分数应用题——基本题型
- 格式:docx
- 大小:13.93 KB
- 文档页数:2
一、1、甲线段长25米,5条这样的线段长多少米?2、甲人每小时步行5千米,23小时行多少千米?3、甲种糖果每袋34千克,12袋多少千克?4、甲线段长23千米,乙线段是甲线段的5倍,乙线段多少米?5、甲线段长23千米,乙线段是甲线段的12倍,,乙线段多少米?6、甲线段长23千米,乙线段是甲线段的112倍,,乙线段多少米?7、甲线段长23千米,乙线段是甲线段的32,,乙线段多少米?8、甲线段长23千米,乙线段是甲线段的32倍,,乙线段多少米?二、1、甲种书共计100页,已经看了15,还剩多少页?2、甲种书共计100页,乙种书比甲种书少15,乙种书多少页?3、甲种书共计100也,小明第一天看了全书的14,第二天看了全书的15,两天一共看了多少页?4、甲种书共计100页,乙种书比甲种书多15,乙种书多少页?三、1、一些糖果重45千克,平均分装在4个包装袋里,每个袋里多少千克?2、一些糖果重45千克,每15千克装一袋,可以装多少袋?3、甲种糖果45千克,乙种糖果15千克,甲种糖果是乙种糖果的几倍?4、甲种糖果45千克,乙种糖果15千克,乙种糖是甲种糖的几分之几?5、一本书的110是20页,这本书多少页?6、甲种书100页,是乙种书页数的23,乙种书多少页?四1、一袋大米,吃了20千克,还剩这袋大米的35,这袋大米多少千克?2、一袋大米10千克,比一袋面粉少45,一袋面粉多少千克?五、1、甲数是15,乙数是20,甲、乙两数的比是多少?2、药和水是按1:50的比配制的,有20克药,需要兑多少水?3、药和水是按1:50的比配制的,500克水,需要加多少药?4、药和水是按1:50的比配制的,给一块农田喷药需要5100克药液,需要多少农药,需要多少水?。
1、把1514平均分成7份,每份是多少?2、已知一个数与9相乘的积是4645,这个数是多少?3、甲数的52与乙数87的相等,甲数是35,乙数是多少?4、一袋玉米的32是20千克,它的41是多少千克?5、小明和小强共有图书12本,小强的图书本数是小明的31。
他们两人各有图书多少本?6、林庄苹果树占地350公顷,占果园总面积的43。
果园总面积有多少公顷?7、某工厂去年实际产值2400万元,比计划产值增长53。
计划产值多少万元?8、新风小学去年植树320棵,相当于今年植树棵数的54。
今年植树多少棵?1、把1514平均分成7份,每份是多少?2、已知一个数与9相乘的积是4645,这个数是多少?3、甲数的52与乙数87的相等,甲数是35,乙数是多少?4、一袋玉米的32是20千克,它的41是多少千克?5、小明和小强共有图书12本,小强的图书本数是小明的31。
他们两人各有图书多少本?6、林庄苹果树占地350公顷,占果园总面积的43。
果园总面积有多少公顷?7、某工厂去年实际产值2400万元,比计划产值增长53。
计划产值多少万元?8、新风小学去年植树320棵,相当于今年植树棵数的54。
今年植树多少棵?9、一台彩电,现价1800元,比原来降低了61。
原来的售价是多少元?10、果园里一共种了340棵桃树和杏树,基中桃树棵数比杏树的31多20棵。
两种树各种了多少果?11、一个长方形,周长是30厘米,宽是长的一半,求这个长方形的面积。
12、有两捆电线,一捆长100米,比另一捆短31。
另一捆电线长多少米?13、一项工程,甲队独做10天完工,乙队独做15天完工,两队合作几天完工?14、一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合作,几小时能加工完这批零件的43?15、修一条公路,甲队独修15天完工,乙队独修12天完工。
两队合修4天后,乙队调走,余下的路由甲队继续修完。
甲队一共修了多少天?9、一台彩电,现价1800元,比原来降低了61。
分数计算应用题分类1. 加减乘除应用题这类应用题需要进行基本的加减乘除运算。
通常从实际问题中提炼出算数运算的问题,要求学生运用所学的计算方法解决。
例如:问题:小明有3个苹果,小红给了他2个苹果,最后小明一共有多少个苹果?解答:3 + 2 = 5,所以小明最后有5个苹果。
2. 比例应用题比例应用题涉及到比例的计算和使用。
通常从实际情境中提出比例关系,要求学生根据给定的比例进行计算或推导。
例如:问题:小明每天用1个小时做作业,大约用2个小时做其他事情,他一天总共花了多少个小时?解答:作业时间和其他时间的比例为1:2,所以总共花费的时间为3个小时。
3. 百分比应用题百分比应用题需要计算和应用百分比概念。
通常从实际情境中提出百分比的问题,要求学生计算或应用百分比进行解决。
例如:问题:手机原价是1000元,现在打5折优惠,打折后的价格是多少?解答:5折即50%,打折后的价格为1000元 × 50% = 500元。
4. 数据统计应用题数据统计应用题需要进行数值和统计数据的计算与分析。
通常从给定的数据中提取关键信息,要求学生进行计算和分析。
例如:问题:班级里有30名学生,男生有20人,女生有多少人?解答:30 - 20 = 10,所以女生有10人。
5. 几何应用题几何应用题需要运用几何概念和性质进行计算。
通常通过图形和形状提出问题,要求学生进行计算和推导。
例如:问题:一个矩形的长是2cm,宽是3cm,面积是多少平方厘米?解答:面积 = 长 ×宽 = 2cm × 3cm = 6平方厘米。
以上是常见的分数计算应用题分类,通过不同类型的应用题,可以帮助学生巩固和应用所学的分数计算知识。
分数应用题通常有三种最基本的题型:㈠.求一个数(分量)是另一个数(单位“1”)的几分之几(对应分率)?解法:对应分率=分量÷单位“1” ㈡.已知一个数(单位“1”),求它(单位“1”)的几分之几(分率)是多少(对应分量)?解法:对应分量=单位“1”×分率 ㈢.已知一个数(单位“1”)的几分之几(对应分率)是多少(分量),求这个数(单位“1”)?解法:单位“1”=分量÷对应分率解答分数应用题的技巧是首先找出题目中的单位“1”,然后判断单位“1”是否已知,从而确定相应的解法。
(记住如果单位“1”未知,要求单位“1”一定要用除法,即:单位“1”=分量÷对应分率。
)例1. ①.林庄有一块4公顷的果园,苹果树占果园总面积的43,苹果树占地多少公顷?②.林庄有3公顷苹果树,占果园总面积的43,果园总面积是多少公顷?分析:这两道题有一个重要的相同点,就是单位“1”相同,都是( ),所不同的就是第①题的单位“1”是已知的,而第②题的单位“1”是要求的。
根据我们上面总结的解题技巧可以知道:第②题我们要用除法来解,果园总面积(单位“1”)=苹果树占地面积(分量)÷43(对应分率);第①题的单位“1”(果园总面积)是已知的,要求单位“1”所对应的分量(苹果树占地面积),所以有苹果树占地面积(对应分量)=果园总面积(单位“1”)×43(对应分率)。
这两道题的式子分别是:例2.一桶水,用去它的85,用去了15千克,这桶水重多少千克?分析:先找单位“1”,因为是它(这桶水)的85,所以单位“1”是这桶水,然后看单位“1”是否已知,单位“1”(这桶水的重量)正是这道题的问题中要求的,所以马上想到求单位“1”要用除法,即这桶水的重量(单位“1”)=用去水的重量(分量)÷85(对应分率)。
这道题的算式是:练习:1、 ①.学校图书室有故事书60本,连环画180本。
分数应用题题型一、求一个数的几分之几是多少。
例:一根绳子长9米,剪去全长的92,剪去多少米 二、求比一个数多(少)几分之几的数是多少。
例:1、水果店里有苹果300千克,运来的雪梨比苹果少52,运来雪梨多少千克? 2、红花有60朵,白花比红花多61,白花多少朵? 三、已知一个数的几分之几是多少求这个数。
例:一根绳子,剪去全长的92,还剩9米,这根绳子长多少米 四、已知比一个数多(少)几分之几的数是多少求这个数。
例:1、水果店里有苹果300千克,比运来的雪梨少52,运来雪梨多少千克? 2、红花有60朵,比白花多61,白花多少朵 3、一批煤用去了32,正好是24吨。
这批煤共有多少吨? 五、将一个数的几分之几的几分之几转化为这个数的几分之几。
例:读了一本故事书,第一天读了全书的15 ,第二天读了余下的34。
第二天读了全书的几分之几?全书还剩几分之几?六、甲数是乙数的几分之几,求乙数是甲数的几分之几。
例:甲数是乙数的49。
求乙数是甲数的几分之几? 七、甲数比乙数多(少)几分之几求乙数比甲数少(多)几分之几。
例:四年级人数比五年级人数少14。
五年级人数比四年级人数多几分之几? 八、甲数的几分之几等于乙数的几分之几求甲数是乙数的几分之几(或乙数是甲数的几分之几)。
例:甲数的23 等于乙数的34。
甲数是乙数的几分之几?乙数是甲数的几分之几? 九、假设在解题中的妙用:有些应用题数量关系比较复杂隐蔽,按一般的方法,难以找到数量间的关系及内在联系。
但是通过假定某个条件或现象成立,往往可以找到解答的途径。
例:有两筐苹果共重220千克,从甲筐取出15 ,从乙筐取出14共重50千克。
两筐苹果原来各有多少千克? 十、工程问题:基本数量关系式:工作总量是单位“1”;工作效率=工作总量÷工作时间;工作量÷工作效率=工作时间例:1、修一条路甲队单独完成需要10天,乙队单独完成需要15.如果两队合作同时工作,几天可以完成?2、一项工程,甲单独做10天完成,乙单独做12天完成。
六年级应用题大全-分数应用题_题型归纳
分数的应用题
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?
7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?。
分数应用题基本题型1、六(4)班有男同学20人,女同学30人。
(根据以上信息,请提出至少4个百分数问题并解答,解答后并思考各问题间的关系)问题1: 列式:问题2: 列式: 问题3: 列式: 问题4: 列式: 问题5: 列式: 问题6: 列式:2、(1)甲、乙两个书架共有书300本,甲书架上的书的本数占总数的60%,甲书架上有书多少本?(2)甲书架上有书180本,是甲、乙两个书架上书的总数的60%,甲、乙两个书架共有书多少本?(3)甲、乙两个书架共有书300本,甲书架上的书的本数占总数的60%,乙书架上有书多少本?(4)乙书架上有书120本,甲书架上的书的本数是甲、乙两个书架上书的总数的60%,甲、乙两个书架共有书多少本?(5)甲、乙两个书架共有书300本,甲书架上的书的本数占总数的60%,甲书架上的书比乙书架上的书多多少本?(6)甲书架上的书比乙书架上的书多60本,已知甲书架上的书的本数占总数的60%。
甲、乙两个书架共有书多少本?(7)甲书架上有书180本,乙书架上书的本数是甲书架上的32,甲、乙两个书架共有书多少本?(8)甲、乙两个书架共有书300本,乙书架上书的本数是甲书架上的32,甲书架上有书多少本?(9)甲书架上有书180本,乙书架上书的本数是甲书架上的32,甲书架上的书比乙书架上的书多多少本?(10)甲书架上的书比乙书架上的书多60本,乙书架上书的本数是甲书架上的32,甲书架有书多少本?(你还能改变成其他不同类型的应用题吗?)3、根据算式,补上合适的条件。
大华菜场国庆期间销售包心菜1.8吨, ,售出青菜多少吨?1.8×(1-31)1.8×(1+31) 1.8÷ (1-31) 1.8÷ (1+31) 1.8+314、补上条件使它成为一道分数(百分数)应用题。
六(4)班有男同学20人, ,女同学多少人?条件1: 列式:条件2: 列式: 条件3: 列式: 条件4: 列式: 条件5: 列式: 条件6: 列式:5、根据下列已知条件,请你提出三个不同的问题,再列式解答。
分数应用题——基本题型
一桶油,第一次用去,正好是4升,第二次又用去这桶油的,还剩下多少升?
某工厂计划生产一批零件,第一次完成计划的,第二次完成计划的,第三次完成450个,结果超出计划的。
计划生产零件多少个?
王师傅四天完成一批零件,第一天和第二天共做了54个,第二,第三和第四天共做了90个。
已知第二天做的个数占这批零件的,这批零件一共有多少个?
六(1)班男生的一半和女生的共16人,女生的一半和男生的共14人。
六一班共有学生多少人?
甲乙丙丁四人共植树60棵,甲植树的棵数是其余三人的,乙植树的棵数是其余三人的,丙植树棵数是其余三人的,丁植树多少棵?
五(1)班原计划抽调的人参加义务劳动,临时又有两人主动参加,使实际参加义务劳动人数是余下人数的,原计划抽调多少人参加义务劳动?
玩具厂三个车间共同做一批玩具。
第一车间做了总数的,第二车间做了1600个,第三车间做的个数是一,二车间总和的一半,这批玩具一共有多少个?
五个连续偶数,已知第三个数比第一个数与第五个数的和的多18。
这五个偶数的和是多少?
甲,乙两组共有54人,甲组人数的与乙组人数的相等,甲组比乙组少多少人?
一个长方形的周长是厘米,如果长增加,宽减少,得到新的长方形的周长不变。
求原来长方形的长,宽各是多少厘米?
学校图书馆原有文艺书和科技书共5400本,其中科技书比文艺书少,最近又买了一批科技书,这时科技书和文艺书本数的比是。
图书馆买来科技书多少本?
甲,乙两人原来的钱数的比是,后来甲给乙50元,这时甲的钱数是乙的,甲,乙两人原来各有多少元钱?
两种商品的价格比是,如果他们的价格都上涨70元,那么他们的价格比是。
甲商品原来的价格是多少元?
一个最简分数的分子分母之和为49,分子加上4,分母减去4后,得到新的分数可以约简为,求原来的分数。