全泥氰化提金工艺设计与实践
- 格式:pdf
- 大小:273.25 KB
- 文档页数:4
全泥氰化炭浆法提金冶炼工艺全泥氰化炭浆法提金冶炼工艺是指将金矿石全部磨碎泥化制成矿浆(一200目含量占90一95%以上)后,先进行氰化浸出,再用活性炭直接从矿浆中吸附已溶金载金、炭解吸电积金泥直接分离提纯熔炼的工艺方法。
包括原料准备、搅拌氰化浸出活性炭逆流吸附、载金炭解吸电积、金泥分离提纯熔炼铸锭、活性炭活化再生和含氰污水处理等七个作业阶段。
原料准备阶段破碎阶段---一般采用两段开路破碎或两段一闭路破碎流程(图2)。
含金物料经过预先筛分,筛上粗物料进入一段破碎,破碎后再经二段筛分破碎后即进入磨矿作业。
作业的目的主要控制各段破碎比和保证二段破碎产品的粒度,采用二段一闭路流程更能严格保证破碎物的粒度。
一般各段破碎比为3~5,太大或太小均不利于提高破碎效率、降低成本和保护设备。
二段破碎产品粒度应小于1~1.5cm,最大不超过3cm,可以通过调节破碎机排矿口尺寸来控制。
生产中要贯彻"预先筛分,多破少磨"的原则。
磨矿阶段---多采用两段两闭路磨矿流程。
第一段闭路磨矿分级流程由格子型球磨机和螺旋分级机组成。
第二段闭路磨矿分级流程由溢流型球磨机和水力旋流器组成。
将第二段闭路磨矿分级流程的预先分级和检查分级合并在一起有利于提高磨矿效率和保证产品细度。
破碎好的含金物料经过第一段闭路磨矿分级流程后,矿浆中一200目含量为55%一65%。
再经过第二段闭路磨矿分级流程后矿浆中一200目物料含量就可达90%一95%以上,符合全泥氰化工艺的细度要求。
本段作业主要控制磨矿浓度、溢流浓度和溢流细度。
一般磨矿浓度:第一段为75%一80%,第二段为60%~65%;溢流浓度:第一段为25%~30%,第二段为14%一20%;溢流细度(一200目含量):第一段为55%~65%,第二段为90写一95%以上。
磨矿浓度的控制主要通过调节给水量、给矿量和返砂比等,若磨矿浓度偏高,则增加给水量、减少给图3两段两闭路磨矿流程矿量,增大返砂比等,反之亦然。
全泥氰化炭浆法提金冶炼工艺是指将金矿石全部磨碎泥化制成矿浆(一200目含量占90一95%以上)后,先进行氰化浸出,再用活性炭直接从矿浆中吸附已溶金载金、炭解吸电积金泥直接分离提纯熔炼的工艺方法.包括原料准备、搅拌氰化浸出活性炭逆流吸附、载金炭解吸电积、金泥分离提纯熔炼铸锭、活性炭活化再生和含氰污水处理等七个作业阶段.破碎阶段ﻫ一般采用两段开路破碎或两段一闭路破碎流程(图2).含金物料经过预先筛分,筛上粗物料进入一段破碎,破碎后再经二段筛分破碎后即进入磨矿作业。
作业的目的主要控制各段破碎比和保证二段破碎产品的粒度,采用二段一闭路流程更能严格保证破碎物的粒度。
一般各段破碎比为3~5,太大或太小均不利于提高破碎效率、降低成本和保护设备。
二段破碎产品粒度应小于1~1.5cm,最大不超过3cm,可以通过调节破碎机排矿口尺寸来控制。
生产中要贯彻“预先筛分,多破少磨"的原则。
磨矿阶段多采用两段两闭路磨矿流程。
第一段闭路磨矿分级流程由格子型球磨机和螺旋分级机组成。
第二段闭路磨矿分级流程由溢流型球磨机和水力旋流器组成。
将第二段闭路磨矿分级流程的预先分级和检查分级合并在一起有利于提高磨矿效率和保证产品细度。
破碎好的含金物料经过第一段闭路磨矿分级流程后,矿浆中一200目含量为55%一65%。
再经过第二段闭路磨矿分级流程后矿浆中一200目物料含量就可达90%一95%以上,符合全泥氰化工艺的细度要求.本段作业主要控制磨矿浓度、溢流浓度和溢流细度。
一般磨矿浓度:第一段为75%一80%,第二段为60%~65%;溢流浓度:第一段为25%~30%,第二段为14%一20%;溢流细度(一200目含量):第一段为55%~65%,第二段为90写一95%以上.磨矿浓度的控制主要通过调节给水量、给矿量和返砂比等,若磨矿浓度偏高,则增加给水量、减少给图3两段两闭路磨矿流程矿量,增大返砂比等,反之亦然。
溢流浓度的控制可以通过调节溢流给水量,溢流堰高低,进矿口,排矿口、溢流口大小等,而溢流细度的控制则要调节溢流堰高低、溢流口大小及钢球量、钢球配比、返砂比,磨矿浓度,溢流浓度等。
全泥氰化工艺影响条件分析与实践摘要:某金矿属于金属非金属地下矿山开采,选矿工艺为氰化浸出-炭浆吸附工艺。
该企业依据矿山自身条件,由浮选工艺变为全泥氰化-炭浆吸附工艺,通过一系列实验室实验和工业试验,探索出适用于该选矿方法的生产条件,不仅加大了处理量,而且提高了选矿回收率,为该企业取得了极大的经济效益。
关键词:地下矿山;全泥氰化;回收率;经济效益一、该矿山简介某金矿位于河北省承德市宽城县境内,选厂始建于1958年,初建规模为25吨/日,工艺流程为单一浮选。
后几经改造,到1985年,浮选厂形成180 吨/日的处理能力。
因入选矿石含硫量低(0.8%左右),选矿工艺流程单一,致使浮选回收率只有82%左右。
基于此情况,矿山依靠自己的技术力量,自行设计并实施,将原浮选工艺改造成炭浆工艺,并形成200吨/日的处理能力。
炭浆厂自1989年投产后,企业根据自身发展的需要,几经扩建将规模由200吨/日扩增至1100吨/日左右。
在增大处理能力的同时,依靠科技进步,逐步完善了各工序的控制条件,形成了系统化管理,由此而取得了良好的技术经济指标碎矿为三段一闭路工艺流程;磨矿工艺为两段闭路;氰化工艺为全泥氰化炭浸(CIL)流程;含氰污水处理采用强化碱氯法.1、氰化细度试验磨矿细度(-200目60、70、80、90%)CaO 2 kg/t(PH=10.5)NaCN 500g/tPb(AC)2500g/t矿浆浓度40%为了获得最佳氰化浸出技术经济指标,通过磨矿细度试验,确定适宜的磨矿细度。
试验流程见图1。
试验结果见表6。
浸出时间8小时氰化细度试验结果表6从表6看出,氰化浸出率随磨矿细度的增加而逐渐提高,但幅度不大。
考虑到磨矿成本,氰化细度选用-200目70%为宜。
2、氰化钠用量试验磨矿细度(-200目70%)CaO 2 kg/tNaCN (300、450、600、750g/t)Pb(AC)2500g/t矿浆浓度40%浸出时间8小时氰化钠用量试验结果表7从表7看出,随着氰化钠用量的增加,氰化浸出率也逐渐提高,当氰化钠用量为600 g/t(氰化钠浓度为0.04%、PH=10.5)时,氰化浸出率并没有提高,故确定氰化钠用量600 g/t为宜。
氰化法提金工艺1、氰化物溶金机理氰化法是用氰化物从矿石中浸取金并把溶液中的金分离出来的方法,其基本化学反应式为:4AU+8NaCN+O2+2H2O→4Na AU(CN)2+4NaOH它包括氧的吸收溶解,其组分扩散到金表面,吸附,电化学反应等步骤。
其中O2和CN –的扩散对金的浸出速率起到至关重要的作用。
2、浸出药剂可用于溶金的氰化物有:KCN、NaCN、NH4CN、Ca(CN)2选择氰化物时,应综合考虑氰化物对金的溶解能力、化学稳定性、耗量及价格等。
我国黄金矿山大多采用NaCN。
3、保护碱氰化物损耗除了机械原因外,还有化学原因:一是氰化物的水解生成HCN气体挥发造成损失和危害;二是溶液中存在的二氧化碳及硫化物氧化生成的酸(H2SO3,H2SO4)也与氰化物作用生成HCN气体;三是黄铁矿氧化时,除生成H2 SO4外,还生成一些硫酸亚铁(Fe SO4),与氰化物作用生成Fe (CN)6 ,而当溶液中有碱和氧时,Fe SO4可氧化为Fe2(SO4)3,再与碱作用生成Fe(OH)3沉淀,Fe(OH)3不与氰化物反应,因而,加入碱起到保护氰化物的作用,加入的碱叫做保护碱。
生产中通常用石灰作保护碱。
4、影响金溶解速度的主要因素4.1、氰化物和氧的浓度氰化物的浓度和溶液中溶解氧的浓度是决定金溶解速度两个主要因素。
金在稀氰化物溶液中溶解速度大,这是因为氧在稀氰化物溶液中溶解度较大,扩散速度也较快,因而保证了溶金需要的最低氧浓度。
不同矿石的氰化物耗量不同是因为矿石中含有不同量消耗氰化物的杂质。
常规的氰化物浓度一般在0.03%~0.10%之间。
4.2、温度金在氰化液中的溶解速度与温度有关,通常温度高溶解速度快,在无特殊工艺要求的条件下,使矿浆温度维持在150C~250C即可满足浸出的要求。
4.3、金粒的大小和形状金的溶解速度与金粒暴露的表面积成正比,因此氰化作业的磨矿粒度要比浮选更细一些。
4.4、矿浆浓度和矿泥矿浆浓度和矿泥含量直接影响溶剂的扩散速度和溶剂与金粒的接触。
边磨边浸全泥氰化工艺在北衙金矿的运用I. 介绍-金矿全泥氰化工艺的背景和意义-边磨边浸工艺的前景和优势-选取北衙金矿为例子。
II. 边磨边浸全泥氰化工艺的原理-介绍氰化金提取原理-边磨边浸全泥氰化工艺的流程-每个步骤的原理和作用。
III. 实验过程和结果-实验前样本采集和处理-实验条件、设备和操作步骤-实验结果及其分析-效果对比和验证。
IV. 工艺优化和改进-对实验中出现的问题进行分析和总结-提出改进方案-优化实验结果并对比效果。
V. 结论和展望-总结全文-讨论边磨边浸全泥氰化工艺的优势和应用前景-对未来工艺改进和研究方向提出展望。
全泥氰化工艺是一种常用的金矿提取技术,其原理是将含金矿石经过机械碾磨后,与氰化物反应生成氰化金溶液,再将溶液中的金通过电解或吸附剂等方式分离出来。
全泥氰化工艺具有提取率高、工艺流程简单、自动化程度高等诸多优点,成为现代金矿提取业的主要技术之一。
然而,由于传统的全泥氰化工艺存在机械碾磨和氰化发生的两个独立步骤,所以存在生产效率低、污染环境等问题,因此人们开始探索更为高效、环保的金矿提取技术。
边磨边浸全泥氰化工艺则是一种全新的技术方案,其与传统的全泥氰化工艺相比,具有以下优势:一、生产效率高。
边磨边浸全泥氰化工艺把机械碾磨和氰化发生两个步骤结合在一起,有效地提高了生产效率。
二、环保性好。
边磨边浸全泥氰化工艺采取封闭式生产,避免了有害气体的外泄,减少了环境污染。
三、运营成本低。
边磨边浸全泥氰化工艺省去了传统全泥氰化工艺中的多个单元操作,降低了运营成本。
基于以上优势,边磨边浸全泥氰化工艺在金矿提取业中受到了广泛关注和应用。
在这种技术下,高品位含金矿石在破碎机的作用下,直接边磨边浸成氰化金溶液,然后在电解槽中进行电积或经过吸附剂等方式分离金属,整个过程完成后剩余的废料可以进行循环利用,实现了资源的可持续利用。
本文以北衙金矿为例,介绍边磨边浸全泥氰化工艺在金矿提取中的应用。
在后续章节中,我们将深入探讨这种工艺的原理、优势、不足之处及改进措施,为金矿提取业的发展做出一定的贡献。
全泥氰化提金工艺设计与生产实践一、工艺流程设计泥氰化提金工艺是一种常用的金属提取工艺,主要用于提取含金废物中的金属成分。
下面是一个典型的泥氰化提金工艺流程设计:1.前处理:将含金废物进行粉碎与破碎,使其颗粒大小均匀,并去除其中的杂质和有机物。
2.浸泡:将经过前处理的含金废物浸入氰化溶液中,进行化学反应。
反应时间根据废物的性质和废物含金量而定,一般为24小时至72小时。
3.沉淀:将反应后的溶液经过沉淀处理,使其中的金属成分沉淀下来。
4.过滤:将沉淀后的溶液进行过滤,去除其中的固体杂质。
5.再溶解:将过滤后的固体沉淀添加到盐酸等溶液中进行再溶解,使其中的金属成分溶解于溶液中。
6.萃取:将再溶解后的溶液进行萃取处理,利用有机溶剂提取其中的金属成分。
萃取条件为温度控制在50-70摄氏度,时间控制在2-4小时。
7.还原:将经过萃取的有机溶剂中的金属成分进行还原处理,得到金属纯度较高的金属产品。
8.精炼:将还原后的金属产品进行精炼处理,提高其纯度。
以上是一个典型的泥氰化提金工艺流程设计,根据实际情况,工艺流程中的各个环节还可以进行调整,以提高提金效率和产品的纯度。
二、生产实践在实际生产过程中,需要注意以下几个方面:1.设备选择:根据生产规模和工艺流程要求,选择合适的设备,如破碎机、浸泡槽、沉淀槽、过滤设备、萃取塔等。
设备选择要考虑生产效率、产品质量、安全性和经济性等因素。
2.溶液控制:泥氰化提金工艺中的浸泡和萃取环节涉及到溶液控制,需要严格控制溶液的温度、浓度、pH值等参数,以提高金属提取率和产品纯度。
3.杂质处理:在泥氰化提金过程中,含金废物中通常会存在一些杂质,如铜、银、铅等,需要根据具体情况采取相应的处理方法,如溶解、沉淀、萃取等,以提高产品的纯度。
4.安全保护:在泥氰化提金生产中,由于涉及到氰化物的使用,需要加强安全保护工作,严格遵守操作规程,提供足够的通风和防护设施,确保操作人员和环境的安全。
5.产品质量检测:在生产过程中,需要对产品的质量进行检测,包括金属纯度、杂质含量、产品外观等指标的检测,以确保产品符合质量要求。
氰化法提金工艺流程嘿,朋友们!今天来给大家讲讲氰化法提金工艺流程。
这可是个相当有趣的事儿呢!想象一下,那一堆堆含有金子的矿石,就像是藏着宝藏的神秘小山丘。
而我们要做的,就是用巧妙的方法把金子给“揪”出来。
首先呢,得把矿石破碎成小块,就好像把一个大西瓜切成好多小块一样,这样才能更好地处理呀。
然后把这些小块矿石放到一个大容器里,加入一些特殊的化学药剂,这里面就有氰化物啦。
这氰化物就像是一把神奇的钥匙,能打开通往金子的大门。
接下来呀,就让它们在那里好好地反应一段时间。
这时候就好像是一场神奇的魔法正在进行,那些隐藏在矿石里的金子,慢慢就会被氰化物给“勾引”出来啦。
反应完了之后呢,就会得到一种含有金的溶液。
这溶液可宝贝啦,就像是一碗金汤。
然后呢,再通过一些特别的方法,把金从溶液里分离出来。
这就好比是从那碗金汤里捞出里面的金子。
这过程中可得小心谨慎呀,不能有一丝马虎。
要是不小心出了差错,那金子可就不乖乖听话啦。
就像你抓一只调皮的小猫,得有耐心还得有技巧呢。
在整个流程中,每一个步骤都很关键,就像链条上的一环扣一环。
如果有一个环节出了问题,那整个提金的过程可能就不那么顺利咯。
大家可能会问,这氰化法提金有啥好处呀?嘿,好处可多啦!它能比较高效地把金子提取出来呀,而且相对来说成本也不是特别高。
这就像是找到了一个既好用又实惠的办法来挖宝藏。
不过呢,我们也得注意安全哦,毕竟氰化物可不是闹着玩的。
在操作的时候一定要严格按照要求来,戴好防护装备,可别不小心让自己受到伤害呀。
总之呢,氰化法提金工艺流程就是这样一个充满神奇和挑战的过程。
它需要我们细心、耐心,还要有足够的专业知识。
朋友们,你们觉得这个过程是不是很有意思呀?相信只要我们用心去对待,就能从那些矿石中成功地提取出闪亮亮的金子!这就是氰化法提金工艺流程,一个值得我们去探索和钻研的领域!原创不易,请尊重原创,谢谢!。