论()f x 的单调性; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.22.已知函数()()0,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 23.已知函数()2sin cos f x x x x ωωω=的周期为π,其中0>ω;(1)求ω的值,并写出函数()f x 的解析式;(2)设ABC 的三边a ,b ,c 依次成等比数列,角B 的取值范围为集合P ,则当x P ∈时求函数()f x 的值域.24.已知()π2sin cos cos 44f x x x x x π⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的单调递减区间:(2)若函数()()42sin 2g x f x k x =--在区间7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围.25.函数()()()f x g x h x =+,其中()g x 是定义在R 上的周期函数,()h x ax b =+,,a b 为常数(1)()sin g x x =,讨论()f x 的奇偶性,并说明理由;(2)求证:“()f x 为奇函数“的一个必要非充分条件是”()f x 的图象有异于原点的对称中心(),m n ”(3)()sin cos g x x x =+,()f x 在[]0,3x π∈上的最大值为M ,求M 的最小值. 26.已知()()cos 0f x x ωω=>(1)若f (x )的周期是π,求ω,并求此时()12f x =的解集;(2)若()()()21,2g x f x x f x πω⎛⎫==+-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,求()g x 的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A.根据32()f x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断. 【详解】A. 32()f x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.3.C解析:C 【分析】先根据三角函数图象的变换得出()g x 的解析式,然后根据三角函数的图象性质分析()()f x g x =的条件并求解ω的值.【详解】由题意可知()sin 22g x x πωω⎛⎫=++ ⎪⎝⎭,则函数()g x 的最大值为3,最小值为1,又()sin (0)f x x ωω=>的最大值为1,所以当()()f x g x =有实根时,()f x 的最大值点与()g x 的最小值点重合,故应平移(21),2T n n N +∈个单位,所以()212n ππω=+, 得42,n n N ω=+∈,故只有C 选项符合.故选:C. 【点睛】本题考查根据三角函数图象的平移变换、考查根据函数图象有交点求参数的取值范围,难度一般. 解答的关键在于: (1)得出函数()g x 的解析式;(2)分析出()()f x g x =时,()f x 的最大值点与()g x 的最小值点重合.4.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.5.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .6.D解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D7.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .8.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B9.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.10.B解析:B【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.11.B解析:B【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos 5α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-25=. 故选:B .12.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<, 所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12- 【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】 若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.2【分析】可考虑向左平移2个单位对函数解析式进行化简根据左右平移值域不变求解【详解】令则定义域为R 且故是奇函数故其最大值与最小值的和为零所以函数的最大值与最小值的和为2故在函数中解析:2 【分析】可考虑向左平移2个单位对函数解析式进行化简,根据左右平移值域不变求解. 【详解】22(1)sin(2)()(2)1x x f x x -+-=-+222(1)sin 2sin (2)111x x x xf x x x +++∴+==+++, 令22sin ()1x xg x x +=+,则定义域为R ,且()()g x g x -=-,故()g x 是奇函数,故其最大值与最小值的和为零, 所以函数(2)y f x =+的最大值与最小值的和为2, 故在函数()f x 中,2M m +=.15.【分析】利用诱导公式直接化简即可【详解】故答案为: 解析:tan α-【分析】利用诱导公式直接化简即可. 【详解】cos()sin()(sin )(sin )2tan sin()cos()sin (cos )παααααπααπαα+--⋅-==----,故答案为:tan α-.16.等腰三角形【分析】由整理可得角的关系即可【详解】由的内角知所以又所以为等腰三角形故答案为:等腰三角形【点睛】此题考查两角和与差的正弦公式的正向和逆向使用属于基础题解析:等腰三角形 【分析】由()sin sin sin cos cos sin C A B A B A B π=-+=+⎡⎤⎣⎦,整理可得角的关系即可. 【详解】由ABC 的内角,,A B C 知,()C A B π=-+,所以 ()sin sin sin cos cos sin 2sin cos C A B A B A B A B π=-+=+=⎡⎤⎣⎦,sin cos cos sin 0A B A B -=,()sin 0A B -=,又()()()0,π,0,π,π,πA B A B ∈∈-∈-所以A B =,ABC 为等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查两角和与差的正弦公式的正向和逆向使用,属于基础题.17.【分析】根据同角三角函数的关系解出根据二倍角公式即可求出【详解】是第一象限角且则解得故答案为: 解析:2425【分析】根据同角三角函数的关系解出43sin ,cos 55αα==,根据二倍角公式即可求出sin 2α. 【详解】α是第一象限角,且4tan 3α=, 则22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,解得43sin ,cos 55αα==,∴24sin 22sin cos 25ααα==. 故答案为:2425. 18.【分析】先求出定点为再利用正切函数的两角和公式求解即可【详解】函数的图象过定点可得定点为又由角的终边过点且始边与轴的正半轴重合故答案为:解析:913【分析】先求出定点P 为(1,3),再利用正切函数的两角和公式求解即可 【详解】函数()log (21)3a f x x =-+的图象过定点P ,可得定点P 为(1,3),又由角α的终边过点P ,且始边与x 轴的正半轴重合,3tan 31α,22tan 3tan 21tan 4ααα∴==--, tan 2tan 9tan 31tan 2tan 13ααααα+==-故答案为:91319.【分析】根据已知条件求得的值由此求得的值【详解】依题意两边平方得而所以所以由解得所以故答案为:【点睛】知道其中一个可通过同角三角函数的基本关系式求得另外两个在求解过程中要注意角的范围 解析:158-【分析】根据已知条件求得sin ,cos αα的值,由此求得tan α的值. 【详解】依题意7sin cos 17αα+=,两边平方得 4924012sin cos ,2sin cos 0289289αααα+==-<, 而()0,απ∈,所以sin 0,cos 0αα><, 所以23sin cos 17αα-====. 由7sin cos 1723sin cos 17αααα⎧+=⎪⎪⎨⎪-=⎪⎩解得158sin ,cos 1717αα==-, 所以sin 15tan cos 8ααα==-. 故答案为:158-【点睛】sin cos ,sin cos αααα±知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.20.【分析】由函数图象关于原点对称可得再由在区间上是增函数可得解不等式即可【详解】由函数的图象关于原点对称得即因为在区间上是减函数所以在区间上是增函数又是函数的单调递增区间所以又解得故答案为:解析:30,4⎛⎤⎥⎝⎦【分析】由函数图象关于原点对称可得2ϕπ=,再由2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,可得22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解不等式即可.【详解】由函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,得2ϕπ=, 即()2cos 2sin 2f x x x πωω⎛⎫=+=- ⎪⎝⎭,因为()f x 在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数, 所以2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数, 又,22ππωω⎡⎤-⎢⎥⎣⎦是函数2sin y x ω=的单调递增区间, 所以22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,又0>ω,解得304ω<≤.故答案为:30,4⎛⎤ ⎥⎝⎦三、解答题21.(1)π0,6x ⎡⎤∈⎢⎥⎣⎦时,()f x 单调递增;ππ,63x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减;(2)()121cos 2x x +=,()122cos 3x x -=. 【分析】(1)根据平面向量的数量积和三角恒等变换,求出函数()f x 的解析式,再根据x 的范围,即可得到()f x 的单调性;(2)由方程()23f x =有两个不相等的实数根1x 、2x ,根据对称性求出12x x +的值,再计算()12cos x x +和()12cos x x -的值即可. 【详解】(1)因为向量()cos ,sin m x x =,()cos x n x =,所以函数()12f x m n =⋅-21cos cos 2x x x =-1cos 21222x x +=+- πcos 23x ⎛⎫=- ⎪⎝⎭,π0,3x ⎡⎤∈⎢⎥⎣⎦,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π203x -=,解得π6x =, 所以π0,6x ⎡⎤∈⎢⎥⎣⎦时,即ππ2,033x ⎡⎤-∈-⎢⎥⎣⎦时,()f x 单调递增, ππ,63x ⎛⎤∈ ⎥⎝⎦时,即ππ20,33x ⎛⎤-∈ ⎥⎝⎦时,()f x 单调递减;(2)当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦;所以π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即()1,12f x ⎡⎤∈⎢⎥⎣⎦; 又方程()23f x =在π0,3x ⎡⎤∈⎢⎥⎣⎦上有两个不相等的实数根1x 、2x , 所以12ππ2220033x x ⎛⎫⎛⎫-+-=⨯= ⎪ ⎪⎝⎭⎝⎭,解得12π3x x +=, 所以()12π1cos cos 32x x +==; 由12π3x x =-, 所以()122πcos cos 23x x x ⎛⎫-=- ⎪⎝⎭2πcos 23x ⎛⎫=- ⎪⎝⎭()223f x ==.【点睛】解题的关键是熟练掌握三角函数的图象与性质、数量积公式、三角恒等变换公式,并灵活应用,()23f x =需结合余弦函数的对称性与值域进行求解,综合性较强,属中档题.22.(1)2ω=,6πϕ=-;(2)max ()f x =min ()f x =【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()f x =. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题.23.(1)1ω=,()sin 32+f x x π⎛⎫= ⎪⎝⎭2)⎣⎦.【分析】(1)先逆用两角差的正弦公式化成正弦型函数的标准形式,然后利用周期公式2T ωπ=求ω的值,进而写出函数()f x 的解析式;(2)利用余弦定理结合基本不等式求出cos B 的范围,再根据B 为三角形的内角求出B 的范围,得出()f x 的定义域,从而求出()f x 的值域. 【详解】解:(1)()2sin cos f x x x x ωωω=)1cos 21sin 2+22x x ωω+=sin 2+3x πω⎛⎫= ⎪⎝⎭由22T ππω==,解得1ω=,所以函数()f x 的解析式为()sin 32++2f x x π⎛⎫= ⎪⎝⎭; (2)因为2b ac =,所以222cos 2a c b B ac +-==22121122222a c ac ac ac +-≥-=,当且仅当a c =时取“=”;又B 为三角形内角,所以03B π<≤,即03x π<≤,所以2+33x πππ<≤,所以0sin 2+13x π⎛⎫ ⎪⎝⎭,所以sin 2++2322x π⎛⎫≤≤ ⎪⎝⎭,即函数()f x 的值域是,1+22⎣⎦. 【点睛】关键点点睛:运用三角恒等变换将函数化成正弦型函数的标准形式,利用余弦定理和基本不等式将三角形的边的关系转化为角的范围. 24.(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭.【分析】(1)化简()f x ,利用正弦函数的递减区间列式可解得结果; (2)转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象可得结果. 【详解】(1)()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 244x x x πππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭sin 223sin cos 44x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭sin 23sin 22x x π⎛⎫=++ ⎪⎝⎭sin 23cos 22sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,令3222232k x k πππππ+≤+≤+,k Z ∈,解得:71212k x k ππππ+≤≤+,k Z ∈, ∴()f x 的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由(1)知,函数2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,()g x =2sin 242sin 23x k x π⎛⎫+-- ⎪⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点等价于132sin 2sin 2sin 2cos 2cos 23226k x x x x x ππ⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪⎝⎭⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一实根,设()cos 26h x x π⎛⎫=+ ⎪⎝⎭,7,1212x ππ⎡⎤∈⎢⎥⎣⎦,依题意可知2y k =与()y h x =的图象有唯一交点,函数()h x 在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知实数k 应满足11222k -<≤或21k =-, ∴1144k -<≤或12k =-,故实数k 的取值范围11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭.【点睛】关键点点睛:转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象求解是解题关键.25.(1)0b =,奇函数;0b ≠,非奇非偶函数;(2)证明见解析;(3. 【分析】(1)就0,0b b =≠分类讨论,后者利用反例说明()f x 为非奇非偶函数.(2)通过反例说明非充分性成立,设()g x 的周期为2T m =,可以证明当()f x 为奇函数时()()224f x m f x m am ++-+=成立,从而可得()f x 有异于原点的对称中心. (3)先考虑0ab时,M =,再通过反证法可证明M <min M =,也可以利用绝对值不等式证明M ≥成立,结合0a b时,M =可得min M . 【详解】(1)()sin f x x ax b =++,0b =时,()()()sin f x x ax f x -=--=-,()f x 为奇函数,0b ≠时,∵()00f ≠,∴()f x 不是奇函数.()1sin1f a b =++,()1sin1f a b -=--+,()2sin 22f a b =++, ()2sin 22f a b -=--+.若()f x 为偶函数,则()()()()1122f f f f ⎧=-⎪⎨=-⎪⎩即sin11sin 22a a =-⎧⎪⎨=-⎪⎩, 因为1sin1sin 22-≠-,故sin11sin 22a a =-⎧⎪⎨=-⎪⎩无解, ∴()f x 不是偶函数,所以()f x 是非奇非偶函数. (2)非充分性:举反例,()()()cos ,1,cos 1g x x h x f x x ===+有异于原点的对称中心,12π⎛⎫⎪⎝⎭,但()f x 不是奇函数;必要性:设奇函数()()f x g x ax b =++,且()()g x T g x +=,令2T m = ,()()()()2222f x m g x m a x m b g x ax b am +=++++=+++,而()()()()()22222f x m f x m g x m a x m b g x ax am b -+=--=-----=--+-, 故()()224f x m f x m am ++-+=,令2n am =,则()f x 的图象关于(),m n 对称. (3)法一:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭,取0a b ,则()4f x x π⎛⎫=+ ⎪⎝⎭,∴()max4M f x f π⎛⎫=== ⎪⎝⎭M 的最小值为,反证法:假设M <()4f x x ax b π⎛⎫==+++ ⎪⎝⎭,∵4f M π⎛⎫≤< ⎪⎝⎭∴4a b π++<∴044a b a b ππ+<+<,①;同理∵54f M π⎛⎫≤< ⎪⎝⎭,∴504a b π+>②;∵94f M π⎛⎫≤<⎪⎝⎭,∴904a b π+<,③; ②-①得0a π>,③-②得0a π<,矛盾,所以假设不成立,得证.法二:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭5922444a b a b a b πππ⎛⎫⎛⎫⎫++-+++= ⎪ ⎪⎪⎝⎭⎝⎭⎭ 592444a b a b a b πππ⎫⎛⎫⎫∴=+-+++⎪ ⎪⎪⎭⎝⎭⎭592444a b a b a b πππ≤+++++ 5924444f f f M πππ⎛⎫⎛⎫⎛⎫=++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,M ∴≥当0ab 时, |()|4f x x π⎛⎫=+ ⎪⎝⎭,max min ()4f x M f M π⎛⎫==⎪⎭== ⎝【点睛】 方法点睛:(1)说明一个函数为非奇非偶函数,一般利用反例来说明;(2)如果函数()f x 满足()()2f a x f a x b -++=,则()f x 的图象有对称中心(),a b .(3)双重最值问题,可以利用绝对值不等式先求出范围,再验证等号可以成立. 26.(1)2ω=;{|,}6ππ=±∈x x k k Z ;(2)1[-,1]2. 【分析】(1)由条件求出2ω=,然后可得答案;(2)将()g x 化为()1cos(2)32g x x π=++,然后可算出其值域.【详解】 (1)由2T ππω==得2ω=;此时令1()cos22f x x ==得223x k ππ=±,6x k k Z ππ∴=±∈ 所求方程的解集为{|,}.6x x k k Z ππ=±∈(2)()2cos )cos()2g x x x x π=-+2cos sin x x x =1cos212cos(2)232x x x π+==++ 4022333x x ππππ≤≤∴≤+≤11cos(2)32x π∴-≤+≤ 11cos(2)1232x π∴-≤++≤即()g x 的值域为1[-,1]2。
一、选择题1.已知()3sin 5πα+=,则sin()cos()sin 2απαπα--=⎛⎫- ⎪⎝⎭( )A .45-B .45 C .35 D .352.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-3.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定4.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3-D .33-5.sin34sin64cos34sin 206︒︒-︒︒的值为( ) A .12B .22C .3 D .16.若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-=+( ) A .12B .12-C .35D .-27.若角α,β均为锐角,25sin α=,()4cos 5αβ+=-,则cos β=( )A .25B .25C .25或25 D .25-8.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=-9.在ABC 中,2,6AB C π==,则AC 的最大值为( )A .B .C .D .10.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-11.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .3512.函数()log 44a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则7πcos 2θ⎛⎫+= ⎪⎝⎭( ) A .35 B .35C .45-D .45第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________.14.已知函数()22sin cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为π4,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为______. 15.若()5sin 4513α︒+=,则()sin 225α︒+=________. 16.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 17.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________.18.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______. 19.已知tan 3α=,则2sin 21sin cos 2ααα-=+_________.20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数()2sin cos f x x x = (1)求函数()f x 的最小正周期和最大值; (2)求函数()f x 的单调递减区间.22.已知函数()22sin cos 2sin 1f x x x x =-+.(1)求4f π⎛⎫ ⎪⎝⎭的值; (2)求()f x 的最小正周期; (3)求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值. 23.已知()sin (sin 3cos )f x x x x =-,ABC ∆中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间; (2)若3()2f A =,2a =,求ABC ∆周长的最大值 24.如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点B ,P 在单位圆上,且525,B ⎛⎫- ⎪ ⎪⎝⎭,AOB α∠=.(1)求4cos 3sin 5cos 3sin -+αααα的值;(2)若四边形OAQP 是平行四边形,(i )当P 在单位圆上运动时,求点Q 的轨迹方程;(ii )设0)2(POA θθπ∠=≤≤,点(,)Q m n ,且()3f m n θ=+.求关于θ的函数()fθ的解析式,并求其单调增区间.25.如图为函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的一个周期内的图象.(1)求函数()f x 的解析式及单调递减区间; (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,求()f x 的值域.26.如图,设矩形()ABCD AB BC >的周长为m ,把ABC 沿AC 翻折到AB C ',AB '交DC 于点P ,设AB x =.(1)若CP =2PD ,求x 的值; (2)求ADP △面积的最大值.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】∵3sin()sin 5παα+==-,∴3sin 5α=-, 则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C2.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.C解析:C 【分析】先计算三角函数值得(1,P,再根据三角函数的定义sin ,yr rα==可.【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin y r α===. 故选:C.5.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒= 故选:C .6.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D.7.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++435555=-⨯+⨯=. 故选:B .8.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误; 对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C 错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.9.B解析:B 【分析】将AC +表示为角的形式,结合三角函数最值的求法,求得AC 的最大值. 【详解】有正弦定理得24sin sin sin sin 6a b c A B C π====, 所以4sin ,4sin a A b B ==,所以AC+4sin b B A =+=+()4sin 4sin 6B B C B B π⎛⎫=++=++ ⎪⎝⎭4sin sin cos cos sin 66B B B ππ⎫=++⎪⎭14sin sin cos 22B B B ⎫=++⎪⎪⎭()()10sin B B B B ϕϕ=+=+=+.其中tan 06πϕϕ==<⇒<<, 由于566B ππ<<,所以3B πϕπ<+<,故当2B πϕ+=时,AC +的最大值为故选:B 【点睛】要求与三角形边长有关的最值问题,可以利用正弦定理将边转化为角,然后利用三角函数的最值的求法来求最值.10.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 11.C解析:C【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C12.D解析:D 【分析】先利用对数函数图象的特点求出点()3,4A -,再利用三角函数的定义求出sin θ的值,利用诱导公式可得7πcos sin 2θθ⎛⎫+= ⎪⎝⎭,即可求解. 【详解】 对数函数log ay x =恒过点()1,0,将其图象向左平移4个单位,向上平移4个单位可得()log 44a y x =++的图象,点()1,0平移之后为点()3,4-,所以()3,4A -,令3x =-,4y =,则5OA ===,所以4sin 5y OA θ==, 由诱导公式可得:7π4cos sin 25θθ⎛⎫+== ⎪⎝⎭,故选:D 【点睛】关键点点睛:本题的关键点是求出()3,4A -,会利用三角函数的定义求出θ的三角函数值,会利用诱导公式化简7πcos 2θ⎛⎫+⎪⎝⎭. 二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:3-【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以3sin cos αα-====-,故答案为: -14.【分析】先将函数化简整理根据相邻对称轴之间距离求出周期确定再根据正弦函数的性质结合给定区间即可求出最值【详解】因为由题意知的最小正周期为所以即所以当时所以因此所以函数的最小值为故答案为:解析:-【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定2ω=,再根据正弦函数的性质,结合给定区间,即可求出最值. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω+=-=- πsin 222sin 23x x x ωωω⎛⎫=-=-- ⎪⎝⎭由题意知()f x 的最小正周期为ππ242⨯=,所以2ππ22ω=,即2ω=,所以()π2sin 43f x x ⎛⎫=-⎪⎝⎭当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦,所以π2sin 423x ⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,因此()π2sin 423f x x ⎛⎫⎡=-- ⎪⎣⎝⎭,所以函数()f x 的最小值为-.故答案为:-15.【分析】直接利用诱导公式计算可得;【详解】解:因为故答案为: 解析:513-【分析】直接利用诱导公式计算可得; 【详解】解:因为()5sin 4513α︒+=,()()()5sin 225sin 45180sin 4513ααα︒+=︒++︒=-︒+=-⎡⎤⎣⎦ 故答案为:513-16.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解. 【详解】tan tan1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭,故答案为:13-17.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈; 函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.18.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 19.【分析】可将式子化简为即可求解【详解】故答案为: 解析:4-【分析】可将式子化简为22tan tan 1αα--,即可求解. 【详解】tan 3α=,()22222sin cos sin cos sin 21sin cos 2cos αααααααα-+-∴=+ 222tan tan 123314αα=--=⨯--=-. 故答案为:4-.20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦;②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在;⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)T π=;最大值为1;(2)3[,]()44k k k Z ππππ++∈ 【分析】(1)应用二倍角公式,将函数化为正弦型三角函数,即可求解; (2)根据正弦函数的单调递减区间结合整体代换,即可求出结论. 【详解】(1)()2sin cos sin 2f x x x x ==, 最小正周期为22T ππ==,最大值为1; (2)由3222()22k x k k Z ππππ+≤≤+∈, 解得3()44k x k k Z ππππ+≤≤+∈, ()f x ∴单调递减区间是3[,]()44k k k Z ππππ++∈.22.(1)1;(2)π;(3). 【分析】(1)由题意利用三角恒等变换化简函数的解析式,从而求得4f π⎛⎫⎪⎝⎭的值 (2)由(1)得,利用正弦函数的周期性,得出结论; (3)由(1)得,利用正弦函数的单调性,得出结论; 【详解】(1)()22sin cos 2sin 1sin 2cos2f x x x x x x =-+=+π24x ⎛⎫=+ ⎪⎝⎭∴πππ1424f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭或直接求2ππππ2sin cos 2sin 114444f ⎛⎫=-+=⎪⎝⎭. (2)由(1)得,所以()f x 的最小正周期为2π2ππ2T ω=== (3)由(1)得,∵π02x -≤≤,∴3πππ2444x -≤+≤,∴πsin 21,42x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦当ππ242x +=-,即3π8x =-时,()f x 取得最小值为. 【点睛】关键点睛:解题的关键在于,利用三角恒等变换化简函数的解析式得到()π24f x x ⎛⎫=+ ⎪⎝⎭,进而利用正弦函数的性质求解,属于中档题23.(1)2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈;(2)2+ 【分析】(1)首先利用降幂公式和辅助角公式化简函数()1sin 226f x x π⎛⎫=-+ ⎪⎝⎭,再求函数的单调递增区间;(2)先求角A ,再根据余弦定理和基本不等式求周长的最大值. 【详解】(1)()2111sin cos (cos22)sin(2)2226f x x x x x x x π==-=-+, ∴()f x 在3222262k x k πππππ+≤+≤+上单调递增, ∴2[,]63x k k ππππ∈++,k Z ∈ (2)()13sin(2)262f A A π=-+=,得32262A k k Z πππ+=+∈,,即23A k ππ=+,0A π<<,则23A π=, 而2a =,由余弦定理知:2222cos 4a b c bc A =+-=,有22()()444b c b c bc ++=+≤+,所以03b c <+≤当且仅当b c =时等号成立, ∵周长2l a b c b c =++=++, ∴周长最大值为2+【点睛】思路点睛:已知一边及一边所对角求解三角形面积或周长的最大值时,可利用余弦定理构造方程,再利用基本不等式求所需的两边和或乘积的最值,代入三角形周长或面积公式,求得结果.24.(1)10-;(2)(i )22(1)1x y -+=;(ii )()2sin 16f πθθ⎛⎫=++ ⎪⎝⎭;增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)由三角函数定义得tan 2α,再弦化切代入计算,即可求4cos 3sin 5cos 3sin -+αααα的值;(2)(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭,由此可求点O 的轨迹方程;(ii)确定()cos 12sin 16f πθθθθ⎛⎫=++=++ ⎪⎝⎭,即可求其单调增区间. 【详解】解:(1)由三角函数定义得tan 2α==-,所以44cos 3sin 5cos 3si 3tan 1010tan 1n 53αααααα-===-+--+.(2)∵四边形OAQP 是平行四边形,∴PA 与OQ 互相平分,(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭, 又,22x y H ⎛⎫⎪⎝⎭,所以111x x y y =-⎧⎨=⎩, 代入上式得点Q 的轨迹方程为22(1)1x y -+=.(ii )因为0)2(POA θθπ∠=≤≤,所以11cos sin x y θθ=⎧⎨=⎩,又由(i )知111x m y n =-⎧⎨=⎩,∴cos 1sin m n θθ=+⎧⎨=⎩,∴()cos 12sin 16f πθθθθ⎛⎫=+=++ ⎪⎝⎭∵22,26202k k k ππππθπθπ⎧-≤+≤+∈⎪⎨⎪≤≤⎩Z , ∴03πθ≤≤或423πθπ≤≤, ∴()fθ的增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程. 25.(1)()2sin()44f x x ππ=+,[]8 1.85,k k k Z ++∈;(2)(2⎤⎦. 【分析】(1)由图可求出()2sin()44f x x ππ=+,令322()2442k x k k Z ππππππ+≤+≤+∈,即可求出单调递减区间; (2)由题可得5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,则可求得值域. 【详解】(1)由题图,知2,7(1)8A T ==--=,所以2284T πππω===, 所以()2sin()4f x x πφ=+.将点(-1,0)代入,得2sin()04πφ-+=.因为||2πφ<,所以4πφ=,所以()2sin()44f x x ππ=+.令322()2442k x k k Z ππππππ+≤+≤+∈, 得8185()k x k k Z +≤≤+∈.所以()f x 的单调递减区间为[]8 1.85,k k k Z ++∈. (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,此时sin()144x ππ<+≤,则()2f x <≤,即()f x 的值域为(2⎤⎦. 【点睛】方法点睛:根据三角函数()sin()f x A x ωϕ=+部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.26.(1)(34m ;(2)(2316m ⋅-. 【分析】(1)设CAB CAP θ∠=∠=,求得222PAD APD πθθ∠=-∠=,,得到且tan 23tan θθ=,结合正切的二倍角公式,即可求解.(2)设CAB CAP θ∠=∠=,则2APD θ∠=,且()tan 01θ∈,,由()tan 2x x m θ+⨯=,求得x 得值,求得()tan 21tan m AD BC θθ==+,1tan 4PD m θ-=,设1tan t θ+=,得到()12t ∈,,利用三角形的面积公式和二次函数的性质,即可求解. 【详解】(1)由题意,在ABC 中,可设CAB CAP θ∠=∠=, 则由角度关系可得222PAD APD πθθ∠=-∠=,,设BC y = ,且tan tan 23tan 3y yx xθθθ===,, 则有22tan tan 23tan 1tan θθθθ==-,解得tan θ=,则有y x =,所以23x x m ⎛⎫+= ⎪ ⎪⎝⎭,解得(34x m =. (2)设CAB CAP θ∠=∠=,则222PAD APD πθθ∠=-∠=,,且()tan 01θ∈,, 则有()tan 2x x m θ+⨯=,解得()21tan m x θ=+,即()tan 21tan m AD BC θθ==+,所以()2tan 1tan 1tan tan 221tan 2tan 4AD PD m m θθθθθθ--==⋅=+, 则S △ADP =()2221tan 1tan tan tan 221tan 4161tan m m θθθθθθ--⋅⋅=⋅++,令()1tan 12t t θ+=∈,, 所以S △ADP =()22222113223161616t t m m t t m t t t t ---⎡⎤-+-⎛⎫⋅=⋅=⋅-++ ⎪⎢⎥⎝⎭⎣⎦(2316m ≤⋅-,当且仅当2t t t==,时取等号. 则ADP △面积的最大值为(2316m ⋅-.【点睛】对于三角函数模型的应用问题,解答的关键是建立符合条件的函数模型,结合示意图,然后再由三角形中的相关知识进行求解,解题时要注意综合利用所学的三角恒等变换的公式及三角函数的性质求解.。
一、选择题1.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7252.已知一个扇形的半径与弧长相等,且扇形的面积为22cm ,则该扇形的周长为( ) A .6cmB .3cmC .12cmD .8cm3.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 26f x x π⎛⎫=- ⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭4.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A .3 B .12-C 3D .125.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3πC .4π D .6π 6.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .22C .32D .17.若角α,β均为锐角,25sin α=,()4cos 5αβ+=-,则cos β=( )A .25B .2525C .25或2525D .25-8.若函数sin 3y x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后与函数cos y x ω=的图象重合,则ω的值可能为( ) A .1- B .2-C .1D .29.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-10.已知,2παπ⎛⎫∈ ⎪⎝⎭且1sin 23πα⎛⎫+=- ⎪⎝⎭,则()tan απ+=( )A .22-B .22C .24- D .2411.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫- ⎪⎝⎭C .,012π⎛⎫ ⎪⎝⎭D .,03π⎛⎫ ⎪⎝⎭12.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 14.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,则a =_______.15.已知22034sin παα=<<,,则sin cos αα-=_____________________. 16.方程cos 306x π⎛⎫+= ⎪⎝⎭在[]0,π上的解的个数为______. 17.在ABC 中,tan 1A =,tan 2B =,则tan C =______.18.已知23sin 33x π⎛⎫-=-⎪⎝⎭,则cos 6x π⎛⎫-= ⎪⎝⎭________. 19.设()sin 2cos2f x a x b x =+,0ab ≠,若()6f x f π⎛⎫≤ ⎪⎝⎭对任意x ∈R 成立,则下列命题中正确的命题是______.(填序号) ①11012f π⎛⎫=⎪⎝⎭;②7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;③()f x 不具有奇偶性;④()f x 的单调增区间是()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;⑤可能存在经过点(),a b 的直线与函数的图象不相交. 20.已知1cos cos 2αβ+=,1sin sin 3αβ+=,则()cos αβ-=________. 三、解答题21.有一展馆形状是边长为2的等边三角形ABC ,DE 把展馆分成上下两部分面积比为1:2(如图所示),其中D 在AB 上,E 在AC 上.(1)若D 是AB 中点,求AE 的值; (2)设AD x =,ED y =. ①求用x 表示y 的函数关系式;②若DE 是消防水管,为节约成本,希望它最短,DE 的位置应在哪里?22.已知函数()2cos 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)函数()f x 的单调递减区间. 23.在①函数()f x 的图象关于点,6b π⎛⎫- ⎪⎝⎭对称; ②函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值为12;③函数()f x 的图象关于直线12x π=对称.这三个条件中任选两个补充在下面的问题中,再解答这个问题. 已知函数()()n 22si f x x b ϕϕπ=⎛⎫⎪⎝+<⎭+,若满足条件 与 .(1)求函数()f x 的解析式;(2)若将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,求函数()g x 的单调递减区间. 24.已知函数()()2cos 23sin cos sin f x x x x x =+-.(1)求函数()f x 的单调递增区间; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于()f x m ≥的不等式 _______,求实数m 的取值范围. 请选择①和②中的一个条件,补全问题(2),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分. 25.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值. (2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.26.已知函数()3sin 22f x x x =.(1)若2A f ⎛⎫= ⎪⎝⎭,0A π<<,求A 的值.(2)先将函数()y f x =的图像上所有点向左平移3π个单位,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数y g x 的图像,求函数y g x 的单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.2.A解析:A 【分析】由题意利用扇形的面积公式可得2122R =,解得R 的值,即可得解扇形的周长的值.【详解】解:设扇形的半径为Rcm ,则弧长l Rcm =, 又因为扇形的面积为22cm , 所以2122R =,解得2R cm =, 故扇形的周长为6cm . 故选:A .3.A解析:A【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【详解】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 故选:A. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.4.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.5.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.6.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒2= 故选:C .7.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos 5α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-25=. 故选:B .8.A解析:A 【分析】先求解出sin 3y x πω⎛⎫=+ ⎪⎝⎭右移6π个单位后的函数解析式,然后根据诱导公式求解出ω的可取值. 【详解】 因为sin 3y x πω⎛⎫=+⎪⎝⎭右移6π个单位后得到sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭, 又因为sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭与cos sin 2y x x πωω⎛⎫==+ ⎪⎝⎭的图象重合,所以令2,632k k Z ωππππ-+=+∈,所以121,k k Z ω=--∈,所以ω可取1-,此时0k =, 故选:A. 【点睛】思路点睛:根据三角函数的图象重合求解参数ω或ϕ的思路: (1)先根据诱导公式将函数名统一; (2)然后分析三角函数初相之间的关系;(3)对k 进行取值(有时注意结合所给范围),确定出满足条件的ω或ϕ的值.9.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.10.A解析:A【分析】由条件可得1cos 3α=-,然后可得sin α=,然后()sin tan tan cos ααπαα+==,即可算出答案. 【详解】因为1sin cos 23παα⎛⎫+==- ⎪⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 3α=所以()sin tan tan cos ααπαα+===-故选:A11.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 二、填空题13.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3514.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:()sin 2cos2)f x x a x x ϕ=+=+,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值. 【详解】解:()sin 2cos2)f x x a x x ϕ=+=+,其中sin tan a ϕϕϕ===.∵对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==,故答案为:1. 【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键.15.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以3sin cos αα-====-,故答案为: -16.3【分析】先求出解的一般形式再根据范围可求解的个数【详解】因为故故令故故答案为:3解析:3 【分析】先求出解的一般形式,再根据范围可求解的个数. 【详解】 因为cos 306x π⎛⎫+= ⎪⎝⎭,故3,62x k k Z πππ+=+∈, 故,39k x k Z ππ=+∈,令039k πππ≤+≤,故0,1,2k =, 故答案为:3.17.3【分析】由已知和正切和角公式求得再利用三角形的内角和公式和诱导公式可得答案【详解】中有所以所以故答案为:3解析:3 【分析】由已知和正切和角公式求得()tan +A B ,再利用三角形的内角和公式和诱导公式可得答案. 【详解】ABC 中,有++A B C π=,所以()()tan tan +tan +C A B A B π⎡⎤=-=-⎣⎦,()tan +tan 1+2tan +31tan tan 112A B A B A B ===---⨯,所以tan 3C =,故答案为:3. 18.【分析】由再结合诱导公式可得结果【详解】【点睛】方法点睛:利用诱导公式求值或化简时常用拼凑角常见的互余关系有:与与与等;常见的互补关系有:与与等;解析:【分析】 由2623x x πππ⎛⎫-=-- ⎪⎝⎭,再结合诱导公式可得结果. 【详解】22cos cos sin 62333x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】方法点睛:利用诱导公式求值或化简时,常用拼凑角,,常见的互余关系有:3πα+与6πα-,3πα-与6πα+,4πα-与4απ+等;常见的互补关系有: 3πα+与23πα-,4πα+与34πα-等; 19.①③【分析】由题可知直线与函数的图象的一条对称轴可求得可化简函数的解析式为计算出的值可判断①的正误;计算可判断②的正误;利用特殊值法可判断③的正误;取利用正弦函数的单调性可判断④的正误;假设命题⑤正解析:①③ 【分析】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可求得3ab ,可化简函数()f x 的解析式为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭.计算出1112f π⎛⎫⎪⎝⎭的值,可判断①的正误;计算710f π⎛⎫⎪⎝⎭、5f π⎛⎫⎪⎝⎭,可判断②的正误;利用特殊值法可判断③的正误;取0b >,利用正弦函数的单调性可判断④的正误;假设命题⑤正确,求出直线的方程,结合函数()f x 的最值可判断⑤的正误.【详解】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可得162f b π⎛⎫=+=⎪⎝⎭,整理可得2230a b -+=,即()20a -=,a ∴=.()sin 2cos 22sin 26f x x b x b x π⎛⎫∴=+=+ ⎪⎝⎭.对于命题①,11112sin 2012126f b πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,①正确; 对于命题②,7747172sin 22sin 2sin 101063030f b b b ππππππ⎛⎫⎛⎫⎛⎫=⨯+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17172sin 2sin 3030b b ππ=-=,172sin 22sin 55630f b b ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以,7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,②不正确; 对于命题③,2sin 66f b b ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,2sin 262f b b ππ⎛⎫== ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭且66f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不具有奇偶性,③正确; 对于命题④,当()2,63x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z 时,则()3222262k x k k Z πππππ+≤+≤+∈, 当0b >时,函数()f x 在区间()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 上单调递减,④错误; 对于命题⑤,假设经过点(),a b 的直线与函数()f x 的图象不相交,则该直线与x 轴平行,此时该直线的方程为y b =,则2b b >,由于0b ≠,矛盾,⑤错误.故答案为:①③. 【点睛】关键点点睛:本题考查正弦型函数()()sin f x A x =+ωϕ的单调性、奇偶性、三角函数值的计算,解题的关键就是从()6f x f π⎛⎫≤⎪⎝⎭分析得出直线6x π=与函数()f x 的图象的一条对称轴,进而借助辅助角公式化简得出a 、b 的倍数关系.20.【分析】将和两边同时平方然后两式相加再由两角差的余弦公式即可求解【详解】由两边同时平方可得由两边同时平方可得两式相加可得即所以故答案为:【点睛】本题主要考查同角三角函数基本关系以及两角差余弦公式解题 解析:5972-【分析】 将1cos cos 2αβ+=和1sin sin 3αβ+=两边同时平方,然后两式相加,再由两角差的余弦公式即可求解. 【详解】 由1cos cos 2αβ+=两边同时平方可得221cos cos 2cos cos 4αβαβ++=,由1sin sin 3αβ+=两边同时平方可得221sin sin 2sin sin 9αβαβ++=,两式相加可得22221113cos cos 2cos cos +sin sin 2sin sin 946=3+αβαβαβαβ++++=即cos cos sin si 5972n αβαβ+=-,所以()cos cos cos sin s 9n 7i 52αβαβαβ-=+=-. 故答案为:5972- 【点睛】本题主要考查同角三角函数基本关系以及两角差余弦公式,解题的关键是熟练掌握公式()cos cos cos sin sin αβαβαβ-=+,,22cos sin 1αα+=并应用,属于中档题. 三、解答题21.(1)43AE =;(2)①2,23y x ⎡⎤=∈⎢⎥⎣⎦;②//DE BC . 【分析】(1)利用三角形的面积公式,得到43AD AE ⋅=,根据D 是AB 中点,即可求得AE 的长;(2)对于①中,由(1)得到4433AE AD x==,求得223x ≤≤,在ADE 中,由余弦定理,即可求得函数的解析式;②根据DE 是消防水管,结合基本不等式,即可求得x 的值,得到DE 的位置. 【详解】(1)依题意,可得211112sin 60sin 603322ADE ABC S S AD AE ==⋅⋅⋅︒==⋅︒△△ 解得43AD AE ⋅=, 又因为D 是AB 中点,则1AD =,所以43AE =. (2)对于①中,由(1)得43AD AE ⋅=,所以4433AE AD x==, 因为2AE ≤,可得23x ≥,所以223x ≤≤, 在ADE 中,由余弦定理得2222221642cos6093y DE AD AE AD AE x x ==+-⋅⋅︒=+-,所以2,23y x ⎡⎤=∈⎢⎥⎣⎦.②如果DE 是消防水管,可得y =≥=,当且仅当243x =,即x =此时3AE =,故//DE BC ,且消防水管路线最短为3DE =. 【点睛】利用基本不等式求解实际问题的解题技巧:利用基本不等式求解实际应用问题时,一定要注意变量的实际意义及其取值范围; 根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值; 在应用基本不等式求最值时,若等号取不到,可利用函数的单调性求解. 22.(1)π;(2)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【分析】(1)利用二倍角的正弦、余弦公式将函数化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,由周期公式即可求解.(2)由正弦函数的单调递减区间32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,整体代入即可求解. 【详解】(1)()21cos 221cos cos sin 22262x x f x x x x x π+⎛⎫==+=++ ⎪⎝⎭, 所以函数的最小正周期222T πππω===, (2)3222,262k x k k Z πππππ+≤+≤+∈, 解不等式可得2,63k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦23.(1)答案见解析;(2)5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)分别选①②,②③,①③三种情况,根据三角函数的性质,即可求出函数解析式;(2)由(1)的结果根据三角函数的伸缩变换与平移原则,求出()g x ,再根据正弦函数的单调性,即可求出单调递减区间. 【详解】 解:(1)选①②因为,6b π⎛⎫- ⎪⎝⎭为()f x 的对称中心,所以2,,63k k k ππϕπϕπ⎛⎫⨯-+==+∈ ⎪⎝⎭Z 又2πϕ<,所以3πϕ=;因为44x ππ-≤≤,所以52636x πππ-≤+≤,所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭ 所以()min 1122f x b =-+=,所以1b =; 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭选②③因为12x π=为()f x 的一条对称轴,所以2122k ππϕπ⨯+=+,所以,3k k πϕπ=+∈Z ,又2πϕ<,所以3πϕ=,因为44x ππ-≤≤,所以52636x πππ-≤+≤;所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()min 1122f x b =-+=,所以1b =, 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭;选①③,由前面两种情况,可得,根据对称性只能求得3πϕ=,所以()sin 23f x x b π⎛⎫=++ ⎪⎝⎭; (2)当()sin 213f x x π⎛⎫=++ ⎪⎝⎭时, 将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,可得sin 413y x π⎛⎫=++ ⎪⎝⎭的图像,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,所以()sin 416g x x π⎛⎫=-+ ⎪⎝⎭; 当()sin 23f x x b π⎛⎫=++ ⎪⎝⎭时,同理可得()sin 46g x x b π⎛⎫=-+ ⎪⎝⎭,令3242,262k x k k πππππ+≤-≤+∈Z 解得:5,26212k k x k ππππ+≤≤+∈Z 所以函数()g x 的减区间为5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】 思路点睛:求解三角函数解析式,以及三角函数性质的题目,一般需要根据三角函数的单调性、对称性等,结合题中条件,求出参数,即可得出解析式;求解三角函数性质问题时,一般根据整体代入的方法,结合正余弦函数的性质求解.24.(1)[,],36k k k Z ππππ-++∈;(2)若选择①,2m ≤. 若选择②,1m ≤-.【分析】(1)先结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的单调性可求; (2)若选择①,由()f x m ≥有解,即max ()m f x ≤,结合正弦函数的性质可求; 若选择②,由()f x m ≥恒成立,即min ()m f x ≤,结合正弦函数的性质可求. 【详解】(1)因为()()2cos cos sin f x x x x x =+-22cos s n cos i x x x x =+-2cos2x x =+2sin(2).6x π=+令222,262k x k k Z πππππ-+≤+≤+∈,解得36k x k k Z ππ-+π≤≤+π,∈. 所以函数()f x 的单调递增区间,,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)若选择①,由题意可知,不等式()f x m ≥有解,即max ()m f x ≤,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当262x ππ+=,即6x π=时,()f x 取得最大值,且最大值为()26f π=,所以2m ≤.若选择②,由()f x m ≥恒成立,即min ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当7266x ππ+=,即2x π=时,()f x 取得最小值,且最小值为()12f π=-,所以1m ≤- 【点睛】关键点点睛:考查了二倍角公式辅助角公式在三角函数化简中的应用,还考查了正弦函数性质的综合应用,其中,考查了存在性命题与全称命题的理解,理解含量词命题转化成适当的不等式是解题关键,属于中档试题. 25.(1)15(2)13-【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】 (1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭. (2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.26.(1)512A π=或1112A π=;(2),,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【分析】(1)化简得())6f x x π=-6A π⎛⎫-= ⎪⎝⎭(2)先求出函数()g x 的解析式,再求函数的单调递增区间. 【详解】(1)())6f x x π=-)所以26A f A π⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即sin 6A π⎛⎫-= ⎪⎝⎭又0A π<<,所以5666A πππ-<-<, 所以64A ππ-=或34π,所以512A π=或1112A π=(2)()2,6f x x π⎛⎫- ⎪⎝⎭将函数()y f x =的图像上所有点向左平移3π个单位得到)])362y x x πππ=+-=+,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()442g x x x π⎛⎫=+= ⎪⎝⎭的图像,令242k x k πππ-+≤≤,k Z ∈, 所以422k k x πππ-+≤≤, 所以递增区间为,,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:求函数sin()y A wx h φ=++的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.。
一、选择题1.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦2.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( ) A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定3.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦4.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=-⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=- ⎪⎝⎭D .sin 26y x π⎛⎫=+ ⎪⎝⎭5.已知函数 ()cos f x x a x =+,[0,]3x π∈的最小值为a ,则实数a 的取值范围是( ) A .[0,2]B .[2,2]-C .(],1-∞D .(],3-∞6.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭7.若22cos()4θθπθ=-,则sin 2θ=( )A .13B .23C .23-D .13-8.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .9.已知1cos 2α=,322παπ<<,则sin(2)πα-=( ) A .3 B .12C .12-D 310.已知函数()()()cos >0,0<<f x x ωθωθπ=+的最小正周期为π,且()()0f x f x -+=,若tan 2α=,则()f α等于( )A .45-B .45C .35D .3511.已知tan 62πα⎛⎫= ⎪⎝⎭-,()tan 3αβ+=-,则πtan 6β⎛⎫+= ⎪⎝⎭( ) A .1B .2C .3D .412.函数()log 44a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则7πcos 2θ⎛⎫+= ⎪⎝⎭( ) A .35 B .35C .45-D .45第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.设函数()sin (0,0)6f x A x A πωω⎛⎫=->> ⎪⎝⎭,[]0,2x π∈,若()f x 恰有4个零点,则下述结论中:①0()()f x f x ≥恒成立,则0x 的值有且仅有2个;②存在0>ω,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增;③方程1()2f x A =一定有4个实数根,其中真命题的序号为_________.14.设ABC 的内角,,A B C 所对的边分别为,,,a b c 若2sin cos sin A B C =,则ABC 的形状为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,1O 为圆孔及轮廓圆弧AB 所在圆的圆心,2O 为圆弧CD 所在圆的圆心,点A 是圆弧AB 与直线AC 的切点,点B 是圆弧AB 与直线BD 的切点,点C 是圆弧CD 与直线AC 的切点,点D 是圆弧CD 与直线BD 的切点,1218cm O O =,16cm AO =,215cm CO =,圆孔1O 的半径为3cm ,则图中阴影部分的的面积为______2cm .16.若3sin 2θ=,,2πθπ⎛⎫∈ ⎪⎝⎭则cos 6πθ⎛⎫-=⎪⎝⎭______. 17.若()5sin 4513α︒+=,则()sin 225α︒+=________. 18.若函数cos()y x ϕ=+为奇函数,则最小的正数ϕ=_____;19.设函数()()2sin 0,2f x x πωφφφ⎛⎫=+><⎪⎝⎭的部分图象如图.若对任意的()()2x R f x f t x ∈=-,恒成立,则实数t 的最小正值为____.20.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 三、解答题21.已知tan 1tan 1αα=--,求下列各式的值:(1)sin 3cos sin cos αααα-+;(2)2sin sin cos 2ααα++.22.已知函数()2sin cos f x x x x ωωω=的周期为π,其中0>ω;(1)求ω的值,并写出函数()f x 的解析式;(2)设ABC 的三边a ,b ,c 依次成等比数列,角B 的取值范围为集合P ,则当x P ∈时求函数()f x 的值域.23.已知函数()()1cos sin cos 2f x x x x =+-. (Ⅰ)若0,2πα<<且1sin 3α=.求()f α; (Ⅱ)求函数()f x 的最小正周期及单调递增区间. 24.已知函数2()cos sin 12cos f x a x x x =⋅+-,且(0)3f f π⎛⎫-= ⎪⎝⎭. (1)求函数()y f x =的最小正周期; (2)求()f x 在52,243ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值. 25.已知1cos cos 634ππαα⎛⎫⎛⎫+-=-⎪ ⎪⎝⎭⎝⎭,,32ππα.(1)求sin 2α的值; (2)求1tan tan αα-的值.26.已知函数())2sin cos 3f x x x x π=--.(1)求()f x 的最小正周期、最大值、最小值; (2)求函数的单调区间;【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.2.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .3.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.4.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .5.D解析:D 【分析】通过参变分离转化为2cos 222sin tan22x x a x ≤==,即min tan 2a x ⎛⎫ ⎪≤ ⎪ ⎪⎝⎭. 【详解】()cos f x x a x =+的最小值是a ,并且观察当0x =时,()0f a =,所以当0,3x π⎡⎤∈⎢⎥⎣⎦cos x a x a +≥恒成立,即()1cos a x x -≤,当0x =时,a R ∈,当0,3x π⎛⎤∈ ⎥⎝⎦时,2cos221cos 2sin tan 22x xx a x x x ≤==-恒成立,即mintan 2a ≤ ⎪⎝⎭0,3x π⎛⎤∈ ⎥⎝⎦时,tan 2xtan 2的最小值是3,所以3a ≤.故选:D 【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.6.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.7.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin 2cos()coscos sinsin 444θθθπππθθθ-=-+()cos sin cos sin 2cos sin θθθθθθ+-==-,()2cos sin 2θθθ∴-=,两边平方得()241sin 23sin 2θθ-=, 解得sin 22θ=-(舍去)或2sin 23θ=. 故选:B.【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin 2θθθ-=,再平方求解.8.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.9.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】解:因为1cos 2α=,322παπ<<,所以sin 2α==-,所以sin(2)sin παα-=-=. 故选:D .10.A解析:A 【分析】利用三角函数的周期性和奇偶性得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,进而求出()f α 【详解】 由2ππω=,得2ω=,又()()0f x f x -+=,()()()cos cos 2f x x x ωθθ=+=+为奇函数,()2k k Z πθπ∴=+∈,,又0θπ<<,得2πθ=,()cos 2sin 22f x x x π⎛⎫∴=+=- ⎪⎝⎭,又由tan 2α=,可得()2222sin cos 2tan 4sin 2sin cos tan 15f αααααααα-=-==-=-++ 故选:A 【点睛】关键点睛:解题关键在于通过三角函数性质得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,难度属于基础题11.A解析:A 【分析】根据两角差的正切公式,由题中条件,直接得出结果. 【详解】 因为tan 62πα⎛⎫= ⎪⎝⎭-,()tan 3αβ+=-, 则()()()πta tan πtan t n 6an 661tan πtan 6αβααβπβαβαα⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎝⎭+=+--= ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝+--+⎭-123321==-⨯--.故选:A. 12.D解析:D 【分析】先利用对数函数图象的特点求出点()3,4A -,再利用三角函数的定义求出sin θ的值,利用诱导公式可得7πcos sin 2θθ⎛⎫+= ⎪⎝⎭,即可求解. 【详解】 对数函数log ay x =恒过点()1,0,将其图象向左平移4个单位,向上平移4个单位可得()log 44a y x =++的图象,点()1,0平移之后为点()3,4-,所以()3,4A -,令3x =-,4y =,则5OA ===,所以4sin 5y OA θ==, 由诱导公式可得:7π4cos sin 25θθ⎛⎫+== ⎪⎝⎭,故选:D 【点睛】关键点点睛:本题的关键点是求出()3,4A -,会利用三角函数的定义求出θ的三角函数值,会利用诱导公式化简7πcos 2θ⎛⎫+⎪⎝⎭. 二、填空题13.①②③【分析】可把中的整体当作来分析结合三角函数的图象与性质即可得解【详解】由于恰有4个零点令由有4个解则解得①即由上述知故的值有且仅有个正确;②当时当时解得又故存在使得在上单调递增正确;③而所以可解析:①②③ 【分析】可把sin()y A x ωθ=+中的x ωθ+整体当作t 来分析,结合三角函数的图象与性质即可得解. 【详解】由于()f x 恰有4个零点,令6t x πω=-,266t ππωπ⎡⎤∈--⎢⎥⎣⎦,,由sin 0t =有4个解,则3246x ππωπ≤-<,解得19251212ω≤<, ①()0f x A =即0262ππωx k π-=+,由上述知0,1k =, 故0x 的值有且仅有2个,正确; ②当0x =时,66ππωx -=-,当819πx =时,81962πππω⋅-≤,解得1912ω≤, 又19251212ω≤<,故存在1912ω=,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增,正确; ③11()sin 262f x A x πω⎛⎫=⇒-= ⎪⎝⎭,而2[3,4)6ππωππ-∈, 所以6x πω-可取51317,,,6666ππππ,共4个解,正确,综上,真命题的序号是①②③. 故答案为:①②③. 【点睛】三角函数的性质分析一般用数形结合,图象的简化十分重要。
三角函数学案与单元检测第1课时 任意角一、重点、难点剖析理解任意角的概念,任意角产生于用角α表示圆周上运动的点P ,学会在平面内建立适当的坐标系来讨论角。
理解终边相同的角的概念,能在00到3600范围内,找出一个与已知角终边相同的角,会判定其为第几象限角,能写出与任一已知角终边相同的角并用集合的语言准确地表示。
二、典型例题例1、写出与下列各角终边相同的角的集合S ,并把S 中在00720~360-间的角写出来:︒60 (1) ︒21- (2) '︒14633 (3)解:(1) {}Z k k S ∈︒⋅+︒==,36060|ββ S 中在-360°~7200间的角是:-1³360°+60°=-280°;0³360°+60°=60°;1³360°+60°=420°. (2) {}Z k k S ∈︒⋅+︒-==,36021|ββ S 中在-360°~720间的角是:0³360°-21°=-21°;1³360°-21°=339°;2³360°-21°=699°. (3) {}Z k k S ∈︒⋅+'︒==,36014363|ββ S 中在-360°~720°间的角是:-2³360°+363º14’=-356º46’;-1³360°+363º14’=3º14’;0³360°+363º14’=363º14’.例2、写出终边在y 轴上的角的集合(用00到3600的角表示)。
解:∵ 在0°~ 360°间,终边在y 轴的正半轴上的角为90°,终边在y 轴的负半轴上的角为270°,∴终边在y 正半轴、负半轴上所有角分别是:S 1={α|α=k ⋅360︒+90︒,k ∈Z};S 2={α|α=k ⋅360︒+270︒,k ∈Z} 探究:怎么将二者写成统一表达式?∵S 1={α|α=k ⋅360︒+90︒,k ∈Z}={α|α=2k ⋅180︒+90︒,k ∈Z};S 2={α|α=k ⋅360︒+270︒,k ∈Z}={α|α=2k ⋅180︒+180︒+90︒,k ∈Z}={α|α=(2k+1)⋅180︒+90︒,k ∈Z}; ∴终边在y 轴上的角的集合是:S=S 1 S 2={α|α=2k ⋅180︒+90︒,k ∈Z} {α|α=(2k+1)⋅180︒+90︒,k ∈Z} ={α|α=180︒的偶数倍+90︒,k ∈Z} {α|α=180︒的奇数倍+90︒,k ∈Z} ={α|α=180︒的整数倍+90︒,k ∈Z} ={α|α=n ⋅180︒+90︒,n ∈Z}引申:写出终边适合下述条件的角的集合。
三角函数学案与单元检测第1课时 任意角一、重点、难点剖析理解任意角的概念,任意角产生于用角α表示圆周上运动的点P ,学会在平面内建立适当的坐标系来讨论角。
理解终边相同的角的概念,能在00到3600范围内,找出一个与已知角终边相同的角,会判定其为第几象限角,能写出与任一已知角终边相同的角并用集合的语言准确地表示。
二、典型例题例1、写出与下列各角终边相同的角的集合S ,并把S 中在00720~360-间的角写出来:︒60 (1) ︒21- (2) '︒14633 (3)解:(1) {}Z k k S ∈︒⋅+︒==,36060|ββ S 中在-360°~7200间的角是:-1³360°+60°=-280°;0³360°+60°=60°;1³360°+60°=420°. (2) {}Z k k S ∈︒⋅+︒-==,36021|ββ S 中在-360°~720间的角是:0³360°-21°=-21°;1³360°-21°=339°;2³360°-21°=699°. (3) {}Z k k S ∈︒⋅+'︒==,36014363|ββ S 中在-360°~720°间的角是:-2³360°+363º14’=-356º46’;-1³360°+363º14’=3º14’;0³360°+363º14’=363º14’.例2、写出终边在y 轴上的角的集合(用00到3600的角表示)。
解:∵ 在0°~ 360°间,终边在y 轴的正半轴上的角为90°,终边在y 轴的负半轴上的角为270°,∴终边在y 正半轴、负半轴上所有角分别是:S 1={α|α=k ⋅360︒+90︒,k ∈Z};S 2={α|α=k ⋅360︒+270︒,k ∈Z} 探究:怎么将二者写成统一表达式?∵S 1={α|α=k ⋅360︒+90︒,k ∈Z}={α|α=2k ⋅180︒+90︒,k ∈Z};S 2={α|α=k ⋅360︒+270︒,k ∈Z}={α|α=2k ⋅180︒+180︒+90︒,k ∈Z}={α|α=(2k+1)⋅180︒+90︒,k ∈Z}; ∴终边在y 轴上的角的集合是:S=S 1 S 2={α|α=2k ⋅180︒+90︒,k ∈Z} {α|α=(2k+1)⋅180︒+90︒,k ∈Z} ={α|α=180︒的偶数倍+90︒,k ∈Z} {α|α=180︒的奇数倍+90︒,k ∈Z} ={α|α=180︒的整数倍+90︒,k ∈Z} ={α|α=n ⋅180︒+90︒,n ∈Z}引申:写出终边适合下述条件的角的集合。
(1)终边在x 轴的正半轴、x 轴的负半轴及x 轴上的角的集合:{α|α=k ⋅360︒, k ∈Z} {α|α=k ⋅360︒+180︒,k ∈Z} {α|α=k ⋅180︒,k ∈Z} (2)终边在y 轴的正半轴、y 轴的负半轴及y 轴上的角的集合:{α|α=k ⋅360︒+90︒,k ∈Z} {α|α=k ⋅360︒+270︒,k ∈Z} {α|α=k ⋅180︒+90︒,k ∈Z}(3)终边在坐标轴、坐标轴的分角线及终边在坐标轴和坐标轴的分角线上的角的集合:{α|α=k ⋅90︒, k ∈Z} {α|α=k ⋅90︒+45︒, k ∈Z} {α|α=k ⋅45︒, k ∈Z}例3、用集合的形式表示象限角解:第一象限的角表示为{α|k ⋅360︒<α<k ⋅360︒+90︒,(k ∈Z )};第二象限的角表示为{α|k ⋅360︒+90︒<α<k ⋅360︒+180︒,(k ∈Z )}; 第三象限的角表示为{α|k ⋅360︒+180︒<α<k ⋅360︒+270︒,(k ∈Z )}; 第四象限的角表示为{α|k ⋅360︒+270︒<α<k ⋅360︒+360︒,(k ∈Z )}; 或{α|k ⋅360︒-90︒<α<k ⋅360︒,(k ∈Z )}。
例4、设角βα,满足009090<<<-βα,则βα-的范围是 ( A )A .000180<-<-βα B .009090<-<-βα C .00180180<-<-βα D .00090<-<-βα解:00,<-∴<βαβα (1) 又00009090,9090<-<-∴<<-ββ而0180180,9090<-<-∴<<-βαα (2) 由(1)、(2)可得:000180<-<-βα 选(A )例5、已知α是第二象限角,问2α是第几象限角?2α是第几象限角?分别加以说明。
解:∵α在第二象限,∴k ⋅360︒+90︒<α<k ⋅360︒+180︒,k ∈Z于是, k ⋅180︒+45︒<2α<k ⋅180︒+90︒, ∵k ∈Z, ∴k=2n 或k=2n+1 当k=2n 时,n ⋅360︒+45︒<2α<n ⋅360︒+90︒, ∴2α在第一象限;当k=2n+1时,n ⋅360︒+225︒<2α<n ⋅360︒+270︒, ∴2α在第三象限; ∴当α在第二象限时,∴2α可能在第一象限,也可能在第三象限 类似地,2α可能在第三、四象限或y 轴负半轴上 三、随堂练习 一、选择题1、已知集合=A {第一象限的角},=B {锐角},=C {小于90o的角},下列四个命题: ①C B A == ②C A ⊆ ③A C ⊆ ④B C A =⊆其中正确命题的个数为 ( )A . 0B . 1C . 2D . 42、与120°角终边相同的角是 ( )A . -600°+k ²360°,k∈Z B. -120°+k ²360°,k∈ZC. 120°+(2k +1)²180°,k∈ZD. 660°+k ²360°,k∈Z3、若α是第四象限角,则1800-α是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4、若θθθ则角且,02sin ,0cos <>的终边所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5、下列命题中正确的是 ( ) A. 终边在y 轴正半轴上的角是直角 B. 第二象限角一定是钝角C . 若β=α+k²360°(k∈Z),则α与β终边相同 D. 第四象限角一定是负角6、若角α与β终边相同,则一定有 ( ) A. α+β=180° B. α+β=0°C . α-β=k²360°,k∈Z D. α+β=k²360°,k∈Z7、若A={α|α=k²360°,k∈Z};B ={α|α=k²180°,k∈Z}; C ={α|α=k²90°,k∈Z},则下列关系中正确的是 ( ) A. A=B=C B. A=B C C. A B=C D . ABC8、若α与β的终边互为反向延长线,则有 ( ) A. α=β+180° B. α=β-180°C. α=-β D . α=β+(2k+1)180°,k∈Z 二、填空题9、在-720º到720º之间与-1050º终边相同的角是 . 10、终边在第二象限的角的集合是11、今天是星期一,100天后的那一天是星期 ,100天前的那一天是星期 . 12、钟表经过4小时,时针与分针各转了 (填度).三、解答题13、锐角是第几象限的角?第一象限的角是否都是锐角?小于90°的角是锐角吗? 14、已知角的顶点与坐标系原点重合,始边落在x 轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?(1)420°,(2)-75°,(3)855°,(4)-510°.15、已知角α的终边与角300的终边关于直线x y =对称,且00720720<<-α,求α的值。
16、若角α的终边经过点()3,1--P ,试写出角α的集合,并求出集合中绝对值最小的角。
第2课时 弧度制一、重点、难点剖析理解弧度的意义,弄清1弧度的角的含义,正确建立弧度的概念,准确地进行弧度与角度的换算,熟记特殊角的弧度数,了解角的集合与实数集之间可以建立起一一对应关系,会用弧度制下的弧长公式解决某些简单的实际问题。
二、典型例题例1、用弧度制表示:(1)终边在x 轴的正半轴上的角的集合; (2)终边在y 轴上的角的集合; (3)终边在直线x y =上的角的集合; (4)终边在坐标轴上的角的集合。
解:(1)终边在x 轴的正半轴上的角的集合 {}1|2,S k k Z ββπ==∈ (2)终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ (3)终边在直线x y =上的角的集合⎭⎬⎫⎩⎨⎧∈+==Z k k S ,4|3ππββ (4)终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|4πββ 例2、自行车大链轮有48个齿,小链轮有20个齿,当大链轮转过一周时,小链轮转过的角度是多少度,合多少弧度?解:因为大链轮与小链轮在同一时间内转过的齿数相同,所以两轮转过的圈数之比等于它们的齿轮的反比,于是大轮转过的圈数为m ,小轮转过的圈数为n 时,4820=n m ,所以大轮转一周时,小轮转2.4周。
所以转过的角度为:008643604.2=⨯ 转过的弧度为:rad ππ524864180=⋅ 注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad , sin π表示πrad 角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住。
例3、一扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积。