高二数学同步练习8
- 格式:doc
- 大小:32.00 KB
- 文档页数:2
人教版高中数学必修第二册8.1——8.3同步测试滚动训练(时间:45分钟分值:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.下列说法中正确的是()A.三棱柱的侧面展开图一定是平行四边形B.水平放置的正方形的直观图有可能是梯形C.一个几何体的正视图和侧视图都是矩形,则该几何体是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2.图G5-1中的几何体有()图G5-1A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球3.将选项中所示的三角形绕直线l旋转一周,可以得到图G5-2所示的几何体的是()图G5-2ABCD图G5-34.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶3B.1∶9C.1∶33D.1∶(33-1)5.某柱体的正视图与侧视图是全等的正方形,俯视图是圆,记该柱体的表面积为S1,其内切球的表面积为S2,且S1=λS2,则λ=()A.1B.23C.43D.326.在如图G5-4所示的多面体ABCDB1C1D1中,四边形ABCD,四边形BCC1B1,四边形CDD1C1都是边长为6的正方形,则该多面体的体积为()图G5-4A.72B.144C.180D.2167.将一个体积为36π的金属球切割加工成一个底面积为8π的圆柱,则当圆柱的体积最大时,其侧面积为()A.82πB.83πC.62πD.93π8.若圆锥的体积与球的体积相等,且圆锥的底面半径与球的直径相等,则圆锥的侧面积与球的表面积之比为()A.5∶2B.5∶4C.1∶2D.3∶4二、填空题(本大题共4小题,每小题5分,共20分)9.将一个等腰直角三角形绕其斜边所在直线旋转一周所得几何体的体积为V1,绕其一直角边所在直线旋转一周所得几何体的体积为V2,则 1 2=.10.关于斜二测画法,有如下说法:①在画直观图时,由于选轴的不同,所得的直观图可能不同;②等腰三角形的直观图仍然是等腰三角形;③梯形的直观图仍然是梯形;④正三角形的直观图一定为等腰三角形.其中正确说法的序号是.11.在正四棱锥V-ABCD中,底面ABCD的面积为16,一条侧棱的长为211,则该棱锥的高为.12.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且 1 2=94,则 1 2的值是.三、解答题(本大题共3小题,共40分)13.(10分)如图G5-5,该几何体上半部分是母线长为5,底面半径为3的圆锥,下半部分是下底面半径为2,母线长为2的圆台,计算该几何体的表面积和体积.图G5-514.(15分)已知一个圆锥的底面半径为2,母线长为4.(1)求圆锥的侧面展开图的扇形的圆心角;(2)若圆锥中内接一个高为3的圆柱,求圆柱的表面积.15.(15分)如图G5-6,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,且AB=BC=2,A1A=2.(1)求该直三棱柱的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求大棱柱表面积的最小值.图G5-6参考答案与解析1.D[解析]对于选项A,三棱柱的每个侧面都是平行四边形,但是全部展开以后,那些平行四边形未必可以构成一个“大”平行四边形,故A错误.对于选项B,水平放置的正方形的直观图是平行四边形,不可能是梯形,故B错误.对于选项C,一个几何体的正视图和侧视图都是矩形,则该几何体不一定是长方体,也可能是圆柱,故C错误.对于选项D,根据圆台的定义可知D正确.故选D.2.B[解析]由图可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故选B.3.B4.D[解析]由题意得,截得的小锥体与原来大锥体的体积之比为1∶33,故锥体被截面所分成的两部分的体积之比为1∶(33-1),故选D.5.D[解析]由已知可得,该柱体为底面直径与高相等的圆柱,设底面圆的半径为r,则高为2r,则S1=2πr2+2πr·(2r)=6πr2.易知该圆柱内切球的半径为r,则S2=4πr2,则λ= 1 2=6π 24π 2=32,故选D.6.C[解析]如图,把该多面体补成正方体ABCD-A1B1C1D1,则该多面体的体积V=正方体 쪨 - 1쪨11 1- 三棱锥 - 1쪨1 1=63-13×12×63=180.故选C.7.A[解析]设球的半径为R,则由题意知43πR3=36π,解得R=3.当圆柱的体积最大时,圆柱轴截面对角线的长等于球的直径.设圆柱的底面半径为r,则πr2=8π,解得r=22,所以圆柱的高h=2 2- 2=29−8=2,所以圆柱的侧面积S=2πr·h=2π×22×2=82π,故选A.8.A[解析]设圆锥的底面半径为r,圆锥的高为h,则球的半径为 2,由题知13πr2h=43π· 23,解得h= 2,∴圆锥的母线长为 2+ 2=,∴圆锥的侧面积S1=12×2πr2,又球的表面积S2=4π 22=πr2,∴ 1 2=A.9[解析]设等腰直角三角形的斜边长为2,则直角边长为2,则V1=2π3,V21 2=10.①③[解析]由斜二测画法规则可知,正三角形、等腰三角形的直观图不一定是等腰三角形,故②④错误,易知①③正确.11.6[解析]如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V-ABCD的高.∵底面ABCD的面积为16,∴AO=22,又VA=211,∴VO= 2- 2=44−8=6,∴正四棱锥V-ABCD的高为6.12.32[解析]由题意可得甲、乙两个圆柱的底面半径分别为r1r2的高分别为h1= 1 1,h2= 2 2,因为它们的侧面积相等,所以2πr1h1=2πr2h2· 1 1=· 2 2,整理得 1 2==32.13.解:圆锥的侧面积S1=π×3×5=15π,圆台的侧面积S2=π×(3+2)×2=10π,π×22=4π,圆台的下底面面积S底=所以该几何体的表面积S=S1+S2+S底=15π+10π+4π=29π.根据题意得,圆锥的高为4,圆台的高为3,则圆锥的体积V1=13×π×32×4=12π,圆台的体积V2=13×π×3×(32+2×3+22),所以该几何体的体积V=V1+V2=12π.14.解:(1)所求圆心角为2×π×24=4π4=π.(2)由题可知,圆锥的高为23,因为圆柱的高为3,所以圆柱的底面半径为1,则圆柱的表面积S=2×π×12+2×π×1×3=(2+23)π.15.解:(1)该直三棱柱底面的面积为12×2×2=1,侧面积为2×(2+2+2)=42+4,故其表面积S=6+42.(2)设两个这样的直三棱柱拼成一个大棱柱时重合的面的面积为S1,则大棱柱的表面积为2S-2S1,所以当重合的面的面积最大时,大棱柱的表面积最小.因为侧面AA1C1C的面积最大,所以大棱柱表面积的最小值为2S-2四边形 11=4+82.。
2022-2023学年高中高二下数学同步练习学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,点是圆上的一个动点,点是直线上的一个动点,为坐标原点,则向量在向量上的射影的数量的最大值是( )A.B.C.D.2.( )A.B.C.D.3. 已知直线和曲线相切,则的取值范围是( )A.B.C.D.4. 已知两个等差数列和的前项和分别为和,且,则 A.P C :+(y −2=1x 22–√)2Q l :x −y =0O OP −→−OQ −→−32+2–√232–√1++++...+=11×312×413×514×61n(n +2)1n(n +3)(1−)121n +2(−−)12321n +11n +2(1−)121n +1y =kx (k >0)f (x)=x −a ln x (a ≠0)a (−∞,0)∪(0,e)(0,e)(0,1)∪(1,e)(−∞,0)∪(1,e){}a n {}b n n A n B n =A n B n 3n +5n +3=(a 5b 5)5213B.C.D. 5. 椭圆的中心在原点,焦点在轴上,离心率为,且它的一个顶点恰好是抛物线的焦点,则椭圆的标准方程为 ( )A.B.C.D.6. 已知为直线=上一点,设点到定点距离为,点到=的距离为,若=,这样的点个数为( )A.个B.个C.个D.个7. 椭圆与椭圆有 A.相同短轴B.相同长轴C.相同离心率D.以上都不对8. 已知函数在区间的值域为,则=( )A.B.C.D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )133351383C x 12=8y x 23–√C +=1x 216y 212+=1x 24y 23+=1x 212y 29+=1x 24y 22P l :2x −3y +40P F(0,1)d 1P y 0d 2−d 1d 21P 0123+=1x 225y 29+=1x 2a2y 29()f(x)=−2sin x +31+13x x 3[−2,2][m,n]m +n −2−11C :+=422l :(3+m)x +4y −3+3m =0(m ∈R)9. 已知圆,直线.则下列四个命题正确的是A.直线恒过定点B.当时,圆上有且仅有三个点到直线的距离都等于C.圆与曲线:恰有三条公切线,则D.当时,直线上一个动点向圆引两条切线,,其中,为切点,则直线经过点10. 已知数列 ,均为等比数列,则下列结论中一定正确的有( )A.数列是等比数列B.数列是等比数列C.数列是等差数列D.数列是等差数列11. 已知椭圆的左、右焦点分别为,,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A.的最小值为B.椭圆的短轴长可能为C.椭圆的离心率的取值范围为D.若,则椭圆的长轴长为12. 函数,若时,有,是圆周率,为自然对数的底数,则下列说法正确的是( )A.B.C.D.,,,,,,则最大卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 已知,数列满足,则________.C :+=4x 2y 2l :(3+m)x +4y −3+3m =0(m ∈R)( )l (−3,3)m =0C l 1C +−6x −8y +m =0x 2y 2m =16m =13l P C PA PB A B AB (−,−)16949{}a n {}b n {}a n b n {+}a n b n {lg }∣∣∣b n a n ∣∣∣{lg()}a 2n b 2n C :+=1(a >b >0)x 2a 2y 2b 2F 1F 2||=2F 1F 2P (1,1)Q |Q |+|QP|F 12a −1C 2C (0,)−15–√2=PF 1−→−Q F 1−→−C +5–√17−−√f(x)=ln x x ≠x 1x 2f()=f()=m x 1x 2πe =2.71828⋯0<m <1e f(2)<f(3)<x 1x 2e 2a =e 3b =3ec =e πd =πe s =3πt =π3s f(x)=+sin(x −)1212{}a n =f(0)+f ()+f ()+…+f ()+f(1)a n 1n 2n n −1n =a 201714. 已知双曲线,过点作直线交双曲线于,两点.若恰为弦的中点,则直线的方程为________.15. 在三棱锥中,面,,,=,则三棱锥外接球表面积为________.16. 已知椭圆,过点作两条斜率互为相反数且不平行于坐标轴的直线,分别与椭圆相交于异于的不同两点,,则直线的斜率为________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17. 求下列函数的导数:;.18. 已知圆与圆相切于点,求以为圆心,且与圆的半径相等的圆的标准方程.19. 如图,在四棱锥中,平面,底面是平行四边形,,为的两个三等分点.求证:平面;若平面平面,求证:.20. 在数列中,==.(1)证明:数列是等差数列;(2)若=,求数列的前项和.21. 设抛物线的焦点为,过作直线交抛物线于,两点.当与轴垂直时,面积为,其中为坐标原点.求抛物线的标准方程;若的斜率存在且为,点,直线与的另一交点为,直线与的另一交点为,设直线的斜率为,证明:为定值.22. 设函数().C :−=1y 2x 23P(2,1)l C A B P AB l P −ABC PA ⊥ABC AB ⊥BC AB =BC =2–√PA 2P −ABC C :+=1x 2y 24P (−,1)3–√2C P A B AB (1)y =x ⋅cos x +x −√(2)y =5(2x +1)log 2O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2M M C P −ABCD PA ⊥ABCD ABCDEF PD (1)BE //ACF (2)PAC ⊥PCD PC ⊥CD {}a n a 10b n {}b n n S n E :=2px (p >0)y 2F F l E A B l x △AOB 8O (1)E (2)l k 1P (3,0)AP E C BP E D CD k 2k 2k 1(1)讨论函数的极值;4a (2)若函数在区间上的最小值是,求的值.参考答案与试题解析2022-2023学年高中高二下数学同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】向量的投影【解析】设夹角为,则向量上的投影等于.分析出应为锐角,设,不妨取,转化为求的最小值问题,可以用圆的参数方程或线性规划的方法求解.【解答】解:设夹角为,则向量上的投影等于,若取得最大值则首先为锐角.设,不妨取,则根据向量数量积的运算得出①由于是圆上的一个动点,设②将②代入①得出,而的最大值为,所以故选.2.【答案】C【考点】数列的求和【解析】利用裂项相消法可求得数列的和.【解答】解:∵,∴,OP −→−OQ −→−θ在向量OP −→−OQ −→−|cos θ=OP |−→−−||OQ −→−˙θP(x,y)Q(1,1)x +y ,OP −→−OQ −→−θ在向量OP −→−OQ −→−|cos θOP |−→−−θP(x,y)Q(1,1)|cos θ==OP |−→−−||OQ −→−˙x +y 2–√P C :+(y −2=1x 22–√)2{x =cos αy =2+sin α2–√|cos θ=(cos α+sin α+2)OP |−→−−2–√22–√cos α+sin α2–√|cos θ≥×3=3OP |−→−−2–√22–√A =(−)1n(n +2)121n 1n +2++++...+11×312×413×514×61n(n +2)=[(1−)+(−)+(−)+(−)+...1213121413151416(−)+11−)11(−)]11.故选.3.【答案】A【考点】利用导数研究曲线上某点切线方程【解析】【解答】解:函数的定义域为,设直线和曲线相切于点,∵,∴切线斜率,又切点在曲线上,∴整理,得解得∵,∴,且,∴的取值范围是 .故选.4.【答案】D【考点】等差数列的前n 项和等差数列的性质【解析】因为数列和为等差数列,所以=,=,将转化为即可.【解答】+(−)+1n −21n (−)1n −11n +1+(−)]1n 1n +2=(1+−−)12121n +11n +2=(−−)12321n +11n +2C f(x)=x −a ln x(a ≠0)(0,+∞)y =kx >0f(x)=x −a ln x(a ≠0)(,k )(>0)x 0x 0x 0(x)=1−f ′a x k =()=1−f ′x 0a x 0f (x) k =−a ln ,x 0x 0x 0k =1−,a x 0 (k −1)=−a ln ,x 0x 0k −1=−,a x 0{=e ,x 0a =−e (k −1),k >0a =−e(k −1)<e a ≠0a (−∞,0)∪(0,e)A {}a n {}b n A 99a 5B 99b 5a 5b 5A 9B 9{}{}b解:∵数列和为等差数列,∴,同理可得,,∴.故选.5.【答案】A【考点】椭圆的定义和性质【解析】此题暂无解析【解答】解:设椭圆的标准方程为,因为它的一个顶点恰好是抛物线的焦点,所以.又因为,所以 解得,即椭圆的标准方程为.故选.6.【答案】C【考点】两条平行直线间的距离【解析】由题意,设,则=,分类讨论,即可得出结论.【解答】由题意,设,则=,,可化为=,∴方程有两个正根;,可化为=,方程无解,综上所述,有两解,即点有个,7.【答案】{}a n {}b n =×9=9A 9+a 1a 92a 5=B 99b 5====a 5b 5A 9B 93×9+59+3321283D +=1(a >b >0)x 2a 2y 2b 2(0,b)=8y x 23–√(0,2)3–√b =23–√e =12=,−12a 2a 214=16a 2+=1x 216y 212A P(x,y)−|y |+(y −1x 2)2−−−−−−−−−−√1P(x,y)−|y |+(y −1x 2)2−−−−−−−−−−√1y ≥09−40y +16y 20y <09−24y +16y 20y P 2D【考点】椭圆的定义和性质【解析】直接讨论,再判断各选项,即可得到答案.【解答】解:椭圆,短轴为,长轴为,离心率为,若,此时椭圆的短轴为,故错误;此时长轴为,故错误;此时离心率为,不恒等于,故错误;故均不正确.故选.8.【答案】D【考点】利用导数研究函数的最值【解析】构造函数,易知函数为奇函数,利用奇函数的性质即可得解.【解答】,令,则,∴函数为奇函数,∴当时,=,即,则=,二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】A,C,D【考点】<9a 2+=1x 225y 2961045<9a 2+=1x 2a 2y 292a <6A 6≠10B 9−a 2−−−−−√345C ABC D g(x)=f(x)−12g(x)f(x)−=−−2sin x +3=−2sin x +3=−−2sin x +3121+13x 12x 32−−13x 2(+1)3x x 3−13x 2(+1)3x x 3g(x)=f(x)−=−−2sin x +312−13x 2(+1)3x x 3g(−x)=−−2sin(−x)+3(−x =−+2sin x −3=+2sin x −3=−g(x)−13−x 2(+1)3−x )31−3x 2(1+)3x x 3−13x 2(+1)3x x 3g(x)x ∈[−2,2]g(x +g(x )max )min 0m −+n −=01212m +n 1直线与圆的位置关系命题的真假判断与应用直线与圆相交的性质圆与圆的位置关系及其判定【解析】根据直线与圆的相关知识对各选项逐个判断即可解出.【解答】解:,直线方程可化为,令,则,,,直线恒过定点,故正确;,当时,直线方程为,圆心到直线的距离.圆半径,,故圆上有四个点到直线的距离等于,故错误;,圆,曲线,即,两圆心的距离,,解得:,故正确;,当时,直线,化简为:.是直线上一动点,设,圆,圆心,半径,以线段为直径的圆方程为:,即:,又圆的方程为,圆与圆的公共弦方程为,公共弦即为,则解得直线经过点,故正确. 故选.10.【答案】A,C,D【考点】等比数列的性质等差数列的性质等比数列的通项公式A m(x +3)+3x +4y −3=0x +3=03x +4y −3=0∴x =−3y =3∴l (−3,3)A B m =0l 3x +4y −3=0C (0,0)l d ==|−3|+3242−−−−−−√35∵r =2∴r −d =2−=>13575C l 1B C ∵C :+=4x 2y 2+−6x −8y +m =0x 2y 2+=25−m (x −3)2(y −4)2t ==5(0−3+(0−4)2)2−−−−−−−−−−−−−−−√∴5=2+25−m −−−−−−√m =16C D m =13l :16x +4y +36=04x +y +9=0∵P l P (t,−9−4t)C :+=4x 2y 2C (0,0)r =2PC M (x −t)x +(9+4t +y)y =0+(−t)x ++9y +4ty =0x 2y 2∵C +=4x 2y 2∴C M −tx +4ty +9y +4=0l AB (4y −x)t +9y +4=0{4y −x =0,9y +4=0, x =−,169y =−,49∴AB (−,−)16949D ACD【解析】利用等差数列与等比数列的定义通项公式及其对数的运算性质即可判断出正误.【解答】解:设等比数列,的公比分别为,,,∴数列是公比为的等比数列,正确;,数列不一定是等比数列,例如取数列,分别为:,,故错误;,∵为一常数,∴数列是等差数列,故正确;,∵为一常数,∴数列}是等差数列,故正确.故选.11.【答案】A,C,D【考点】椭圆的标准方程椭圆的离心率椭圆的定义【解析】【解答】解:选项,由椭圆的第一定义得,当且仅当,,三点共线,且在与中间时,等号成立,故正确;选项,若,即,因为,所以,则椭圆方程为,所以,点在椭圆外,故错误;选项,因为在椭圆内部,所以,解得,所以,故正确;选项,因为,所以点的坐标为,所以,故正确.{}a n {}b n p qA =pq a n+1b n+1a nb n{}a n b n pq A B {+}a n b n {}a n {}b n =a n 2n =−b n 2n B C lg||−lg||=lg|⋅|=lg||b n+1a n+1b n a n b n+1b n an a n+1q p {lg||}b na nC D lg()−lg()a 2n+1b 2n+1a 2n b 2n =lg((=lg a n+1a n )2b n+1b n )2p 2q 2{lg()}a 2n b 2n D ACD A |Q |+|QP|=2a −|Q |+|QP|F 1F 2≥2a −|P|=2a −1F 2F 2P Q P F 2Q B 2b =2b =1c =1a =2–√+=1x 22y 2+1>112P C P =>1b 2a −1a 2a a >+15–√2e =∈(0,)c a −15–√2D =PF 1−→−Q F 1−→−Q (−3,−1)2a =|Q |+|Q |F 1F 2=+(−3+1+(−1)2)2−−−−−−−−−−−−−−−√(−3−1+(−1)2)2−−−−−−−−−−−−−−−√=+5–√17−−√ACD故选.12.【答案】A,B,D【考点】利用导数研究函数的单调性【解析】作出的大致图象,结合图象可判断选项;由,可得,由此判断选项;若,则,构造函数,可知矛盾,由此可判断选项;这六个数的最大数在与中取,而,由此判断选项.【解答】解:,当时,,当时,,∴函数在上单调递增,在上单调递减,当时,,当时,,,作出函数的大致图象如图所示,,由于,即有且仅有两个交点,由图象可知,,故选项正确;,易知,即,即,即,故选项正确;,由图象不妨设,故等价于,又,,故等价为,即,设,,则,∴在上单调递增,故,即矛盾,故选项错误;,由于,由指数函数和幂函数的性质可知,,,,,故这六个数的最大数在与中取,由及的单调性可知,,即,即,故,综上,这六个数中最大数是,故选项正确.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )ACD f(x)A ln 8<ln 9<ln 22ln 33B <x 1x 2e 2f()>f()x 1e 2x 1g(x)=f(x)−f(),1<x <e e 2x f()<f()x 1e 2x 1C 3ππ3<π33πD (x)=(x >0)f ′1−ln xx 2(x)>0f ′0<x <e (x)<0f ′x >e f(x)(0,e)(e,+∞)x →0f(x)→−∞x →+∞f(x)→0f(e)=1ef(x)A f()=f()=m x 1x 2f(x)=m 0<m <1eB ln 8<ln 93ln 2<2ln 3<ln 22ln 33f(2)<f(3)C 1<<e <x 1x 2<x 1x 2e 2<x 2e 2x 1x 2∈(e,+∞)e 2x 1f()>f()x 2e 2x 1f()>f()x 1e 2x 1g(x)=f(x)−f()e2x1<x <e (x)=(x)+()g ′f ′e 2x 2f ′e 2x =+1−ln x x 2ln x −1e 2=(1−ln x)(−)>01x 21e 2g(x)(1,e)g(x)<g(e)=0f()<f()x 1e 2x 1D e <3<π>e πe 3>3π3e >ππ3>3πe π3ππ3e <3<πf(x)f(π)<f(3)<ln ππln 33ln <ln π33π<π33πs ABD13.【答案】【考点】数列递推式【解析】此题暂无解析【解答】解:因为的图象关于原点对称,的图象由向上平移个单位,向右平移个单位得到,所以的图象关于对称,所以,,,,两式相加可得:,所以,所以.故答案为:.14.【答案】【考点】与双曲线有关的中点弦及弦长问题【解析】1009y =sin x f(x)=+sin(x −)1212y =sin x 1212f(x)(,)1212f(x)+f(1−x)=1[f(0)+f(1)]=[f ()+f ()]=⋯1n n −1n =[f(1)+f(0)]=1=f(0)+f ()+…+f ()+f(1)a n 1n n −1n =f(1)+f ()+…+f ()+f(0)a n n −1n 1n2=[f(0)+f(1)]+[f ()+f ()]+…+a n 1n n −1n[f(1)+f(0)]=n +1=a n n +12=1009a 201710092x −3y −1=0:−=12设,,则,,把,代入双曲线,利用点差法求解.【解答】解:设,,∵恰为弦的中点,∴,,把,代入双曲线,得两式相减,得:,∴,∴,∴直线的方程为,整理,得.故答案为:.15.【答案】【考点】球内接多面体球的表面积和体积【解析】利用勾股定理逆定理得出为直径三角形,并计算出的外接圆直径,然后利用公式计算出三棱锥的外接球的半径,最后利用球体表面积公式可得出答案.【解答】∵,,∴的外接圆直径为,设该三棱锥的外接球半径为,则,∴,因此,三棱锥的外接球的表面积为.16.【答案】-【考点】圆锥曲线中的定点与定值问题【解析】设直线的方程为,将其与椭圆的方程联立,得关于的一元二次方程,根据根与系数的关系两根之和可求点的横坐标,代入直线方程可得点的纵坐标,根据两直线斜率互为相反数,可得点的坐标.进而由两点连线的斜率公式可得直线的斜率.A(,)x 1y 1B(,)x 2y 2+=4x 1x 2+=2y 1y 2A(,)x 1y 1B(,)x 2y 2C :−=1y 2x 23A(,)x 1y 1B(,)x 2y 2P(2,1)AB +=4x 1x 2+=2y 1y 2A(,)x 1y 1B(,)x 2y 2C:−=1y 2x 23{3−=3,①y 21x 213−=3,②y 22x 223(+)(−)−(+)(−)=0y 1y 2y 1y 2x 1x 2x 1x 26(−)−4(−)=0y 1y 2x 1x 2k ==−y 1y 2−x 1x 223l y −1=(x −2)232x −3y −1=02x −3y −1=08π△ABC △ABC AC 2R =P +A A 2C 2−−−−−−−−−−√P −ABC R AB ⊥BC AB =BC =2–√△ABC AC ==2A +B B 2C 2−−−−−−−−−−√R 2R ==2P +A A 2C 2−−−−−−−−−−√2–√R =2–√P −ABC 4π=4π×(=8πR 22–√)223–√PA y −1=k (x +)3–√2x A A B AB【解答】解:设直线的斜率为,则直线的斜率为.所以直线的方程为,设点,,由得,所以,所以,,,,所以,直线的斜率为.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】解:.设 ,,则.【考点】简单复合函数的导数导数的运算【解析】此题暂无解析【解答】PA k PB −k PA y −1=k (x +)3–√2A (⋅)x A y AB (⋅)x B y B y −1=k (x +),3–√2+=1,x 2y 24(4+)+(2k +)x ++k −3=0k 2x 23–√k 234k 23–√+=−x A x p 2k +3–√k 24+k2=−−x A 2k +3–√k 24+k 2x p =−+2k +3–√k 24+k23–√2=k (+)+1y A x A 3–√2=−+k +12+k 23–√k 34+k 23–√=−x B 2k −3–√k 24+k 2x p=+2k −3–√k 24+k 23–√2=−k (+)+1y B x B 3–√2=−k +1−2+k 23–√k 34+k 23–√tAB −y B y A−x B x A=−k +1−(−+k +1)−2+k 23√k 34+k 23–√2+k 23√k 34+k 23–√+−(−+)2k−3√k 24+k 23√22k+3√k 24+k23√2=−23–√−23–√(1)y =+=cos x −x ⋅sin x +(x ⋅cos x)′()x −√′12x −12(2)y =52u log 2u =2x +1=5==y ′(u)log 2′(2x +1)′10u ln 210(2x +1)ln 2=+=cos x −x ⋅sin x +11解:.设 ,,则.18.【答案】解:圆,可化为∵圆与圆相切,∴或∴或∴圆:或:设,由题知,或,故或故所求圆的方程为或.【考点】圆与圆的位置关系及其判定圆的标准方程【解析】利用圆与圆相切,求出,设,由题知,或,求出的坐标,即可求以为圆心,且与圆的半径相等的圆的标准方程.【解答】解:圆,可化为∵圆与圆相切,∴或∴或∴圆:或:设,由题知,或,故或故所求圆的方程为或.19.【答案】证明:连接,交于,∴是的中点(平行四边形对角线互相平分),∵是的中点(由三等分点得到),∴是的中位线,∴,∵面,面,∴平面.过作于,∵平面平面,∴平面,∵平面,∴,(1)y =+=cos x −x ⋅sin x +(x ⋅cos x)′()x −√′12x−12(2)y =52u log 2u =2x +1=5==y ′(u)log 2′(2x +1)′10u ln 210(2x +1)ln 2C :+−6x −8y +m =0x 2y 2(x −3+(y −4=25−m )2)2O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2|OC |=1+=525−m −−−−−−√|OC |=−1=525−m −−−−−−√m =9m =−11C (x −3+(y −4=16)2)2C (x −3+(y −4=36)2)2M(x,y)=4CM −→−MO −→−=6CM −→−OM −→−M(,)3545M(−,−)3545(x −+(y −=1635)245)2(x ++(y +=3635)245)2O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2m M(x,y)=4CM −→−MO −→−=6CM −→−OM −→−M M C C :+−6x −8y +m =0x 2y 2(x −3+(y −4=25−m )2)2O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2|OC |=1+=525−m −−−−−−√|OC |=−1=525−m −−−−−−√m =9m =−11C (x −3+(y −4=16)2)2C (x −3+(y −4=36)2)2M(x,y)=4CM −→−MO −→−=6CM −→−OM −→−M(,)3545M(−,−)3545(x −+(y −=1635)245)2(x ++(y +=3635)245)2(1)BD AC O O BD F DE OF △DEB BE //OF OF ⊂ACF BE ⊂ACF BE //ACF (2)A AH ⊥PC H PAC ⊥PCD AH ⊥PCD CD ⊂PCD AH ⊥CD PA ⊥ABCD CD ⊂ABCD∵平面,平面,∴.又∵,∴平面,∵平面,∴.【考点】平面与平面垂直的性质直线与平面平行的判定【解析】(1)连结,相交于,证明,即可证明平面;(2)过作于,利用面面垂直的性质证明平面,从而证明,然后利用线面垂直的性质证明.【解答】证明:连接,交于,∴是的中点(平行四边形对角线互相平分),∵是的中点(由三等分点得到),∴是的中位线,∴,∵面,面,∴平面.过作于,∵平面平面,∴平面,∵平面,∴,∵平面,平面,∴.又∵,∴平面,∵平面,∴.20.PA ⊥ABCD CD ⊂ABCD PA ⊥CD PA ∩AH =A CD ⊥PAC PC ⊂PAC PC ⊥CD BD AC O BE //OF BE //ACF A AH ⊥PC H AH ⊥PCD AH ⊥CD PC ⊥CD (1)BD AC O O BD F DE OF △DEB BE //OF OF ⊂ACF BE ⊂ACF BE //ACF (2)A AH ⊥PC H PAC ⊥PCD AH ⊥PCD CD ⊂PCD AH ⊥CD PA ⊥ABCD CD ⊂ABCD PA ⊥CD PA ∩AH =A CD ⊥PAC PC ⊂PAC PC ⊥CD【答案】证明:==,可得-=,,则数列是首项为;由(1)可得==,即有=,===(-),则前项和=(-+-+…+-)=(-)=.【考点】等差数列的性质数列递推式数列的求和【解析】此题暂无解析【解答】此题暂无解答21.【答案】解:由题意不妨设,,∴,∵,解得(负值舍去),∴.证明:设,,,,则直线的斜率为,直线的方程为,则.又点在直线上,∴,同理,直线的方程为,∵点在直线上,∴,同理,直线的方程为,又点在直线上,∴.∵,,a 10342+4(n −1)3n −2a nb n n S n (1)A(,p)p 2B(,−p)p2AB =2p ⋅2p ⋅=812p 2p =4=8x y 2(2)A(,)x 1y 1B(,)x 2y 2C(,)x 3y 3D(,)x 4y 4l ===k 1−y 1y 2−x 1x 2−y 1y 2(−)18y 21y 228+y 1y 2AB y −=(x −)y 18+y 1y 2x 1(+)y −=8x y 1y 2y 1y 2F (2,0)−=16y 1y 2BD (+)y −=8x y 2y 4y 2y 4P (3,0)BD −=24y 2y 4AC (+)y −=8x y 1y 3y 1y 3P (3,0)AC −=24y 1y 3=k 18+y 1y 2=k 28+y 3y 4=k++==−162∴.【考点】抛物线的标准方程直线与抛物线的位置关系圆锥曲线中的定点与定值问题【解析】此题暂无解析【解答】解:由题意不妨设,,∴,∵,解得(负值舍去),∴.证明:设,,,,则直线的斜率为,直线的方程为,则.又点在直线上,∴,同理,直线的方程为,∵点在直线上,∴,同理,直线的方程为,又点在直线上,∴.∵,,∴.22.【答案】(1)当时,函数在上无极值;当时,的极小值为,无极大值.(2)【考点】利用导数研究函数的极值已知函数极最值求参数问题【解析】(1)求得函数的导数,分类讨论即可求解函数的单调区间,得到答案(2)由(1)知,当时,函数在上单调递增,此时最小值不满足题意;当时,由(1)得是函数在上的极小值点,分类讨论,即可求解.【解答】==k 2k 1+y 1y 2+y 3y 4+y 1y 2+−24y 1−24y2===y 1y 2−24−16−2423(1)A(,p)p 2B(,−p)p2AB =2p ⋅2p ⋅=812p 2p =4=8x y 2(2)A(,)x 1y 1B(,)x 2y 2C(,)x 3y 3D(,)x 4y 4l ===k 1−y 1y 2−x 1x 2−y 1y 2(−)18y 21y 228+y 1y 2AB y −=(x −)y 18+y 1y 2x 1(+)y −=8x y 1y 2y 1y 2F (2,0)−=16y 1y 2BD (+)y −=8x y 2y 4y 2y 4P (3,0)BD −=24y 2y 4AC (+)y −=8x y 1y 3y 1y 3P (3,0)AC −=24y 1y 3=k 18+y 1y 2=k 28+y 3y 4==k 2k 1+y 1y 2+y 3y 4+y 1y 2+−24y 1−24y 2===y 1y 2−24−16−2423a ≤0f (x)R a >0f (x)a −a ln a +3g −1(x)=−a f ′e x a ≤0f (x)R a >0x =ln a f (x)R (x)=−af ′x(1)当时,在上单调递增;无极值当时,,解得由,解得函数在上单调递减,函数在上单调递增,的极小值为,无极大值综上所述:当时,函数在上无极值;当时,的极小值为,无极大值.(2)由(1)知,当时,函数在上单调递增,.函数在上的最小值为,即,矛盾.当时,由(1)得是函数在上的极小值点.①当即时,函数在上单调递增,则函数的最小值为,即,符合条件.②当即时,函数在上单调递减,则函数的最小值为即,矛盾.③当即时,函数在上单调递减,函数在上单调递增,则函数的最小值为,即令,则在上单调递减,而,∴在上没有零点,即当时,方程无解.综上,实数的值为(x)=−af ′e x a ≤0(x)>0f (x)f ′R a >0(x)>0f ′x >ln a (x)<0f ′x <ln af (x)(−∞,ln a)f (x)(ln a,+∞)f (x)f (ln a)=a −a ln a +3a ≤0f (x)R a >0f (x)a −a ln a +3a ≤0f (x)R f (x)[1,2]f (1)=e −a +3=4a =e −1>0a >0x =ln a f (x)R ln a ≤10<a ≤e f (x)[1,2]f (x)f (1)=e −a +3=4a =e −1ln a ≥2a ≥e 2f (x)[1,2]f (x)f (2)=−2a +3=4e 2a =∴−1e 22e 21<ln a <2e <a <e 2f (x)[1,ln a]f (x)[ln a,2]f (x)f (ln a)=−a ln a +3=4e |a a −a ln a −1=0h (a)=a −a ln a −1(e <a <)e 2(a)=−ln a <0h ′h (a)(e,)e 2h (e)=−1h (a)(e,)e 2e <a <e 2a −a ln a −1=0ag −1。
人教版高中数学必修第二册8.4——8.5同步测试滚动训练(时间:45分钟分值:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.空间中,如果两个角的两条边分别对应平行,那么这两个角()A.相等B.互补C.相等或互补D.不能确定2.下列条件中能推出平面α与平面β平行的是()A.平面α内有无数条直线与β平行B.平面α内的任意一条直线都与β平行C.直线m∥α,m∥β,且直线m不在α内,也不在β内D.直线m⊂α,直线l⊂β,且m∥β,l∥α3.给出下列四个条件:①空间中的三个点;②一条直线和一个点;③两条平行的直线;④两条垂直的直线.其中能确定一个平面的是()A.①②③④B.①③C.③④D.③4.已知m,n,l1,l2表示直线,α,β表示平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l25.如图G6-1所示,P,Q,R,S分别是所在棱的中点,则这四个点不共面的是()ABCD图G6-16.如图G6-2所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,则下列结论中正确的是()图G6-2A.MN∥APB.MN∥BD1C.MN∥平面BB1D1DD.MN∥平面BDP7.如图G6-3,在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,点M是棱AD的中点,点N在棱AA1上,且满足AN=2NA1,P是侧面ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P 长度的取值范围是()图G6-3A.[3,17]B.[4,5]C.[3,5]D.[17,5]8.在三棱台ABC-A1B1C1中,点D在A1B1上,且AA1∥BD,点M是△A1B1C1内(含边界)的一个动点,且平面BDM∥平面A1C1CA,则动点M的轨迹是()A.平面B.直线C.线段,但只含1个端点D.圆二、填空题(本大题共4小题,每小题5分,共20分)9.空间三个平面之间的交线条数为n,则n的可能值为.10.过平面外一点作与该平面平行的平面有个;过平面外一点作该平面的平行直线有条.11.如图G6-4,在正方体ABCD-A1B1C1D1中,M,N,P,Q,R,S分别是AB,BC,C1D1,C1C,A1B1,BB1的中点,给出下列说法:①PQ与RS共面;②MN与RS共面;③PQ与MN共面.其中正确说法的序号是.图G6-412.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是DD1和AB的中点,若平面B1EF交AD 于点P,则PE=.三、解答题(本大题共3小题,共40分)13.(10分)正方体ABCD-A1B1C1D1如图G6-5所示.(1)若E,F分别为AA1,CC1的中点,画出过点D1,E,F的截面;(2)若M,N,P分别为A1B1,BB1,B1C1上的点(均不与B1重合),求证:△MNP是锐角三角形.图G6-514.(15分)如图G6-6所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是梯形,AB∥CD,CD=2AB,P,Q分别是CC1,C1D1的中点,求证:平面AD1C∥平面BPQ.图G6-615.(15分)如图G6-7所示,四边形EFGH为四面体ABCD的一个截面,且该截面为平行四边形.(1)求证:AB∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.图G6-7参考答案与解析1.C[解析]由等角定理知选C.2.B[解析]平面α内有无数条直线与β平行,则α与β相交或平行,故A不满足题意;平面α内的任意一条直线都与β平行,则平面α内一定有两条相交直线与平面β平行,则由面面平行的判定定理得α∥β,故B满足题意;直线m∥α,m∥β,且直线m不在α内,也不在β内,则α与β相交或平行,故C不满足题意;直线m⊂α,直线l⊂β,且m∥β,l∥α,则α与β相交或平行,故D不满足题意.故选B.3.D[解析]对于①,当这三个点共线时,经过这三个点的平面有无数个,故①不满足题意.对于②,当此点在此直线上时,有无数个平面经过这条直线和这个点,故②不满足题意.对于③,根据推论3可知两条平行直线唯一确定一个平面,故③满足题意.对于④,当这两条直线是异面直线时,这两条直线不同在任何一个平面内,不能确定一个平面,故④不满足题意.故选D.4.D[解析]由题意得,m,n是平面α内的两条直线,l1,l2是平面β内的两条相交直线,要使α∥β,一个平面内有两条相交直线和另一个平面平行即可,故选D.5.D[解析]对于选项A,连接PS,QR,易证PS∥QR,∴P,S,R,Q四点共面;对于选项B,过P,S,R,Q可作一个正六边形,∴P,S,R,Q四点共面;对于选项C,连接PQ,RS,易证PQ∥RS,∴P,Q,R,S四点共面.故选D.6.C[解析]易知MN与AP是异面直线,故A中结论不正确.易知MN与BD1是异面直线,故B中结论不正确.连接AC,与BD交于点O,则O为BD的中点,连接OD1,ON.在正方体ABCD-A1B1C1D1中,∵M,N分别是C1D1,BC的中点,∴ON∥CD∥D1M,ON=12CD=D1M,∴四边形MNOD1为平行四边形,∴MN∥OD1.∵MN⊄平面BB1D1D,OD1⊂平面BB1D1D,∴MN∥平面BB1D1D,故C中结论正确.由选项C知MN∥平面BB1D1D,而平面BB1D1D和平面BDP相交,∴MN与平面BDP不平行,故D中结论不正确.故选C.7.D[解析]取A1D1的中点E,在DD1上取点F,使D1F=2DF,连接EF,C1E,C1F,则易知平面CMN ∥平面C1EF.∵P是侧面ADD1A1内一动点(含边界),C1P∥平面CMN,∴P∈线段EF,∵C1E= 1 12+ 1 2=5,C1F= 1 12+ 1 2=5,∴当P与EF的中点重合时,线段C1P的长度取得最小值,当P与点E或点F重合时,线段C1P的长度取得最大值.取EF的中点O,连接C1O,则由题意知EF=42,C1O= 1 2- 2=25−(22)2=17,∴线段C1P长度的取值范围是[17,5].故选D .8.C [解析]如图所示,在平面A 1B 1C 1内,过D 作DN ∥A 1C 1,交B 1C 1于点N ,连接BN.∵AA 1∥BD ,AA 1⊂平面A 1C 1CA ,BD ⊄平面A 1C 1CA ,∴BD ∥平面A 1C 1CA.∵DN ∥A 1C 1,DN ⊄平面A 1C 1CA ,A 1C 1⊂平面A 1C 1CA ,∴DN ∥平面A 1C 1CA.∵BD ∩DN=D ,∴平面BDN ∥平面A 1C 1CA.∵点M 是△A 1B 1C 1内(含边界)的一个动点,且平面BDM ∥平面A 1C 1CA ,∴M 的轨迹是线段DN ,且M 与D 不重合,即动点M 的轨迹是线段,但只含1个端点.故选C .9.0,1,2,3[解析]三个平面可以互相平行,可以交于同一条直线,可以两个平面平行且被第三个平面所截,也可以两两相交,故答案为0,1,2,3.10.1无数[解析]过平面外一点作与该平面平行的平面,这样的平面有且只有1个.在符合题意的平面上过这个点的直线有无数条,这些直线都与原平面平行.11.①③[解析]连接PR ,QS ,因为P ,Q ,R ,S 分别是C 1D 1,C 1C ,A 1B 1,B 1B 的中点,所以PR B 1C 1,QS B 1C 1,所以PRQS ,所以四边形PRSQ 是平行四边形,故①正确;连接QN ,C 1B ,PM ,则由题意得QN 12C 1B PM ,所以PQ 与MN 共面,故③正确;因为MN 与RS 既不平行也不相交,故②错误.12[解析]过点C 1作C 1G ∥B 1F ,交CD 于点G ,过点E 作HQ ∥C 1G ,交CD 的延长线于点H ,交C 1D 1于点Q ,连接B 1Q ,HF 交AD 于点P ,则HQ ∥B 1F ,所以Q ,H ,F ,B 1四点共面.由正方体的棱长为1,易知CG=BF=12.设D 1Q=x ,由题知HD=D 1Q ,因为C 1Q ∥HG ,HQ ∥C 1G ,所以四边形HQC 1G 为平行四边形,所以HG=QC 1,即x+12=1-x ,解得x=1.由题可知△PDH ∽△PAF ,所以= =2,则PD=13.在Rt △PED 中,可得PE= 2+ 2=13.解:(1)过点D 1,E ,F 的截面如图所示.(2)证明:设MB 1=a ,NB 1=b ,PB 1=c ,则MN 2=a 2+b 2,NP 2=b 2+c 2,MP 2=c 2+a 2,所以在△MNP 中,cos M= 2+ 2- 22 · =2 22 · >0.同理可得cos N>0,cos P>0.故△MNP的三个内角均为锐角,即△MNP是锐角三角形.14.证明:在直四棱柱ABCD-A1B1C1D1中,易知C1D1∥CD,C1D1=CD.∵AB∥CD,∴AB∥C1D1,即D1Q∥AB.∵Q为C1D1的中点,∴D1Q=12C1D1=12CD=AB,∴四边形D1QBA为平行四边形,∴AD1∥BQ,又AD1⊂平面AD1C,BQ⊄平面AD1C,∴BQ∥平面AD1C.∵P,Q分别为CC1,C1D1的中点,∴PQ∥CD1,又PQ⊄平面AD1C,CD1⊂平面AD1C,∴PQ∥平面AD1C.∵BQ∩PQ=Q,∴平面AD1C∥平面BPQ.15.解:(1)证明:∵四边形EFGH为平行四边形,∴EF∥HG,又HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.∵EF⊂平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB,又AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.(2)设EF=x(0<x<4),∵四边形EFGH为平行四边形,∴ = 4,则 6= = - =1- 4,∴FG=6-32x,∴四边形EFGH的周长l=2x+6-32x=12-x,又0<x<4,∴8<l<12,即四边形EFGH周长的取值范围是(8,12).。
新课标高二数学同步测试(8)—(2-2第二章)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.已知α∩β=l ,a ⊂α、b ⊂β,若a 、b 为异面直线,则 ( ) A . a 、b 都与l 相交 B . a 、b 中至少一条与l 相交 C . a 、b 中至多有一条与l 相交 D . a 、b 都与l 相交 2.已知),....3,2,1(,,n i R b a i i =∈,1.. (2)2221=+++n a a a ,1 (2)2221=+++n b b b ,则n n b a b a b a +++.....2211的最大值为( )A .1B .2C .2nD .n 23.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是 ( ) A .计算机行业好于化工行业 B .建筑行业好于物流行业. C .机械行业最紧张. D .营销行业比贸易行业紧张 4.已知33q p +=2,关于p +q 的取值范围的说法正确的是 ( )A .一定不大于2B .一定不大于22C .一定不小于22D .一定不小于25.从棱长为32的正方体的一个顶点A 0出发,在体内沿一条直线进行到另一条上的点A 1,使得|A 0A 1|=1,再从A 1出发,在体内沿一条直线进行到另一条上的点A 2,使得|A 1A 2|=1,……,如此继续走下去,如果限定所走的路径不重复,则总路程最多等于 ( ) A .18 B .8 C .12 D .106.已知数列{a n }满足a n+1=a n -a n -1(n ≥2),a 1=a ,a 2=b ,设S n =a 1+a 2+……+a n ,则下列结论正确的是 ( ) A .a 100=-a S 100=2b -a B .a 100=-b S 100=2b -a C .a 100=-b S 100=b -a D .a 100=-a S 100=b -a 7.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A —BC D 的三个侧面ABC 、AC D 、A D B 两两相互垂直,则可得” ( ) A .AB 2+AC 2+ AD 2=BC 2 +C D 2 +BD 2 B .BCD ADB ACD ABC S S S S ∆∆∆∆=⨯⨯2222C .2222BCD ADB ACD ABC S S S S ∆∆∆∆=++ D .AB 2×AC 2×AD 2=BC 2 ×C D 2 ×BD 28.已知函数n mx x x f ++=22)(,则)1(f 、)2(f 、)3(f 与1的大小关系为 ( ) A .没有一个小于1 B .至多有一个不小于1 C .都不小于1 D .至少有一个不小于1 9.已知直线l 、m ,平面α、β,且l ⊥α,m β,给出下列四个命题: (1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β; (3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β; 其中正确命题的个数是 ( )A .1B .2C .3D .410.已知函数)(x f y =,对任意的两个不相等的实数21,x x ,都有)()()(2121x f x f x x f ⋅=+成立,且0)0(≠f .则)2006()2005(...........)2005()2006(f f f f ⋅⋅-⋅-的值是( ) A .0 B .1 C .2006! D .(2006!)2 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若函数,)(k n f =其中N n ∈,k 是......1415926535.3=π的小数点后第n 为数字,例如4)2(=f ,则)]}7([.....{f f f f (共2005个f )= . 12.已知结论 “若+∈Ra a 21,,且121=+a a ,则41121≥+a a ”,请猜想若+∈R a a a n .......,21,且1....21=+++n a a a ,则≥+++na a a 1....1121 .13.数列的前几项为2,5,10,17,26,……,数列的通项公式为 .14.如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 (或任何能推导出这个条件的其他条件,例如ABCD 是正方形、菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b .16.(12分)若01>a 、11≠a ,nnn a a a +=+121),,(,⋯=21n(1)求证:n n a a ≠+1;(2)令211=a ,写出2a 、3a 、4a 、5a 的值,观察并归纳出这个数列的通项公式n a ;(3)证明:存在不等于零的常数p ,使}{nn a pa +是等比数列,并求出公比q 的值.17.(12分)对于直线l :y =kx +1,是否存在这样的实数k ,使得l 与双曲线C :3x 2-y 2=1的交点A 、B 关于直线y =ax (a 为常数)对称?若存在,求出k 的值;若不存在,请说明理由.18.(12分)由下列各式:图112111123111111312345672111122315>++>++++++>++++>你能得出怎样的结论,并进行证明.19.(14分)设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R,a ≠0)满足条件:①当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;②当x ∈(0,2)时,f (x )≤2)21(+x ③f (x )在R 上的最小值为0.求最大值m (m >1),使得存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x .20.(14分)(反证法)对于函数)(x f ,若存在000)(,x x f R x =∈使成立,则称)(0x f x 为的不动点.如果函数),()(2N c b c bx a x x f ∈-+=有且只有两个不动点0,2,且,21)2(-<-f(1)求函数)(x f 的解析式;(2)已知各项不为零的数列1)1(4}{=⋅nn n a f S a 满足,求数列通项n a ; (3)如果数列}{n a 满足)(,411n n a f a a ==+,求证:当2≥n 时,恒有3<n a 成立参考答案一、1.B ;2.A ;3.B ;4.A ;5.A ;6.A ;7.C ;8.D ;9.B ;10.B ; 二、11.1;12.2n ;13.12+n ;14.AC ⊥BD ; 三、15.证法1:(分析法) 要证3>-++-++-+ccb a b bc a a a c b 只需证明 1113b c c a a ba ab bc c+-++-++-> 即证6b c c a a ba ab bc c+++++> 而事实上,由a ,b ,c 是全不相等的正实数∴ 2,2,2b a c a c ba b a c b c +>+>+> ∴ 6b c c a a ba ab bc c+++++> ∴3b c a a c b a b ca b c+-+-+-++>得证. 证法2:(综合法) ∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与cb全不相等. ∴2,2,2b a c a c ba b a c b c+>+>+> 三式相加得6b c c a a ba ab bc c+++++> ∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即3b c a a c b a b ca b c+-+-+-++>. 16.解:(1)采用反证法. 若n n a a =+1,即n nna a a =+12, 解得 .10,=n a 从而1011,===⋯⋯==-a a a n n 2a 与题设01>a ,11≠a 相矛盾,故n n a a ≠+1成立. (2) 211=a 、322=a 、543=a 、984=a 、17165=a , 12211+=--n n n a . (3)因为n n n n a p a p a p a 2211++=+++)( 又q a pa a p a nn n n ⋅+=+++11,所以02122=-+-+)()(q p a q p n ,因为上式是关于变量n a 的恒等式,故可解得21=q 、1-=p . 17.证明:(反证法)假设存在实数k ,使得A 、B 关于直线y =ax 对称,设A (x 1,y 1)、B (x 2,y 2)则⎪⎪⎩⎪⎪⎨⎧+=+++=+-=)3(22)2(2)()1(121212121x x a y y k x k y y ka 由022)3(1312222=---⇒⎩⎨⎧-=+=kx x k x y kx y ④由②、③有a (x 1+x 2)=k (x 1+x 2)+2 ⑤ 由④知x 1+x 2=232k k- 代入⑤整理得:ak =-3与①矛盾.故不存在实数k ,使得A 、B 关于直线y =ax 对称.18.分析:对所给各式进行比较观察,注意各不等式左边的最后一项的分母特点:1=21-1,3=22-1,7=23-1,15=24-1,…,一般的有2n -1,对应各式右端为一般也有2n . 解:归纳得一般结论*1111()23212nn n N ++++>∈- 证明:当n=1时,结论显然成立. 当n ≥2时,3333111111111111()()2321244222211111111()()2222222222n n n n n n n n n n ++++>+++++++++-++++-=-=+->故结论得证.∴21)2(41)21(-=-=f f ,),()21()21(1N n u n n ∈⋅-=-.故 ).(1)21(211])21(1[21N n S n n n ∈-=---=19.特殊—一般—特殊:其解法是先根据若干个特殊值,得到一般的结论,然后再用特殊值解决问题.分析:本题先根据题设求出函数f (x )解析式,然后假设t 存在,取x =1得t 的范围,再令x =m 求出m 的取值范围,进而根据t 的范围求出m 的最大值. 解法一:∵f (x -4)=f (2-x ),∴函数的图象关于x = -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又a b +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有 f (t m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒m 2(1t )m +(t 2+2t +1)≤0⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f (x 4)x =41(x 210x +9)=41(x 1)(x 9)≤0 ∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x = 1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,又a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2 由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立令 x =1有t 2+4t ≤0⇒4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解 令t = 4得,m 210m +9≤0⇒1≤m ≤9即当t = 4时,任取x ∈[1,9]恒有f (x -4)-x =41(x 210x +9)=41(x 1)(x 9)≤0 ∴ m m in =9点评:本题属于存在性探索问题,处理这道题的方法就是通过x 的特殊值得出t 的大致范围,然后根据t 的范围,再对x 取特殊值,从而解决问题.20.解:依题意有x cbx ax =-+2,化简为 ,0)1(2=++-a cx x b 由违达定理, 得 ⎪⎪⎩⎪⎪⎨⎧-=⋅--=+,102,102b a bc 解得 ,210⎪⎩⎪⎨⎧+==c b a 代入表达式c x c x x f -+=)21()(2, 由,2112)2(-<+-=-c f 得 x x f b c N b N c c ===∈∈<)(,1,0,,,3则若又不止有两个不动点,).1(,)1(2)(,2,22≠-===∴x x x x f b c 故 (2)由题设得,2:1)11(2)1(422n n n nn n a a S a a S -==-⋅得 (*) 且21112:1,1----=-≠n n n n a a S n n a 得代以 (**)由(*)与(**)两式相减得:,0)1)((),()(2112121=+-+---=----n n n n n n n n n a a a a a a a a a 即,2:(*)1,1211111a a a n a a a a n n n n -==-=--=∴--得代入以或解得01=a (舍去)或11-=a ,由11-=a ,若,121=-=-a a a n n 得这与1≠n a 矛盾,11-=-∴-n n a a ,即{}n a 是以-1为首项,-1为公差的等差数列,n a n -=∴;(3)采用反证法,假设),2(3≥≥n a n 则由(1)知22)(21-==+n nn n a a a f a ),2(,143)211(21)111(21)1(211N n n a a a a a a a n n n n n n n ∈≥<<=+<-+⋅=-=∴++即,有 21a a a n n <<<- ,而当,3;338281622,21212<∴<=-=-==n a a a a n 时这与假设矛盾,故假设不成立,3<∴n a .关于本例的第(3)题,我们还可给出直接证法,事实上: 由2121)211(21,22)(21211≤+--=-==+++n n n n n n n a a a a a a f a 得得1+n a <0或.21≥+n a ,30,011<<<++n n a a 则若结论成立; 若1+n a 2≥,此时,2≥n 从而,0)1(2)2(1≤---=-+n n n n n a a a a a 即数列{n a }在2≥n 时单调递减,由3222=a ,可知2,33222≥<=≤n a a n 在上成立. 比较上述两种证法,你能找出其中的异同吗? 数学解题后需要进行必要的反思, 学会反思才能长进.。
高二数学练习八一 选择题:(每题5分,共60分)1.条件 A 1B 2-A 2B 1=0是两条直线1110A x B y C ++=和2220A x B y C ++=平行的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知直线220x y +-=和10mx y -+=的夹角为4π,那么m 的值为 ( ) A .13-或3-; B . 13或3; C .13-或3; D . 13或3- 3. 方程22222-10x y ax ay a a +++++=表示圆,则a 的取值范围是 ( )A . -2a <或2/3a >B .-2/32a <<C .-20a <<D .-22/3a <<4.圆22-64120 x y x y +++=与圆22-14-2140x y x y ++=的位置关系是 ( )A .相切B . 相离C .相交D .内含5.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a 的值为 ( )A .2B .22-C .12-D .12+6.圆22 -460x y x y ++=和圆22-60x y x +=交于A 、B 两点,则AB 的垂直平分线的方程是 ( )A .30x y ++=B .2--50x y =C .3--90x y =D .4-370x y +=7.若直线3x -4y +12=0与两坐标轴交点为A 、B ,则以线段AB 为直径的圆的方程为( )A .x 2+y 2+4x -3y -4=0B .x 2+y 2-4x -3y -4=0C .x 2+y 2-4x -3y =0D .x 2+y 2+4x -3y =08.曲线1y =+x ∈[-2,2])与直线(-2)4y k x =+有两个公共点时,实数k 的取值范围是 ( ) A .(0,5/12 ) B .(1/3,3/4] C .(5/12, + )∞ D .(5/12,3/4]9.方程22cos sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数,且[0,2)θπ∈)表示的曲线是 ( ) A .圆 B .直线 C . 线段 D .点10.若点(,) P x y 满足2225x y +=,则x y +的最大值是 ( )A. 5 B .10 C . D .11.点(-1,4)P 作圆22-4-6120x y x y ++=的切线,则切线长为 ( )A . 5B . 5C .10 D . 3 12.若动点(, )P x y 在曲线221y x =+上移动,则P 与点(0,-1 )Q 连线中点的轨迹方程为A .22y x =B .24 y x = C .26y x = D . 28y x = ( ) 二. 填空题(每题4分,共16分)13.当R k ∈且1-≠k 时,圆ky x y x k +=++))(1(22总是经过定点____________ 14. 参数方程1121x y λλλλ⎧=⎪⎪+⎨+⎪=⎪+⎩(λ为参数),则它的普通方程为_________ 15. 已知直线L 经过点P(-4,-3),且被圆22(1)(2)25x y +++=截得的弦长为8,则直线L 的方程是___________16 .过点(1,2 )P 的直线L 把圆22-4-50x y x +=分成两个弓形,当其中较小弓形面积最小时,直线L 的方程是___________三 解答题:17.圆心在直线 y x =上,且与直线2-10x y +=相切的圆,截y 轴所得的弦长为2,求此圆的方程.(12分)18 已知圆 22: -4210 C x y x y +++=关于直线L : -210 x y +=对称的圆为 D .(1)求圆 D 的方程(2)在圆C 和圆 D 上各取点,,P Q 求线段PQ 长的最小值.(12分)19.已知Rt △ABC 中,∠C =90︒,A( 0 , 8 ) ,B ( 0 , -2 ),点C 在x 轴的正半轴上,点P 在AC 边上,且直线OP 将Rt △ABC 的面积两等分,求点P 的坐标。
全国高二高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、填空题1.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是________.2.已知集合A ={1,2,3,4},B ={5,6,7},C ={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合 ,则一共可以组成集合的个数为________.3.某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种类是________(用数字作答).4.210的正约数有________个.5.计算C 82+C 83+C 92=________.6.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成________个平行四边形.7.7名志愿者安排6人在周六、周日参加上海世博会宣传活动,若每天安排3人,则不同的安排方案有________种(用数字作答).8.若C 12n =C 122n-3,则n =________.9.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.10.某区有7条南北向街道,5条东西向街道(如图).则从A 点走到B 点最短的走法有________种.11.某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为________.12.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种________种(结果用数值表示).13.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有________种.二、解答题1.要从12人中选出5人参加一项活动,其中A 、B 、C 3人至多2人入选,有多少种不同选法?2.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?3.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种? (3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法? 4.求20C n+55=4(n +4)C n+3n-1+15A n+32中n 的值.5.从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同的选法? (1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.6.6个人进两间屋子,①每屋都进3人;②每屋至少进1人,问:各有多少种分配方法?7.某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种?全国高二高中数学同步测试答案及解析一、填空题1.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是________. 【答案】41【解析】分三类:一年级比赛的场数是C 52,二年级比赛的场数是C 82,三年级比赛的场数是C 32,再由分类计数原理求得总赛场数为C 52+C 82+C 32=41.2.已知集合A ={1,2,3,4},B ={5,6,7},C ={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合 ,则一共可以组成集合的个数为________. 【答案】26【解析】由C 41·C 31+C 31·C 21+C 41·C 21=26.3.某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种类是________(用数字作答). 【答案】266【解析】由题知,按钱数分10元钱,可有两大类,第一类是买2本1元,4本2元的共C 32C 84种方法;第二类是买5本2元的书,共C 85种方法. ∴共有C 32C 84+C 85=266(种).4.210的正约数有________个. 【答案】16【解析】由于210=2×3×5×7,则2、3、5、7中的任意一个数,或两个数之积,或三个数之积,或四个数之积,都是210的约数.又1也是一个约数,所以约数共有C 41+C 42+C 43+C 44+1=16(个).5.计算C 82+C 83+C 92=________. 【答案】120【解析】C 82+C 83+C 92=(C 82+C 83)+C 92 =C 93+C 92=C 103==120.6.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成________个平行四边形. 【答案】C m 2·C n 2【解析】分别从一组m 条中取两条,从另一组n 条中取两条,可组成平行四边形,即共有C m 2·C n 2个平行四边形.7.7名志愿者安排6人在周六、周日参加上海世博会宣传活动,若每天安排3人,则不同的安排方案有________种(用数字作答). 【答案】140【解析】分两步:第一步,安排周六,有C 种方案;第二步,安排周日,有C 43种方案,故共有C 73C 43=140(种)不同的安排方案.8.若C 12n =C 122n-3,则n =________. 【答案】3或5【解析】由C 12n =C 122n-3,得n =2n -3或n +2n -3=12, 解得n =3或n =5.9.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种. 【答案】140【解析】当甲、乙两人都参加时,有C 82=28(种)选法; 当甲、乙两人中有一人参加时, 有C 83·C 21=112(种)选法.∴不同的挑选方法有28+112=140(种).10.某区有7条南北向街道,5条东西向街道(如图).则从A 点走到B 点最短的走法有________种. 【答案】210【解析】每条东西向街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法,无论怎样走,一定包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段是走南北方向的),共有C 106=C 104=210(种)走法.11.某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为________. 【答案】16【解析】分两类:①含有甲C 21C 42,②不含有甲C 43, 共有C 21C 42+C 43=16种.12.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种________种(结果用数值表示). 【答案】7【解析】设餐厅至少还需准备x 种不同的素菜. 由题意,得C 52·C x 2≥200,从而有C x 2≥20. 即x(x -1)≥40.∴x 的最小值为7.13.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有________种. 【答案】70【解析】满足题设的情形分为以下2类:第一类,从4名教师选1人,又从5名学生中任选2人,有C 41C 52种不同选法; 第二类,从4名教师选2人,又从5名学生中任选1人,有C 42C 51种不同选法. 因此共有C 41C 52+C 42C 51=70(种)不同的选法.二、解答题1.要从12人中选出5人参加一项活动,其中A 、B 、C 3人至多2人入选,有多少种不同选法? 【答案】756【解析】解:法一 可分三类:①A ,B ,C 三人均不入选,有C 95种选法; ②A ,B ,C 三人中选一人,有C 31·C 94种选法; ③A ,B ,C 三人中选二人,有C 32·C 93种选法. 由分类计数加法原理,共有选法C 95+C 31·C 94+C 32·C 93=756(种).法二 先从12人中任选5人,再减去A ,B ,C 三人均入选的情况,即共有选法C 125-C 92=756(种).2.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形? 【答案】216【解析】解:我们把从共线的4个点取点中的多少作为分类的标准: 第一类:共线的4个点中有2个点作为三角形的顶点,共有C 42·C 81=48(个)不同的三角形; 第二类:共线的4个点中有1个点作为三角形的顶点,共有C 41·C 82=112(个)不同的三角形; 第三类:共线的4个点中没有点作为三角形的顶点,共有C 83=56(个)不同的三角形. 由分类计数原理,不同的三角形共有48+112+56=216(个).3.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种? (3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法? 【答案】(1)161700 (2)9506 (3)9604 (4)57036【解析】解:(1)所求不同的抽法数,即从100个不同元素中任取3个元素的组合数,共有C 1003==161700(种).(2)抽出的3件中恰好有一件是次品这件事,可以分两步完成: 第一步,从2件次品中任取1件,有C 21种方法; 第二步,从98件正品中任取2件,有C 982种方法. 根据分步计数原理,不同的抽取方法共有 C 21·C 982=2×=9506(种).(3)法一 抽出的3件中至少有一件是次品这件事,分为两类: 第一类:抽出的3件中有1件是次品的抽法,有C 21C 982种; 第二类:抽出的3件中有2件是次品的抽法,有C 21C 981种. 根据分类计数原理,不同的抽法共有C 21·C 982+C 22·C 981=9506+98=9604(种).法二 从100件产品中任取3件的抽法,有C 1003种,其中抽出的3件中没有次品的抽法,有C 983种.所以抽出的3件中至少有一件是次品的抽法,共有C 1003-C 983=9604(种). (4)完成题目中的事,可以分成两步: 第一步,选取产品,有C 21C 982种方法;第二步,选出的3个产品排列,有A 33种方法. 根据分步计数原理,不同的排列法共有 C 21C 982A 33=57036(种).4.求20C n+55=4(n +4)C n+3n-1+15A n+32中n 的值. 【答案】n =2 【解析】解:20×=4(n +4)×+15(n +3)(n +2)即:=+15(n +3)(n +2)∴(n +5)(n +4)(n +1)-(n +4)(n +1)·n =90, 即5(n +4)(n +1)=90,∴n 2+5n -14=0,即n =2或n =-7, ∵n≥1且n ∈Z ,∴n =2.5.从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同的选法? (1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出. 【答案】(1)60 (2)120 (3)99 【解析】解:(1)C 52·C 42=60. (2)C 51·C 43+C 52·C 42+C 53·C 41=120. (3)120-=99.6.6个人进两间屋子,①每屋都进3人;②每屋至少进1人,问:各有多少种分配方法? 【答案】(1)20 (2)62【解析】解:(1)先派3人进第一间屋,再让其余3人进第二间屋,有:C 63·C 33=20(种).(2)按第一间屋子内进入的人数可分为五类:即进一人、进2人、进3人、进4人、进5人,所以方法总数:C 61C 55+C 62C 44+C 63C 33+C 64C 22+C 65C 11=62(种).7.某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种? 【答案】84【解析】解:由于每队至少抽1辆,故问题转化为从7个车队中抽3辆车,可分类计算. 第一类:3辆车都从1个队抽,有C 71种; 第二类:3辆车从2个队抽,有A 72种; 第三类:3辆车从3个队抽,有C 73种.由分类计数原理,共有C 71+A 72+C 73=84(种).。
2022-2023学年高中高二下数学同步练习学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 平行四边形中,,在上投影的数量分别为,,则在上的投影的取值范围是 A.B.C.D.2. 正项数列满足,则( )A.B.C.D.3. 若直线与函数和的图象都相切,则( )A.B.C.D.4. 在和两数之间插人个数,使它们与,组成一个等差数列,则当时,该数列的ABCD AC −→−BD −→−AB −→−3−1BD −→−BC −→−()(−1,+∞)(−1,3)(0,+∞)(0,3){}a n =1,−(+2)−−3=0(n >1,n ∈N)a 1a 2n a n−1a n a n−1++⋯+1a 1a 31a 3a 5=1a 2019a 202112003534101060611220202120205461y =kx f (x)=e x g(x)=ln x +a a =32112n (n ∈)N +12n =10所有项和为( )A.B.C.D.5. 曲线与曲线的( )A.长轴长相等B.短轴长相等C.焦距相等D.离心率相等6. 已知两条互相平行的直线分别过点,,并且各自绕着,旋转,如果两条平行直线间的距离为,则的最大值是( )A.B.C.D.7. 已知,分别是椭圆:的左、右焦点,点在椭圆上,,点为坐标原点,则( )A.B.C.D.8. 设函数是定义在上的函数, 是函数的导函数,若,,则不等式的解集是( )A.15161718+=1x 216y 29+=1(9<k <16)x 216−k y 29−kA(6,2)B(−3,−1)A B d d 34310−−√410−−√F 1F 2C +=1x 24y 2D C ∠D =F 1F 2120∘O |OD|=6–√25–√2132f (x)R (x)f ′f (x)f (x)+(x)>−(x)f ′e −x f ′f (0)=1f (x)>2+1e x (0,+∞)(1,+∞)B.C.D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 下列结论正确的是( )A.已知点在圆上,则的最小值是B.已知直线和以为端点的线段相交,则实数的取值范围为C.已知点是圆外一点,直线的方程是,则与圆相交D.若圆上恰有两点到点的距离为,则的取值范围是 10. 已知数列的前项和为,且,(为非零常数),则下列结论正确的是( )A.是等比数列B.当时,C.当时,D.数列是递减数列11. 已知的定义域为,其函数图象关于直线对称且,当时,,则下列结论正确的是( )A.为偶函数B.在上单调递减C.关于对称D.12. 椭圆的右焦点为,点是椭圆上的动点,则的值可能是 A.B.(1,+∞)(−∞,0)(0,1)P (x,y)C :+=2(x −1)2(y −1)2y +2x 43kx −y −k −1=0M (−3,1),N (3,2)k −≤k ≤1232P (a,b)+=x 2y 2r 2l ax +by =r 2l M :+=(r >0)(x −4)2(y −4)2r 2N (1,0)1r (4,6){}a n n S n =p a 12−=2p S n+1S n p {}a n p =1=S 374p =12⋅=a m a n a m+n {}a n f (x)R x =−3f (x +3)=f (x −3)x ∈[0,3]f (x)=+2x −112x f (x)f (x)[−6,−3]f (x)x =3f (2021)=−7C :+=1x 29y 25F P C |PF|()23C.D.卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 若数列满足,且,则________.14. 斜率为的直线被双曲线截得的弦长为,则直线的方程是________.15. 已知四面体,,,,,则该四面体外接球半径为________.16. 已知函数,当时,恒成立,则的取值范围为________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 ) 17. 求下列函数的导数:;.18. 已知圆与圆相切于点,求以为圆心,且与圆的半径相等的圆的标准方程. 19. 如图,已知四边形中,且.是正三角形,且,是的中点,平面.(1)求证:;(2)求四棱锥的体积.20. 已知等差数列满足=,=.(1)求的通项公式;(2)等比数列的前项和为,且=,再从①=,②=,③这三个条件中选择两个作为已知条件,求的前项和.56{}a n ={a n+12a n −1a n (0≤≤1)a n (>1)a n =a 167=a 20172l −=1x 25y 2425–√l ABCD AB =4AC =AD =6∠BAC =∠BAD =60∘∠CAD =90∘f (x)=+ax e x x ≥0f (x)≥0a (1)y =x ⋅cos x +x −√(2)y =5(2x +1)log 2O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2M M C ABDE AE//BD BD =AE 12△ABC AB =AE =2M AC AE ⊥ABC BM ⊥CE C −ABDE {}a n a 33+a 8a 928{}a n {}b n n S n b 1a 2b 3++a 2a 3a 4S 313>b n+1b n {||}a n b n n T n21. 已知函数.(1)证明:当时,不等式恒成立;(2)当时,若方程有两个不等实根,求实数的取值范围.22. 设抛物线的焦点为,过作直线交抛物线于,两点.当与轴垂直时,面积为,其中为坐标原点.求抛物线的标准方程;若的斜率存在且为,点,直线与的另一交点为,直线与的另一交点为,设直线的斜率为,证明:为定值.E :=2px (p >0)y 2F F l E A B l x △AOB 8O (1)E (2)l k 1P (3,0)AP E C BP E D CD k 2k 2k 1参考答案与试题解析2022-2023学年高中高二下数学同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】向量的投影【解析】首先建立平面直角坐标系,进一步利用向量的坐标运算和数量积求出结果.【解答】解:以为原点,所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系,如图所示,设,,,则,解得,所以,,,,设,的夹角为,过点作于点,则在上的投影:A AB x A AB y B(a,0)C(3,b)D(a −1,b)3−(a −1)=a a =2D(1,b)C(3,b)=(1,b)BC −→−=(−1,b)BD −→−BD −→−BC −→−θD DM ⊥BC M BD −→−BC −→−||=||⋅cos θBM −→−BD −→−−→−−→−,令,则,令,则在上单调递增,故,故,则在上的投影的取值范围是.故选.2.【答案】B【考点】数列的求和【解析】,,因为,,数列是,公差为的等差数列,.选 . 【解答】解:,.因为,,数列是,公差为的等差数列,=⋅BC −→−BD −→−||BC −→−==−−1b 2+1b 2−−−−−√+1b 2−−−−−√2+1b 2−−−−−√=t(t >1)+1b 2−−−−−√||=t −BM −→−2t f(t)=t −2t f(t)(1,+∞)f(t)>f(1)=−1f(t)>−1BD −→−BC −→−(−1,+∞)A −(+2)−−3=0(n >1,n ∈N)a 2n a n−1a n a n−1[−(+3)](+1)=0(n >1,n ∈N)a n a n+1a n >0a n −=3a n a n−1{}a n =1a 13=1+3(n −1)=3n −2a n ++⋯+=[−+⋯+−]=[1−]=1a 1a 31a 3a 51a 2019a 2021161a 11a 31a 20191a 202116160110106061B −(+2)−−3=0(n >1,n ∈N)a 2n a n−1a n a n−1[−(+3)](+1)=0(n >1,n ∈N)a n a n−1a n >0a n −=3a n a n−1{}a n =1a 13=1+3(n −1)=3n −2a n ++⋯+1a1a 31a 3a 51a 2019a 2021=[−+⋯+−]=[1−]161a 11a 31a 20191a 202116160611010.故选 .3.【答案】B【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:由题意得,,由导数的几何意义可得切线的斜率,直线与函数的切点坐标为,则.,则有,解得,代入直线方程得,直线与的切点坐标为,将切点坐标代入得,,.故选.4.【答案】D【考点】等差数列的前n 项和等差数列的性质【解析】此题暂无解析【解答】=10106061B (x)=f ′e x k =e x y =kx f (x)=e x (1,e)k =e (x)=g ′1x k =e =1x x =1e y =kx =1y =kx g(x)=ln x +a (,1)1eg(x)1=−1+a a =2B此题暂无解答5.【答案】C【考点】椭圆的定义和性质【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】两条平行直线间的距离【解析】(1)方法一:①当两条直线的斜率不存在时,可求得两直线间的距离;②当两条直线的斜率存在时,设这两条直线方程为,,利用两平行线间的距离公式可求得两直线间的距离的表示式,两端平方,整理成关于斜率的二次方程,利用其有解的条件即可求得的变化范围;【解答】解:如图所示,,显然有.而.故所求的的变化范围为.故的最大值是.故选.7.【答案】:y −2=k(x −6)l 1:y +1=k(x +3)l 2d k d 0<d ≤|AB ||AB |==3[6−(−3)+[2−(−1)]2]2−−−−−−−−−−−−−−−−−−−−√10−−√d (0,3]10−−√d 310−−√CC【考点】椭圆的定义和性质余弦定理【解析】此题暂无解析【解答】解:设,由椭圆的定义可得,由余弦定理可得,即,整理可得,解得,所以,即点与椭圆的上顶点重合,所以 .故选.8.【答案】A【考点】利用导数研究函数的单调性【解析】由题意,设出新函数,求导,将问题进行转化,求出新函数的单调性,进而求解即可.【解答】解:令,则,因为,即,所以,即,所以函数在上单调递增,因为,所以,即,解得,所以不等式的解集为.故选:.|D |=m F 2|D |=4−m F 1|=|D +|D −2|D |F 1F 2|2F 1|2F 2|2F 1|D |cos ∠D F 2F 1F 2+−2m(4−m)×(−)=12(4−m)2m 212−4m +4=0m 2m =2|D |=|D |=2F 1F 2D C |OD|=1C g(x)=(+1)f (x)e x (x)=f (x)+(+1)(x)g ′e x e x f ′f (x)+(x)>−(x)f ′e −x f ′f (x)+(1+)(x)>0e −xf ′f (x)+(+1)(x)>0e x e x f ′(x)>0g ′g(x)R f (x)>2+1e x (+1)f (x)>2e x g(x)>g(0)x >0f (x)>2+1e x (0,+∞)A二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】C,D【考点】直线与圆的位置关系点到直线的距离公式直线和圆的方程的应用直线与圆相交的性质命题的真假判断与应用斜率的计算公式【解析】选项分情况讨论,直线过原点和不过原点两种情况;选项中直线恒过点,计算即可求解;选项中利用圆心到直线距离及点在圆外即可判断;选项根据以为圆心,为半径的圆与已知圆相交,利用圆心距与两圆的圆的半径间关系即可求解.【解答】解:选项,设 ,则,因为点在圆 上,所以直线与圆有交点,因此圆心到直线的距离 ,解得 或,故错误;选项,由得,所以即直线过点,因为直线和以,为端点的线段相交,所以只需或 ,故错误;A B kx −y −1−1=0P (1,−1),k PM k PN C P D N 1A k =y +2xy =kx −2P (x,y)C :+=2(x −1)2(y −1)2y =kx −2C :+=2(x −1)2(y −1)2(1,1)y =kx −2d =≤|k −3|1+k 2−−−−−√2–√k ≤−7k ≥1A B kx −y −k −1=0k (x −1)−(y +1)=0{x =1,y =−1,kx −y −k −1=0P (1,−1)kx −y −k −1=0M (−3,1)N (3,2)k ≥==k PN 2−(−1)3−132k ≤==−k PM 1−(−1)−3−112B =2选项,圆的圆心到直线的距离 ,而点是圆外一点,所以 ,所以 ,所以直线与圆相交,故正确;选项,与点的距离为的点在圆上,由题意知圆与圆相交,所以圆心距满足 ,解得 ,故正确.故选.10.【答案】A,B,C【考点】等比数列的通项公式数列递推式等比数列的性质【解析】.由得,所以}是首项为中公比为的等比数列,选项正确;当时,,选项正确;当时,,选项正确;当时,数列是递减数列;当时,数列是递增数列,选项错误.故选.【解答】解:,,,即.,,,,所以}是首项为,公比为的等比数列,选项正确;当时,,选项正确;当时,,,选项正确;当时,数列是递减数列;当时,数列是递增数列,选项错误.C +=x 2y 2r 2(0,0)ax +by =r 2d =r 2+a 2b 2−−−−−−√P (a,b)+=x 2y 2r 2+>a 2b 2r 2d =<=r r 2+a 2b2−−−−−−√r 2r l C D N (1,0)1+=1(x −1)2y 2M :+=(r >0)(x −4)2(y −4)2r 2+=1(x −1)2y 2d =MN =5r −1<d =5<r +14<r <6D CD 2−=2p,2−=2p,S n+1S n S n S n−12−=0,=(n ≥2)a n+1a n a n+112a n =p,2−a 1S 2=2p S 12(+)−−2p,−=a 1a 2a 1a 2p 212a 1{a n 12A p =1=1++=S 3121474B p =12=,⋅=a n ()12n a m a n a m+n C p >0{}a n p <0{}a n D ABC ∵2−=2p S n+1S n ∴2−=2p (n ≥2)S n S n−1∴2−=0a n+1a n =(n ≥2)a n+112a n ∵=p a 12−S 2=2p S 1∴2(+)−=2p a 1a 2a 1==a 2p 212a 1{a n p 12A p =1=1++=S 3121474B p =12=a n ()12n ⋅=a m a n a m+n C p >0{}a n p <0{}a n D ABC故选.11.【答案】A,C,D【考点】函数奇偶性的性质奇偶函数图象的对称性函数的图象与图象变化奇偶性与单调性的综合函数的周期性【解析】此题暂无解析【解答】略12.【答案】A,B,C【考点】椭圆中的平面几何问题椭圆的定义【解析】由是椭圆上的动点,为椭圆的右焦点,可知,而,从而,所以可能取到的值是2,3,5.【解答】解:由题意,是椭圆上的动点,为椭圆的右焦点,则由椭圆的几何性质可知,而,从而,所以可能取到的值是.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )ABC P F a −c ≤|PF|≤a +c c ==29−5−−−−√1≤|PF|≤5|PF|P F a −c ≤|PF|≤a +c c ==29−5−−−−√1≤|PF|≤5|PF|2,3,5ABC13.【答案】【考点】数列递推式【解析】本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力.【解答】解:依题意得∴,,,,,,……可知数列为周期数列,且周期为,所以故答案为:.14.【答案】【考点】与双曲线有关的中点弦及弦长问题【解析】先设出直线的方程,联立双曲线方程,运用韦达定理和判别式大于,再由弦长公式求出弦长,让弦长为,即可求出参数的值.【解答】解:设直线的方程为,与双曲线交于,两点.设,两点的坐标分别为,,127=2=a 2a 1127=−1=a 3a 257=2=a 4a 3107=−1=a 5a 437=2=a 6a 567=2=a 7a 6127{}a n 5==a 2017a 2127127y =2x ±125–√5l 025–√l y =2x +m A B A B A(,)x 1y 1B(,)x 2y 2=122将代入双曲线,并整理得:,,即为,解得或.∴,,∴,∴,解得:.∴所求直线的方程为:.故答案为:.15.【答案】【考点】球的表面积和体积球内接多面体【解析】作出图形,利用勾股定理,求出四面体外接球半径.【解答】解:如图所示,为的外心,为球心,平面,,则,∴,,.设该四面体外接球半径为,,则,∴,,∴,故答案为:.16.【答案】【考点】利用导数研究不等式恒成立问题函数恒成立问题y =2x +m −=1x 25y 2416+20mx +5(+4)=0x 2m 2Δ=400−4×16×5(+4)>0m 2m 2>16m 2m >4m <−4+=−m x 1x 254=(+4)x 1x 2516m 2(−=(+−4=−(+4)x 1x 2)2x 1x 2)2x 1x 22516m 254m 2|AB =(1+)(−=5(−=−(+4)=20|2k 2x 1x 2)2x 1x 2)212516m 2254m 2m =±125–√5y =2x ±125–√5y =2x ±125–√525–√O'△ACD O BE ⊥ACD BF⊥AC EF ⊥AC AF =2AE =22–√BE ==216−8−−−−−√2–√R OO'=d 2+(2+d =+(32–√)2d 22–√)2d =2–√CD =62–√R ==22+18−−−−−√5–√25–√[−e,+∞)【解析】无【解答】解:由题意可得.因为,所以.当时,,则在上单调递增,从而恒成立,故符合题意.当时,令,得.因为在 上单调递增,所以在上单调递减,在上单调递增,则.因为,所以,即,解得,综上,的取值范围为.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】解:.设 ,,则.【考点】简单复合函数的导数导数的运算【解析】此题暂无解析【解答】解:.设 ,,则.18.【答案】解:圆,可化为(x)=+a f ′e x x ≥0(x)≥a +1f ′a ≥−1(x)≥0f ′f (x)[0,+∞)f =f (0)=1>0(x)min a ≥−1a <−1(x)=0f ′x =ln(−a)(x)f ′R f (x)(0,ln(−a))(ln(−a),+∞)f =f (ln(−a))=−a +a ln(−a)(x)min f (x)≥0−a +a ln(−a)≥0ln(−a)≤1−e ≤a <−1a [−e,+∞)[−e,+∞)(1)y =+=cos x −x ⋅sin x +(x ⋅cos x)′()x −√′12x −12(2)y =52u log 2u =2x +1=5==y ′(u)log 2′(2x +1)′10u ln 210(2x +1)ln 2(1)y =+=cos x −x ⋅sin x +(x ⋅cos x)′()x −√′12x −12(2)y =52u log 2u =2x +1=5==y ′(u)log 2′(2x +1)′10u ln 210(2x +1)ln 2C :+−6x −8y +m =0x 2y 2(x −3+(y −4=25−m)2)2O :+=122C :+−6x −8y +m =022∵圆与圆相切,∴或∴或∴圆:或:设,由题知,或,故或故所求圆的方程为或.【考点】圆与圆的位置关系及其判定圆的标准方程【解析】利用圆与圆相切,求出,设,由题知,或,求出的坐标,即可求以为圆心,且与圆的半径相等的圆的标准方程.【解答】解:圆,可化为∵圆与圆相切,∴或∴或∴圆:或:设,由题知,或,故或故所求圆的方程为或.19.【答案】【考点】柱体、锥体、台体的体积计算直线与平面平行的判定【解析】此题暂无解析【解答】此题暂无解答20.O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2|OC |=1+=525−m −−−−−−√|OC |=−1=525−m−−−−−−√m =9m =−11C (x −3+(y −4=16)2)2C (x −3+(y −4=36)2)2M(x,y)=4CM −→−MO −→−=6CM −→−OM −→−M(,)3545M(−,−)3545(x −+(y −=1635)245)2(x ++(y +=3635)245)2O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2m M(x,y)=4CM −→−MO −→−=6CM −→−OM −→−M M C C :+−6x −8y +m =0x 2y 2(x −3+(y −4=25−m)2)2O :+=1x 2y 2C :+−6x −8y +m =0x 2y 2|OC |=1+=525−m −−−−−−√|OC |=−1=525−m−−−−−−√m =9m =−11C (x −3+(y −4=16)2)2C (x −3+(y −4=36)2)2M(x,y)=4CM −→−MO −→−=6CM −→−OM −→−M(,)3545M(−,−)3545(x −+(y −=1635)245)2(x ++(y +=3635)245)2【答案】由题意,设等差数列的公差为,则,解得,∴==,,由(1),可得==,方案一:选择条件①②设等比数列的公比为,则===,==,∴,解得=,∴==,,方案二:选择条件①③设等比数列的公比为,则===,∴==,∵,∴,∴=,∴==,,方案三:选择条件②③设等比数列的公比为,则===,即=,解得=,或=,∵,∴,∴=,∴==,,∴=,∴==,=,两式相减,可得==……==,∴=.【考点】数列的求和等差数列的通项公式【解析】{}a n d a n −5+2×(n −1)5n −3n ∈N ∗b 1a 61{}b n q b 3++a 4a 3a 48+3+58S 3++b 1b 3b 313q 3b n 7⋅3n−18n−1n ∈N ∗{}b n q b 3++a 2a 3a 48+3+56q 29>b n+1b n q >3q 3b n 1⋅8n−13n−8n ∈N ∗{}b n q S 3++b 1b 3b31+q +q 413+q −12q 20q −6q 3>b n+1b n q >4q 3b n 1⋅4n−13n−8n ∈N ∗a n b n (2n −3)⋅6n−1T n ||+||+||+...+||a 1b 6a 2b 2a 3b 3a n b n 1×2+1×3+7×+...+(8n −3)⋅323n−23T n 1×4+1×+...+(2n −5)⋅+(2n −2)⋅387n−13n −2Tn 6+2×+...+2⋅−(2n −3)⋅363n−64n1+2×(++2236+)−(6n −3)⋅3n−13n6+2×−(2n −3)⋅4n−2(n −2)⋅−82n T n (n −2)⋅+47n {}d d(1)先设等差数列的公差为,然后根据已知条件列出关于首项与公差的方程组,解出与的值,即可计算出数列的通项公式;(2)先根据第(1)题计算出=,然后分别根据两个已知条件列出关于公比的方程,解出的值,即可计算出数列的通项公式,进一步计算出数列的通项公式,然后运用错位相减法即可计算出的前项和.【解答】由题意,设等差数列的公差为,则,解得,∴==,,由(1),可得==,方案一:选择条件①②设等比数列的公比为,则===,==,∴,解得=,∴==,,方案二:选择条件①③设等比数列的公比为,则===,∴==,∵,∴,∴=,∴==,,方案三:选择条件②③设等比数列的公比为,则===,即=,解得=,或=,∵,∴,∴=,∴==,,∴=,∴==,=,两式相减,可得==……==,∴=.21.{}a n d a 1d a 1d {}a n b 11q q {}b n {}a n b n {||}a n b n n T n {}a n d a n −5+2×(n −1)5n −3n ∈N ∗b 1a 61{}bn q b 3++a 4a 3a 48+3+58S 3++b 1b 3b 313q 3b n 7⋅3n−18n−1n ∈N ∗{}b n q b 3++a 2a 3a 48+3+56q 29>b n+1bn q >3q 3bn 1⋅8n−13n−8n ∈N ∗{}b n q S 3++b 1b 3b 31+q +q 413+q −12q 20q −6q 3>b n+1b n q >4q 3b n 1⋅4n−13n−8n ∈N ∗a n b n (2n −3)⋅6n−1T n ||+||+||+...+||a 1b 6a 2b 2a 3b 3a n b n 1×2+1×3+7×+...+(8n −3)⋅323n−23T n 1×4+1×+...+(2n −5)⋅+(2n −2)⋅387n−13n −2Tn 6+2×+...+2⋅−(2n −3)⋅363n−64n1+2×(++2236+)−(6n −3)⋅3n−13n6+2×−(2n −3)⋅4n−2(n −2)⋅−82n T n (n −2)⋅+47n【答案】(1)证明见解析;(2)【考点】利用导数研究函数的最值已知函数极最值求参数问题【解析】(1)将代入得到的表达式,根据不等式两边的式子,通过构造新函数,对新函数进行求导得到单调区间,进而得出结论.(2)方程有两个不等实根,等价于有两个不等实根,结合导数研究函数单调性的知识,从而求出的取值范围.【解答】(1)方程有两个不等实根,即方程有两个不等实根,令则①若则有一个零点,不符合题意;②若,由可得令,得,所以在上单调递减,令,得,所以在上单调递增.所以若,即时,无零点,不符合题意;(ī)若,即时,有且只有一个零点,不符合题意;ⅲī若,即时,,又所以在(2)上有一个零点.当时,由(1)得所以令,得,取,因为,所以且,所以,在上有一个零点.⋅a <232a =1f (x)f (x)=x −+(a −1)x −(a −2)ln x =012x 2a f (x)=x −+(a −1)x −(a −2)ln x =012x 2F (x)=−+(a −1)x −(a −2)ln x (x >0)12x 2F (x)=−x +(a −1)−=−a −2x (x −1)[x −(a −2)]x a =2F (x)=−+x 12x 2F (x)=0x =2a <2x >0x −(a −2)>0(x)<0F ′x >1F (x)(1,+∞)(x)>0F ′0<x <1F (x)(0,1)F (x)≤F (1)=a −32(i)a −<032a <32F (x)i a −=032a =32F (x)()a −>032>>v 加v 加v 加F (1)>0F (2)=(a −2)(2−ln 2)<0F (x)0<x <11nx ∵x −1F (x)=−+(a −1)x −(a −2)ln x 12x 2=−+(a −1)x +(2−a)ln x <−+(a −1)x +(2−a)(x −1)12x 212x 2=−+x −(2−a)<x −(2−a)12x 2x −(2−a)<0x <2−a =2−a x 0>>v 加v 加v 加∈(0,)x 012F ()<0x 0F (x)(,1)x 0F (x)(0,+∞)即在上有两个不同的零点.所以实数的取值范围为22.【答案】解:由题意不妨设,,∴,∵,解得(负值舍去),∴.证明:设,,,,则直线的斜率为,直线的方程为,则.又点在直线上,∴,同理,直线的方程为,∵点在直线上,∴,同理,直线的方程为,又点在直线上,∴.∵,,∴.【考点】抛物线的标准方程直线与抛物线的位置关系圆锥曲线中的定点与定值问题【解析】此题暂无解析【解答】解:由题意不妨设,,∴,∵,解得(负值舍去),∴.证明:设,,,,则直线的斜率为,F (x)(0,+∞)α<a <232(1)A(,p)p 2B(,−p)p 2AB =2p ⋅2p ⋅=812p 2p =4=8x y 2(2)A(,)x 1y 1B(,)x 2y 2C(,)x 3y 3D(,)x 4y 4l ===k 1−y 1y 2−x 1x 2−y 1y 2(−)18y 21y 228+y 1y 2AB y −=(x −)y 18+y 1y 2x 1(+)y −=8x y 1y 2y 1y 2F (2,0)−=16y 1y 2BD (+)y −=8x y 2y 4y 2y 4P (3,0)BD −=24y 2y 4AC (+)y −=8x y 1y 3y 1y 3P (3,0)AC −=24y 1y 3=k 18+y 1y 2=k 28+y 3y 4==k 2k 1+y 1y 2+y 3y 4+y 1y 2+−24y 1−24y 2===y 1y 2−24−16−2423(1)A(,p)p 2B(,−p)p 2AB =2p ⋅2p ⋅=812p 2p =4=8x y 2(2)A(,)x 1y 1B(,)x 2y 2C(,)x 3y 3D(,)x 4y 4l ===k 1−y 1y 2−x 1x 2−y 1y 2(−)18y 21y 228+y 1y 2−=(x −)8直线的方程为,则.又点在直线上,∴,同理,直线的方程为,∵点在直线上,∴,同理,直线的方程为,又点在直线上,∴.∵,,∴.AB y −=(x −)y 18+y 1y 2x 1(+)y −=8x y 1y 2y 1y 2F (2,0)−=16y 1y 2BD (+)y −=8x y 2y 4y 2y 4P (3,0)BD −=24y 2y 4AC (+)y −=8x y 1y 3y 1y 3P (3,0)AC −=24y 1y 3=k 18+y 1y 2=k 28+y 3y 4==k 2k 1+y 1y 2+y 3y 4+y 1y 2+−24y 1−24y 2===y 1y 2−24−16−2423。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
高二数学同步练习排列组合及答案高二数学同步练习-排列组合及答案高二数学试题(8)-排列与组合ycy本试卷分为第一卷和第二卷,共150分第ⅰ卷(选择题,共50分)一、多项选择题(本主题共有10个子题,每个子题得5分,总计50分。
在为每个子题提供的四个选项中,只有有一项是符合题目要求的.)1.有a、b、c、d、e共5人并排站在一起,如果a、b 必须相邻,并在b在a的右边,那有60种排列,48种排列,36种排列和24种排列2.从1、2、3、4、5这五个数字中任取3个组成无重复数字的三位数,当三个数字有2和3当,2需要在3前面(不一定相邻),所以有()A.9,b.15,c.45和d.51三个数字3.ab和cd为平面内两条相交直线,ab上有m个点,cd上有n个点,且两直线上各有如果其中一个与交点重合,则顶点为m+n-1点的三角形数为()12121212a.cmb.cncn?cncm?1cm?cmcn12121212c.cmd.cm?1cn?cn?1cm?1?1cn?cmcn4.如图,用5种不同颜色给图中标有1、2、3、4各部分涂色,每部分只涂一种颜色,且相相邻的两部分被涂上不同的颜色。
共有()a.160种、b.240种、c.260种和d.360种不同的绘画方法5.从5个中国人、4个美国人、3个日本人从每组中选择一个人的方法是()a.12种b、 24种c.48种d、 60种6.用1、2、3、4四个数字组成含有重复数字的四位数,其个数是()a、 265b.232个c、 128d.24个7.4学生报名参加语言、数学和英语兴趣小组。
每个学生选择一个,不同的方法是()8.从单词“ctbenjin”中选取5个不同字母排成一排,含有“en”(其中“en”相连且顺序不同排列的共同点a.43种b.34种3c。
a4,3d。
补体第四成份()a、公元前120年480年720-1-d、 8409.6个人排成一排,其中甲、乙两人中间至少有一人的排法有a、 480种b.720种c、 240种d.360种()10.5个身高不等的学生站成一排合影,从中间到两边一个比一个矮的排法有()a、 6种b.8种c、 10种d.12种第二卷(非多项选择题,共100分)二、填空题(本大题满分24分,每小题6分,各题只要求直接写出结果.)11.从10件产品(其中含2件次品)中任取5件,其中含有次品的抽法有种.12.从10个学生中挑选若干人组成一组,如果必含其中某人的组合数等于必不含某人的组组合数,那么这样的组合数有13.以正三棱柱的顶点为顶点的四面体共有____________个.14.3人坐在一排8个座位上。
8.3 分类变量与列联表---A基础练一、选择题1.(2021·全国高二课时练习)如表是一个2×2列联表:则表中a,b的值分别为()A.94,72B.52,50C.52,74D.74,52【答案】C【详解】a=73-21=52,b=a+22=52+22=74.故选:C.2.(2021·江苏高二)为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时,用什么方法最有说服力()A.平均数B.方差C.回归分析D.独立性检验【答案】D【详解】分析已知条件,得如下表格.的值,再与临界值比较,检验这些中学生眼睛近视是否与性别有关,根据列联表利用公式可得2故利用独立性检验的方法最有说服力.故选:D.3.(2021·全国高二课时练)对于分类变量X与Y的随机变量x2的值,下列说法正确的是()A.x2越大,“X与Y有关系”的可信程度越小B.x2越小,“X与Y有关系”的可信程度越小C.x2越接近于0,“X与Y没有关系”的可信程度越小D.x2越大,“X与Y没有关系”的可信程度越大【答案】B【详解】根据独立性检验的基本思想可知,分类变量X与Y的随机变量x2的观测值越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大;x2越小,“X与Y有关系”的可信程度越小,“X 与Y没有关系”的可信程度越大,故ACD错误,B正确.故选:B.4.(2021·江苏星海实验中学高二)某班班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:临界值表:根据表中数据分析,以下说法正确的是()A.有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系B.有99.5%的把握认为学生的学习积极性与对待班级工作的态度有关系C.有99%的把握认为学生的学习积极性与对待班级工作的态度有关系D.没有充分的证据显示学生的学习积极性对待班级工作的态度有关系【答案】A【详解】2250(181976)11.5410.82825252426χ⨯⨯-⨯=≈>⨯⨯⨯, 所以有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系.故选:A.5.(多选题)(2021·全国高二课时练习)因防疫的需要,多数大学开学后启用封闭式管理.某大学开学后也启用封闭式管理,该校有在校学生9000人,其中男生4000人,女生5000人,为了解学生在封闭式管理期间对学校的管理和服务的满意度,随机调查了40名男生和50名女生,每位被调查的学生都对学校的管理和服务给出了满意或不满意的评价,经统计得到如下列联表:附表:附:22()()()()()n ad bc a b c d a c b d χ-=++++ 以下说法正确的有( )A .满意度的调查过程采用了分层抽样的抽样方法B .该学校学生对学校的管理和服务满意的概率的估计值为0.6C .有99%的把握认为学生对学校的管理和服务满意与否与性别有关系D .没有99%的把握认为学生对学校的管理和服务满意与否与性别有关系 【答案】AC【详解】因为男女比例为4000︰5000,故A 正确.满意的频率为204020.667903+=≈,所以该学校学生对学校的管理和服务满意的概率的估计值约为0.667,所以B 错误.由列联表2290(20102040)9 6.63540506030χ⨯⨯-⨯==>⨯⨯⨯,故有99%的把握认为学生对学校的管理和服务满意与否与性别有关系,所以C 正确,D 错误.故选:AC.6.(多选题)(2021·全国高二课时练)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关“作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有( )人 附表:附: 22()()()()()n ad bc a b c d a c b d χ-=++++ A .25 B .35 C .45 D .60【答案】CD【详解】设男生可能有x 人,依题意得女生有x 人,可得22⨯列联表如下:若有95%的把握认为是否喜欢抖音和性别有关,则2 3.841K >,即224231225555 3.841732155x x x x x x x x x x χ⎛⎫⋅⋅-⋅ ⎪⎝⎭==>⋅⋅⋅,解得40.335x >,由题意知0x >,且x 是5的整数倍,所以45和60都满足题意.故选:CD. 二、填空题7.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人的一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”。
练习时限:45分钟 学生姓名__________ 班级_______ 学号_____ 教师评定__________
等 差 数 列 (二)
1.已知a=231
+,b=231
-,则a,b 的等差中项为( )
A .22
B .3
3 C .2 D .3 2.等差数列的前4项依次是a-1,a+1,2a+3,2b-3,则( )
A .a=1,b=2
B .a=-1,b=4
C .a=0,b=4
D .a=2,b=-2
3.若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )
A .39
B .20
C .19.5
D .33
4.设{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )
A .0
B .37
C .100
D .-37
5.在3与27之间插入7个数,使这9个数成等差数列,则插入的7个数中的第4个数值为( )
A .18
B .15
C .9
D .12
6.下列各命题中,真命题是( )
A .若{a n }是等差数列,则{|a n |}也是等差数列
B .若{|a n |}是等差数列,则{a n }也是等差数列
C .若存在自然数n 使2a n+1=a n +a n+2,则{a n }是等差数列
D .若{a n }是等差数列,则对任意正整数n 都有2a n+1=a n +a n+2
7.若5,x,y,z,21成等差数列,则x=______,y=______,z=_______.
8.等差数列{a n }中,a 3,a 10是方程x 2
-3x-15=0的两根,则a 5+a 8=_________。
9.等差数列100,96,92……从第_____项开始,各项均为负值。
10.已知等差数列{a n }中,a 5+a 6+a 7=15,a 5·a 6·a 7=45,求数列{a n }的通项公式。
11.已知a,b,c 成等差数列,求证:a+b,a+c,b+c 也成等差数列。
12.三个数成等差数列,它们的和为21,前两个数的积比第三个数的平方少100,求这三个数。
*13.在△ABC 中,若lgsinA,lgsinB,lgsinC 成等差数列,且三内角A 、B 、C 也成等差
数列,试判断三角形的形状。
(参考公式:sin )]cos()[cos(21sin β-α-β+α-=β+α)。