第三章直线与方程
- 格式:doc
- 大小:67.89 KB
- 文档页数:2
高中数学必修知识点总结:第三章直线与方程1. 直线的一般方程直线的一般方程可以表示为:Ax + By + C = 0。
其中A、B、C是常数,A和B 不同时为0。
这个方程可以通过直线上任意两点的坐标来确定。
2. 直线的斜截式方程直线的斜截式方程可以表示为:y = kx + b。
其中k是直线的斜率,b是y轴截距。
通过斜截式方程,我们可以方便地确定直线的斜率和截距。
3. 直线的点斜式方程直线的点斜式方程可以表示为:y - y1 = k(x - x1)。
其中(x1, y1)是直线上的一个已知点,k是直线的斜率。
根据点斜式方程,我们可以通过已知点和斜率来确定直线的方程。
4. 直线的两点式方程直线的两点式方程可以表示为:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)。
其中(x1, y1)和(x2, y2)是直线上的两个已知点。
通过两点式方程,我们可以直接利用已知点的坐标来确定直线的方程。
5. 直线的斜率公式和截距公式直线的斜率可以通过斜率公式来计算:k = (y2 - y1)/(x2 - x1)。
直线的截距可以通过截距公式来计算:b = y1 - kx1。
通过斜率公式和截距公式,我们可以方便地计算直线的斜率和截距。
6. 直线的平行和垂直关系如果直线1的斜率等于直线2的斜率,则直线1和直线2平行。
如果直线1的斜率与直线2的斜率的乘积为-1,则直线1和直线2垂直。
7. 直线与坐标轴的交点直线与x轴的交点可以通过将y设为0得到,直线与y轴的交点可以通过将x 设为0得到。
8. 直线的倾斜角直线的倾斜角可以通过斜率来计算:θ = arctan(k),其中k是直线的斜率。
9. 直线的距离公式直线Ax + By + C = 0到点(x0, y0)的距离可以通过公式计算:d = |Ax0 + By0 +C|/√(A²+B²)。
10. 直线与线段的位置关系直线与线段的位置关系可以分为以下三种情况:•直线与线段相交•直线与线段不相交•直线与线段重合通过计算直线与线段的交点,可以确定它们的位置关系。
个性化辅导教案学员姓名科目年级授课时间课时 3 授课老师教学目标掌握直线的五种形式,会求点到直线的距离,会处理一些对称的问题重点难点直线的五种形式,点到直线的距离,对称问题第三章:直线与方程3.2直线的方程3.2.1直线的点斜式方程[导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l过定点P(x0,y0),斜率为k,则把方程y-y0=k(x-x0)叫做直线l的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P(x0,y0),倾斜角是90°的直线没有点斜式,其方程为x-x0=0,或x=x0.2.直线的斜截式方程(1)定义:如图所示,直线l的斜率为k,且与y轴的交点为(0,b),则方程y=kx+b叫做直线l的斜截式方程,简称斜截式.(2)说明:一条直线与y轴的交点(0,b)的纵坐标b叫做直线在y轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P(x0,y0)和斜率k;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线.2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b ,不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.直线的点斜式方程[例1] (1)经过点(-5,2)且平行于y 轴的直线方程为________.(2)直线y =x +1绕着其上一点P (3,4)逆时针旋转90°后得直线l ,则直线l 的点斜式方程为________. (3)求过点P (1,2)且与直线y =2x +1平行的直线方程为________. [解析] (1)∵直线平行于y 轴,∴直线不存在斜率,∴方程为x =-5.(2)直线y =x +1的斜率k =1,所以倾斜角为45°.由题意知,直线l 的倾斜角为135°,所以直线l 的斜率k ′=tan 135°=-1,又点P (3,4)在直线l 上,由点斜式方程知,直线l 的方程为y -4=-(x -3).(3)由题意知,所求直线的斜率为2,且过点P (1,2),∴直线方程为y -2=2(x -1),即2x -y =0. [答案] (1)x =-5 (2)y -4=-(x -3) (3)2x -y =0 [类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x =x 0.[活学活用]1.写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行.直线的斜截式方程[例2] (1)倾斜角为150°,在y 轴上的截距是-3的直线的斜截式方程为________.(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] (1)∵倾斜角α=150°,∴斜率k =tan 150°=-33,由斜截式可得所求的直线方程为y =-33x -3.(2)由斜截式方程知直线l 1的斜率k 1=-2, 又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[答案] (1)y =-33x -3 [类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]2.求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.两直线平行与垂直的应用[例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行?[解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2. ∵两直线互相垂直, ∴k 1k 2=a (a +2)=-1, 解得a =-1.故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4, 则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1. 故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]3.(1)若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. (2)若直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行,则a =________.7.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当l 1∥l 2时,求m 的值.[解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m .∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m.由l 1∥l 2,得⎩⎨⎧-m -23=-1m,-23m ≠-6m,解得m =-1.∴m 的值为-1.[易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合.[成功破障]当a为何值时,直线l1:y=-2ax+2a与直线l2:y=(a2-3)x+2平行?[随堂即时演练]1.直线y=2x-3的斜率和在y轴上的截距分别等于()A.2,3B.-3,-3C.-3,2 D.2,-32.直线l经过点P(2,-3),且倾斜角α=45°,则直线的点斜式方程是()A.y+3=x-2 B.y-3=x+2C.y+2=x-3 D.y-2=x+33.过点(-2,-4),倾斜角为60°的直线的点斜式方程是________.4.在y轴上的截距为2,且与直线y=-3x-4平行的直线的斜截式方程为________.5.(1)求经过点(1,1),且与直线y=2x+7平行的直线的方程;(2)求经过点(-2,-2),且与直线y=3x-5垂直的直线的方程.3.2.2 & 3.2.3直线的两点式方程、直线的一般式方程两点式、截距式[导入新知]直线的两点式与截距式方程两点式截距式条件P 1(x 1,y 1)和P 2(x 2,y 2) 其中x 1≠x 2,y 1≠y 2在x 轴上截距a ,在y 轴上截距b 图形方程y -y 1y 2-y 1=x -x 1x 2-x 1x a +y b=1 适用范围不表示垂直于坐标轴的直线不表示垂直于坐标轴的直线及过原点的直线[化解疑难]1.要注意方程y -y 1y 2-y 1=x -x 1x 2-x 1和方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)形式不同,适用范围也不同.前者为分式形式方程,形式对称,但不能表示垂直于坐标轴的直线.后者为整式形式方程,适用于过任何两点的直线方程.2.直线方程的截距式为x a +yb =1,x 项对应的分母是直线在x 轴上的截距,y 项对应的分母是直线在y 轴上的截距,中间以“+”相连,等式的另一端是1,由方程可以直接读出直线在两轴上的截距,如:x 3-y4=1,x 3+y4=-1就不是直线的截距式方程.直线方程的一般式[导入新知]1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示. (2)每个关于x ,y 的二元一次方程都表示一条直线. 2.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.[化解疑难]1.求直线的一般式方程的策略(1)当A ≠0时,方程可化为x +B A y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A B x +y +CB =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程.(2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.2.直线的一般式转化为其他形式的步骤 (1)一般式化为斜截式的步骤 ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -CB .(2)一般式化为截距式的步骤①把常数项移到方程右边,得Ax +By =-C ;②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B=1.由于直线方程的斜截式和截距式是唯一的,而两点式和点斜式不唯一,因此,通常情况下,一般式不化为两点式和点斜式.利用两点式求直线方程[例1] 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程. [解] 由两点式,直线AB 所在直线方程为:y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.[类题通法]求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.[活学活用]1.(1)若直线l 经过点A (2,-1),B (2,7),则直线l 的方程为________. (2)若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________.直线的截距式方程及应用[例2] 直线l 过点P (43,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程.[解] (1)设直线l 的方程为 x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12. 又因为直线l 过点P (43,2),所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎨⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0 或15x +8y -36=0.(2)设直线l 的方程为x a +yb =1(a >0,b >0),由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎪⎨⎪⎧a 2=2,b 2=6, 所以直线l 的方程为3x +4y -12=0或3x +y -6=0. [类题通法]用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便. (2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.(3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.[活学活用]2.求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程.直线方程的一般式应用[例3] (1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值;(2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直? [解] (1)法一:由l 1:2x +(m +1)y +4=0. l 2:mx +3y -2=0. ①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0,显然l 1与l 2不重合,∴l 1∥l 2. 同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2, ∴m 的值为2或-3.(2)法一:由题意,直线l 1⊥l 2,①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直.②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,所以a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 法二:由直线l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1. 将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. [类题通法]1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0, (1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.[活学活用]3.(1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程.3.探究直线在坐标轴上的截距问题[典例] 求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程. [解] 当直线过原点时,它在x 轴、y 轴上的截距都是0, 满足题意.此时,直线的斜率为12,所以直线方程为y =12x .当直线不过原点时,由题意可设直线方程为x a +y b=1,又过点A ,所以4a +2b=1(1).4.截距和是定数问题求过点A (4,2)且在两坐标轴上截距之和为12的直线l 的方程.解:设直线l 的方程为x a +y b=1, 由题意⎩⎪⎨⎪⎧ 4a +2b =1,a +b =12.∴4b +2a =ab ,即4(12-a )+2a =a (12-a ),∴a 2-14a +48=0,解得a =6或a =8.因此⎩⎪⎨⎪⎧ a =6,b =6,或⎩⎪⎨⎪⎧a =8,b =4. ∴所求直线l 的方程为x +y -6=0或x +2y -8=0.[方法感悟]如果题目中出现直线在两坐标轴上的“截距相等”、“截距的绝对值相等”、“截距互为相反数”、“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,可采用截距式求直线方程,但一定要注意考虑“零截距”的情况.[随堂即时演练]1.直线x 3-y 4=1在两坐标轴上的截距之和为( ) A .1B .-1C .7D .-72.直线3x -2y =4的截距式方程是( )A.3x 4-y 2=1 B.x 13-y 12=4 C.3x 4-y -2=1 D.x 43+y -2=1 3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________.4.斜率为2,且经过点A (1,3)的直线的一般式方程为________.5.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程.。
3.3.1 两条直线的交点坐标疱丁巧解牛知识·巧学一、两条直线的交点如果两条直线相交,则交点坐标分别适合两条直线的方程,即交点坐标是两直线方程所组成方程组的解.把两条直线的方程组成方程组,若方程组有唯一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数个解,则两条直线有无数个公共点,此时两条直线重合.要点提示直线相交的问题转化为求方程组的解的问题,且解的个数决定两条直线的位置关系.两直线的交点坐标对应的就是两直线方程所组成方程组的解.二、直线系方程具有某一共同属性的一类直线的集合称为直线系,表示直线系的方程叫做直线系方程.方程的特点是除含坐标变量x 、y 以外,还含有待定系数(也称参变量).(1)共点直线系方程:经过两直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0交点的直线方程为A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都得不到A 2x+B 2y+C 2=0,因此它不能表示直线l 2.(2)平行直线系:与直线Ax+By+C=0平行的直线系方程是Ax+By+λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是Bx-Ay+λ=0.(4)特殊平行线与过定点(x 0,y 0)的直线系:当斜率k 一定而m 变动时,y=kx+m 表示斜率为k 的平行线系,y-y 0=k(x-x 0)表示过定点(x 0,y 0)的直线系(不含直线x=x 0).要点提示 如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.直线系是直线和方程的理论发展,是数学符号语言中一种有用的工具,是一种很有用的解题技巧,应注意掌握和应用.问题·探究问题1 设两条直线的方程为l 1:A 1x+B 1y+C 1=0和l 2:A 2x+B 2y+C 2=0,如果这两条直线相交,你能分析它们的系数满足什么关系吗?探究:我们可以先解由两直线方程联立的方程组⎩⎨⎧=++=++).2( 0C y B x A ),1( 0C y B x A 222111 ①×B 2-②×B 1,得(A 1B 2-A 2B 1)x+B 2C 1-B 1C 2=0.当A 1B 2-A 2B 1≠0时,得x=12211121B A B A B C C B --;再由①×A 2-②×A 1,当A 1B 2-A 2B 1≠0时,可得y=12212112B A B A C A C A --.因此,当A 1B 2-A 2B 1≠0时,方程组有唯一一组解x 、y. 这时两条直线相交,交点的坐标就是(x ,y).因此这两条直线相交时,系数满足的关系为A 1B 2-A 2B 1≠0.问题2 请你探究一下三条直线l 1:ax+y+1=0,l 2:x+ay+1=0,l 3:x+y+a=0构成三角形的条件是什么?探究:三直线构成三角形,则需任意两条直线都相交,且不能相交于一点.注意不要忽略三线交于同一点的情况.所以可以从正反两个方向来思考.解法一:任两条直线都相交,则a a 11≠,111≠a ,故a≠±1.又有三条直线不交于同一点, 故其中两条直线⎩⎨⎧=++=++0a y x 0,1ay x 的交点(-1-a,1)不在直线ax+y+1=0上,即a(-1-a)+1+1≠0,a 2+a-2≠0,(a+2)(a-1)≠0,∴a≠-2,a≠1.综合上述结果,三条直线构成三角形的条件是a≠±1,a≠-2.解法二:因为三条直线能构成三角形,所以三条直线两两相交且不共点,即任意两条直线都不平行,且三线不共点.可以把不能构成三角形的情况排除掉.若三条直线交于同一点,则其中两条直线⎩⎨⎧=++=++0a y x 0,1ay x 的交点(-1-a,1)在直线ax+y+1=0上,∴a(-a-1)+1+1=0,∴a=1或a=-2.若l 1∥l 2,则有11-=-a ,a=1;若l 1∥l 3,则有11-=-a,a=1;若l 2∥l 3,则有a a-=-1,a=±1. 所以若三条直线构成三角形,则需a≠±1,a≠-2.典题·热题例1 分别判断下列直线是否相交,若相交,求出它们的交点.(1)l 1:2x-y=7和l 2:3x+2y-7=0;(2)l 1:2x-6y+4=0和l 2:4x-12y+8=0;(3)l 1:4x+2y+4=0和l 2:y=-2x+3.思路解析:判定两直线的位置关系,可以转化为讨论方程组解的情况.若两直线方程组成的方程组有且仅有一组解时,说明两直线相交;若方程组无解,说明两直线平行;若方程组有无数多组解,则说明两直线重合.解:(1)方程组⎩⎨⎧=+=07-2y 3x 0,7-y -2x 的解为⎩⎨⎧==-1,y 3,x 因此直线l 1和l 2相交,交点坐标为(3,-1).(2)方程组⎩⎨⎧=+=+0812y -4x 0,46y -2x 有无数组解,这表明直线l 1和l 2重合. (3)方程组⎩⎨⎧=+=++03-y 2x 0,42y 4x 无解,这表明直线l 1和l 2没有公共点,故l 1∥l 2.深化升华 根据两直线方程判断两直线的位置关系时,当已知形式是直线的斜截式方程时,利用斜率以及纵截距来判定两直线是否相交、平行或重合更方便.当已知直线的一般式方程时,若系数中含有字母,因为直线斜率是否存在不清楚,若再使用斜率判定,则要进行分类讨论,但用一般式的系数关系来判断则不用讨论,显得较为简单易行.例2 已知两直线l 1:x+my+6=0,l 2:(m-2)x+3y+2m=0,当m 为何值时,直线l 1与l 2(1)平行;(2)重合;(3)相交?思路解析:对于平行及重合的判断,可以通过斜率与截距来分析.而对于l 1与l 2相交的情况,只能通过解方程组来寻求规律.解:当m=0时,l 1:x+6=0,l 2:2x-3y=0,此时l 1与l 2相交.当m≠0时,l 1:y=m x m 61--,l 2:y=m x m 3232---. (1)若l 1∥l 2,则⎪⎪⎩⎪⎪⎨⎧-≠--=-,326,321m m m m 解得m=-1(m=3舍去). (2)若l 1与l 2重合,则62312m m m ==-, 解得m=3.故m=-1时,l 1∥l 2;m=3时,l 1与l 2重合.(3)由l 1的方程得x=-my-6,代入l 2的方程得(m-2)(-my-6)+3y+2m=0,即(m 2-2m-3)y=12-4m.显然,m 2-2m-3=0时无解,只有当m 2-2m-3≠0,即m≠-1且m≠3时,方程才有解,且是唯一解,故只有当m≠-1且m≠3时两直线相交.深化升华 具体的两条直线的位置关系的判断方法:实际上,对于两条直线平行,可以将两直线的方程分别化为斜截式,通过斜率相等,纵截距不相等来判断;对于两条直线重合的情况,实际上是两条直线的方程完全相同,只是化简的程度不同,此时,可通过对应项的系数的比值相等来判断.例3 求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程. 思路解析:根据本题的条件,一种思路是先求出交点坐标,再设所求直线的点斜式方程求出所要求的直线方程;另一种思路是利用直线系(平行系或过定点系)直接设出方程,根据条件求未知量,得出所求直线的方程.解:(方法一)由方程组⎩⎨⎧=++=0,2y x 0,3-3y -2x 得⎪⎪⎩⎪⎪⎨⎧-=-=.57,53y x ∵直线l 和直线3x+y-1=0平行,∴直线l 的斜率k=-3.∴根据点斜式有y-(57-)=-3[x-(53-)], 即所求直线方程为15x+5y+16=0.(方法二)∵直线l 过两直线2x-3y-3=0和x+y+2=0的交点,∴设直线l 的方程为2x-3y-3+λ(x+y+2)=0,即(λ+2)x+(λ-3)y+2λ-3=0.∵直线l 与直线3x+y-1=0平行, ∴1321332--≠-=+λλλ.解得λ=211. 从而所求直线方程为15x+5y+16=0.拓展延伸 直线系是指具有某一共同特征的直线的集合.表示直线系的方程叫做直线系方程.除了本题的共点直线系外,还有过定点的直线系、平行直线系和垂直直线系等.对于求与已知直线有着一定联系的直线的方程时,可以通过特定的直线系方程利用待定系数法来求解.注意要根据题中条件灵活地选择方程进行求解.变式:求与直线2x+3y+1=0垂直,且过点P(1,-1)的直线l 的方程.思路解析:本题可以先求得直线的斜率,应用直线的点斜式方程求得.也可以由垂直直线系方程设出直线的方程求待定的系数.解:设与直线2x+3y+1=0垂直的直线l 方程为3x-2y+c=0.因为点P(1,-1)在直线l 上,所以3×1-2×(-1)+c=0,解之,得c=-5.所以所求直线方程为3x-2y-5=0.例4 求证:不论m 取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.思路解析:题目所给的直线方程的系数含有字母m ,给m 任何一个实数值,就可以得到一条确定的直线,因此所给的方程是以m 为参数的直线系方程.要证明这个直线系中的直线都过一定点,就是证明它是一个共点的直线系,我们可以给出m 的两个特殊值,得到直线系中的两条直线,它们的交点即是直线系中任何直线都过的定点.另一个思路是:由于方程对任意的m 都成立,那么就以m 为未知数,整理为关于m 的一元一次方程,再由一元一次方程有无数个解的条件求得定点的坐标.解:解法一:对于方程(2m-1)x+(m+3)y-(m-11)=0,令m=0,得x-3y-11=0;令m=1,得x+4y+10=0.解方程组⎩⎨⎧=++=0,104y x 0,11-3y -x 得两条直线的交点为(2,-3).将点(2,-3)代入已知直线方程左边,得(2m-1)×2+(m+3)×(-3)-(m-11)=4m-2-3m-9-m+11=0.这表明不论m 为什么实数,所给直线均经过定点(2,-3).解法二:将已知方程以m 为未知数,整理为(2x+y-1)m+(-x+3y+11)=0.由于m 的取值的任意性,有⎩⎨⎧=++=+0.113y x -0,1-y 2x 解得⎩⎨⎧==-3.y 2,x所以所给直线不论m 取什么实数,均经过定点(2,-3).深化升华 含参直线过定点问题的解题思路有二:一是曲线过定点,即与参数无关,则参数的同次幂的系数为0,从而求出定点;二是分别令参数为两个特殊值,得方程组,求出点的坐标,代入原方程满足,则此点为所求定点.。
第三章直线与方程3.1.2两条直线平行与垂直的判定【课时目标】1.能根据两条直线的斜率判定两条直线是否平行或垂直.2.能根据两条直线平行或垂直的关系确定两条直线斜率的关系.1.两条直线平行与斜率的关系(1)对于两条不重合的直线l1,l2,其斜率分别为k1、k2,有l1∥l2⇔________.(2)如果直线l1、l2的斜率都不存在,并且l1与l2不重合,那么它们都与________垂直,故l1________l2.2.两条直线垂直与斜率的关系(1)如果直线l1、l2的斜率都存在,并且分别为k1、k2,那么l1⊥l2⇔__________.(2)如果两条直线l1、l2中的一条斜率不存在,另一个斜率是零,那么l1与l2的位置关系是________.一、选择题1.有以下几种说法:(l1、l2不重合)①若直线l1,l2都有斜率且斜率相等,则l1∥l2;②若直线l1⊥l2,则它们的斜率互为负倒数;③两条直线的倾斜角相等,则这两条直线平行;④只有斜率相等的两条直线才一定平行.以上说法中正确的个数是()A.1 B.2 C.3 D.02.以A(-1,1)、B(2,-1)、C(1,4)为顶点的三角形是()A.锐角三角形B.钝角三角形C.以A点为直角顶点的直角三角形D.以B点为直角顶点的直角三角形3.已知A(1,2),B(m,1),直线AB与直线y=0垂直,则m的值()A.2 B.1 C.0 D.-14.已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD平行,则m的值为() A.1 B.0 C.0或2 D.0或15.若直线l1、l2的倾斜角分别为α1、α2,且l1⊥l2,则有()A.α1-α2=90°B.α2-α1=90°C.|α2-α1|=90°D.α1+α2=180°6.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)所构成的图形是()A.平行四边形B.直角梯形C.等腰梯形D.以上都不对二、填空题7.如果直线l1的斜率为a,l1⊥l2,则直线l2的斜率为________.8.直线l1,l2的斜率k1,k2是关于k的方程2k2-3k-b=0的两根,若l1⊥l2,则b=________;若l1∥l2,则b=________.9.已知直线l1的倾斜角为60°,直线l2经过点A(1,3),B(-2,-23),则直线l1,l2的位置关系是____________.三、解答题10.已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),求此三角形三边的高所在直线的斜率.11.已知△ABC的顶点坐标为A(5,-1),B(1,1),C(2,m),若△ABC为直角三角形,试求m的值.能力提升12.已知△ABC的顶点B(2,1),C(-6,3),其垂心为H(-3,2),则其顶点A的坐标为________.13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD 为直角梯形.判定两条直线是平行还是垂直要“三看”:一看斜率是否存在,若两直线的斜率都不存在,则两直线平行,若一条直线的斜率为0,另一条直线的斜率不存在,则两直线垂直;斜率都存在时,二看斜率是否相等或斜率乘积是否为-1;两直线斜率相等时,三看两直线是否重合,若不重合,则两直线平行.3.1.2两条直线平行与垂直的判定答案知识梳理1.(1)k1=k2(2)x轴∥2.(1)k1k2=-1(2)垂直作业设计1.B[①③正确,②④不正确,l1或l2可能斜率不存在.]2.C [k AB =-23,k AC =32,k AC ·k AB =-1,∴AB ⊥AC .] 3.B [直线AB 应与x 轴垂直,A 、B 横坐标相同.]4.D [当AB 与CD 斜率均不存在时,m =0,此时AB ∥CD ,当k AB =k CD 时,m =1,此时AB ∥CD .]5.C6.B [k AB =k DC ,k AD ≠k BC ,k AD ·k AB =-1,故构成的图形为直角梯形.]7.-1a或不存在 8.2 -98解析 若l 1⊥l 2,则k 1k 2=-b 2=-1,∴b =2. 若l 1∥l 2,则k 1=k 2,Δ=9+8b =0,∴b =-98. 9.平行或重合解析 由题意可知直线l 1的斜率k 1=tan 60°=3,直线l 2的斜率k 2=-23-3-2-1=3, 因为k 1=k 2,所以l 1∥l 2或l 1,l 2重合.10.解由斜率公式可得k AB =6-(-4)6-(-2)=54, k BC =6-66-0=0, k AC =6-(-4)0-(-2)=5. 由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在.设AB 、AC 边上高线的斜率分别为k 1、k 2,由k 1·k AB =-1,k 2·k AC =-1,即k 1·54=-1,k 2·5=-1, 解得k 1=-45,k 2=-15. ∴BC 边上的高所在直线斜率不存在;AB 边上的高所在直线斜率为-45; AC 边上的高所在直线斜率为-15. 11.解 k AB =-1-15-1=-12,k AC =-1-m 5-2=-m +13, k BC =m -12-1=m -1.若AB ⊥AC ,则有-12·⎝⎛⎭⎫-m +13=-1, 所以m =-7.若AB ⊥BC ,则有-12·(m -1)=-1, 所以m =3.若AC ⊥BC ,则有-m +13·(m -1)=-1, 所以m =±2.综上可知,所求m 的值为-7,±2,3.12.(-19,-62)解析 设A(x ,y),∵AC ⊥BH ,AB ⊥CH ,且k BH =-15, k CH =-13, ∴⎩⎪⎨⎪⎧ y -3x +6=5,y -1x -2=3.解得⎩⎪⎨⎪⎧x =-19,y =-62. 13.解∵四边形ABCD 是直角梯形,∴有2种情形:(1)AB ∥CD ,AB ⊥AD ,由图可知:A(2,-1).(2)AD ∥BC ,AD ⊥AB ,⎩⎪⎨⎪⎧ k AD =k BC k AD ·k AB =-1⇒⎩⎪⎨⎪⎧ n -2m -2=3-1n -2m -2·n +1m -5=-1∴⎩⎨⎧ m =165n =-85.综上⎩⎪⎨⎪⎧ m =2n =-1或⎩⎨⎧ m =165n =-85.。
第三章 直线与方程1、直线的倾斜角与斜率 (1)直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的范围000180α≤<.④ 0,900≥︒≤︒k α; 0,18090 k ︒︒α (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。
②经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠)③每条直线都有倾斜角,但并不是每条直线都有斜率。
2、两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性点斜式 )(11x x k y y -=- ),(11y x 为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式 b kx y +=k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式121121x x x x y y y y --=--),(2121y y x x ≠≠其中),(),,(2211y x y x 是直线上两定点不包括垂直于x 轴和y 轴的直线截距式 1=+by a xa 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式 0=++C By Ax )不同时为其中0,(B AA ,B ,C 为系数无限制,可表示任何位置的直线注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定。
第三章直线方程测试题
一选择题(共55分,每题5分)
1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )
A.3
B.-2
C. 2
D. 不存在
2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )
A .072=+-y x
B .012=-+y x
C .250x y --=
D .052=-+y x
3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x
y
O
A B C D
4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( )
A .32-
B .32
C .23-
D .2
3 5.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )
112121112112211211211211.
..()()()()0
.()()()()0
y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=
6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K 3 B 、K 2﹤K 1﹤K 3
C 、K 3﹤K 2﹤K 1
D 、K 1﹤K 3﹤K 2
8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )
A.3x-2y-6=0
B.2x+3y+7=0
C. 3x-2y-12=0
D. 2x+3y+8=0
9、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )
A.a=2,b=5;
B.a=2,b=5-;
C.a=2-,b=5;
D.a=2-,b=5-.
10、直线2x-y=7与直线3x+2y-7=0的交点是( )
A (3,-1)
B (-1,3)
C (-3,-1)
D (3,1)
L 1 L 2 x o L 3
11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )
A 4x+3y-13=0
B 4x-3y-19=0
C 3x-4y-16=0
D 3x+4y-8=0
二填空题(共20分,每题5分)
12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _ __________;
13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是
14、两平行直线0962043=-+=-+y x y x 与的距离是 。
15空间两点M1(-1,0,3),M2(0,4,-1)间的距离是
三计算题(共71分)
16、(15分)已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。
(1)求AB 边所在的直线方程;(2)求中线AM 的长(3)求AB 边的高所在直线方程。
17、(12分)求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程。
18.(12分) 直线062
=++y m x 与直线023)2(=++-m my x m 没有公共点,求实m 的值。
19.(16分)求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且分别与直线012=--y x (1)平行,(2)垂直的直线方程。