2016年南开大学数学分析考研试题
- 格式:pdf
- 大小:46.65 KB
- 文档页数:1
2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)下列反常积分中收敛的是(A) (B)(C) (D)【答案】D。
【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。
;;;,因此(D)是收敛的。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数积分学—反常积分(2)函数在(-,+)内(A)连续 (B)有可去间断点(C)有跳跃间断点 (D)有无穷间断点【答案】B【解析】这是“ ”型极限,直接有,在 处无定义,且 所以 是的可去间断点,选B。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—两个重要极限(3)设函数,().若在处连续,则(A) (B) (C) (D)【答案】A【解析】易求出,再有不存在, ,于是,存在,此时.当 时, ,=不存在, ,因此,在 连续。
选A综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数连续的概念,函数的左极限和右极限(4)设函数在(-,+)内连续,其二阶导函数的图形如右图所示,则曲线的拐点个数为 A O B(A) (B)(C) (D)【答案】C【解析】在(-,+)内连续,除点 外处处二阶可导。
的可疑拐点是的点及不存在的点。
的零点有两个,如上图所示,A点两侧恒正,对应的点不是拐点,B点两侧异号,对应的点就是的拐点。
虽然 不存在,但点 两侧 异号,因而() 是 的拐点。
综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数单调性,曲线的凹凸性和拐点(5)设函数满足,则与依次是(A) (B)(C) (D)【答案】D【解析】先求出令于是因此综上所述,本题正确答案是D。
【考点】高等数学-多元函数微分学-多元函数的偏导数和全微分(6)设D是第一象限中由曲线 与直线围成的平面区域,函数 在D上连续,则(A)(B)(C)(D)【答案】 B【解析】D是第一象限中由曲线 与直线 围成的平面区域,作极坐标变换,将化为累次积分。
2016年南开大学概率论与数理统计考研考试科目-考研参考书-考研真题-考研报录比070103概率论与数理统计01信息论数学分析、高等代数科目使用数学科学学院试卷。
Y12M8①101思想政治理论②201英语一③714数学分析④845高等代数02编码理论数学分析、高等代数科目使用数学科学学院试卷。
Y12M8①101思想政治理论②201英语一③714数学分析④845高等代数03密码学数学分析、高等代数科目使用数学科学学院试卷。
Y12M8①101思想政治理论②201英语一③714数学分析④845高等代数专业课的复习和应考有着与公共课不同的策略和技巧,虽然每个考生的专业不同,但是在总体上都有一个既定的规律可以探寻。
以下就是针对考研专业课的一些十分重要的复习方法和技巧。
一、专业课考试的方法论对于报考本专业的考生来说,由于已经有了本科阶段的专业基础和知识储备,相对会比较容易进入状态。
但是,这类考生最容易产生轻敌的心理,因此也需要对该学科能有一个清楚的认识,做到知己知彼。
跨专业考研或者对考研所考科目较为陌生的同学,则应该快速建立起对这一学科的认知构架,第一轮下来能够把握该学科的宏观层面与整体构成,这对接下来具体而丰富地掌握各个部分、各个层面的知识具有全局和方向性的意义。
做到这一点的好处是节约时间,尽快进入一个陌生领域并找到状态。
很多初入陌生学科的同学会经常把注意力放在细枝末节上,往往是浪费了很多时间还未找到该学科的核心,同时缺乏对该学科的整体认识。
其实考研不一定要天天都埋头苦干或者从早到晚一直看书,关键的是复习效率。
要在持之以恒的基础上有张有弛。
具体复习时间则因人而异。
一般来说,考生应该做到平均一周有一天的放松时间。
四门课中,专业课(数学也属于专业课)占了300分,是考生考入名校的关键,这300分最能拉开层次。
例如,专业课考试中,分值最低的一道名词解释一般也有4分或者更多,而其他专业课大题更是动辄十几分,甚至几十分,所以在时间分配上自然也应该适当地向专业课倾斜。
2016年南开大学数学学院研究生考研《高等代数》考试大纲(上)(草稿)(一)多项式考试内容数域;一元多项式;整除的概念及性质;最大公因式及辗转相除法;互素的概念及性质;不可约多项式的概念及性质;因式分解及唯一性定理。
考试要求1. 掌握数域、一元多项式的概念,了解一元多项式的运算及性质。
2. 掌握多项式整除的概念,了解相关的性质。
3. 掌握最大公因式的概念,了解辗转相除法。
4. 理解互素的概念,掌握两个一元多项式互素的充分必要条件。
5. 了解不可约多项式的概念及其性质。
6. 了解一般系数的多项式的因式分解定理,掌握复系数与实系数多项式的因式分解定理。
(二)行列式考试内容行列式的概念和基本性质;行列式计算;行列式按行(列)展开;拉普拉斯(Laplace)定理及行列式的乘法法则。
考试要求1.理解行列式的概念,掌握行列式的性质,了解拉普拉斯(Laplace)定理及行列式的乘法法则。
2.会应用行列式概念计算行列式,会利用行列式的性质和行列式按行(列)展开定理计算行列式,会运用矩阵的初等行(列)变换计算行列式。
(三)向量和矩阵考试内容向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的越考考研秩与矩阵的秩之间的关系。
矩阵的概念;矩阵的基本运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算考试要求1.理解n维向量、向量的线性组合与线性表示等概念。
2.理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
4.理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。
5.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。
2016考研数学(一)真题及答案解析考研复习最重要的就是真题,所以跨考教育数学教研室为考生提供2016考研数学一的真题、答案及部分解析,希望考生能够在最后冲刺阶段通过真题查漏补缺,快速有效的备考。
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列下列命题中不正确的是( ) (A )若lim n n x a →∞=,则221lim lim n n n n x x a +→∞→∞==(B )若221lim lim n n n n x x a +→∞→∞==,则lim n n x a →∞=(C )若lim n n x a →∞=,则321lim lim n n n n x x a -→∞→∞==(D )若331lim lim n n n n x x a -→∞→∞==,则lim n n x a →∞=【答案】(D )(2)设211()23x x y e x e =+-是二阶常系数非齐次线性微分方程x y ay by ce '''++=的一个特解,则 (A )3,2,1a b c =-==-(B )3,2,1a b c ===- (C )3,2,1a b c =-== (D )3,2,1a b c === 【答案】(A )【解析】将特解代入微分方程,利用待定系数法,得出3,2,1a b c =-==-。
故选A 。
(3)若级数1nn n a x∞=∑在2x =处条件收敛,则x =3x =依次为幂级数1(1)n n n na x ∞=-∑的( )(A )收敛点,收敛点 (B )收敛点,发散点 (C )发散点,收敛点 (D )发散点,发散点 【答案】(A ) 【解析】因为级数1nn n a x∞=∑在2x =处条件收敛,所以2R =,有幂级数的性质,1(1)nnn na x ∞=-∑的收敛半径也为2R =,即13x -<,收敛区间为13x -<<,则收敛域为13x -<≤,进而x =3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,收敛点,故选A 。
南开大学考研历年真题解析——701数学分析主编:弘毅考研弘毅教育出品【资料说明】1.命题风格与试题难易南开大学数学分析试题一直很基础,比高代要简单一些,高等代数偶尔还出个压轴题,数学分析最近几年也不出压轴题了,都是常规题,基础题就要占到70%,其它也就算中档题。
例如2012的数学分析试题最后一题也不属于难题,做过裴礼文的《数学分析中的典型问题与方法》再做这题十分简单,利用定义就可以了。
常规一直是南开大学数学分析的风格,没有什么偏题怪题,并且中低档题足够考个110分以上(数学专业的分数线一直不高),这估计大家很喜欢报考。
2.考试题型与分值南开数学分析考试题型全是解答题,没有其它题型。
解答题也就计算题和证明题,计算题比重占的比重也很大,例如2012年就要占到大概50%,其它也不能说全是证明,会有一部分判断,对的证明之,不对的举出反例。
证明题的难度要比计算题相对大一些。
3.各章节的出题比重南开大学数学分析真题的出的变换比较大,每年考的知识点都在变化,这一点和其它一些大学很不一样。
数学分析本来变化就很大,这和其它学科很不一样。
但有一些重要的知识点一定会在某一年考到。
例如,一致连续(2012年考到),一致收敛(2011年考到),广义积分的敛散性判别(2011年考到),重积分曲线积分和曲面积分(每年几乎必考到,例如2008,2009,2010两个题,2011,2012两题),和函数的计算(几乎必考,重中之重)等等。
但其他知识点也绝对不能忽略。
这主要是因为南开试题变换大,今年考的明年不一定不考,今年不考的明年还可能考。
4.重要的已考知识点特别重要的只是点就是求和函数(很重要,经常出,例如2012,2010,2009年等),曲线积分和曲面积分(几乎每年必出),一致连续(2012年考到),一致收敛(重中之重!而且也十分容易考到,这也是数学分析中的重中之重,考到分值就会很大。
例如2011年),求极限(虽然简单,但也几乎每年必出,2003-2012只有2009年没出极限其它年份每年必出极限)。
2016年南开大学基础数学考研参考书目招生目录考研笔记内部资料专业课的复习和应考有着与公共课不同的策略和技巧,虽然每个考生的专业不同,但是在总体上都有一个既定的规律可以探寻。
以下就是针对考研专业课的一些十分重要的复习方法和技巧。
一、专业课考试的方法论对于报考本专业的考生来说,由于已经有了本科阶段的专业基础和知识储备,相对会比较容易进入状态。
但是,这类考生最容易产生轻敌的心理,因此也需要对该学科能有一个清楚的认识,做到知己知彼。
跨专业考研或者对考研所考科目较为陌生的同学,则应该快速建立起对这一学科的认知构架,第一轮下来能够把握该学科的宏观层面与整体构成,这对接下来具体而丰富地掌握各个部分、各个层面的知识具有全局和方向性的意义。
做到这一点的好处是节约时间,尽快进入一个陌生领域并找到状态。
很多初入陌生学科的同学会经常把注意力放在细枝末节上,往往是浪费了很多时间还未找到该学科的核心,同时缺乏对该学科的整体认识。
其实考研不一定要天天都埋头苦干或者从早到晚一直看书,关键的是复习效率。
要在持之以恒的基础上有张有弛。
具体复习时间则因人而异。
一般来说,考生应该做到平均一周有一天的放松时间。
四门课中,专业课(数学也属于专业课)占了300分,是考生考入名校的关键,这300分最能拉开层次。
例如,专业课考试中,分值最低的一道名词解释一般也有4分或者更多,而其他专业课大题更是动辄十几分,甚至几十分,所以在时间分配上自然也应该适当地向专业课倾斜。
根据我们的经验,专业课的复习应该以四轮复习为最佳,所以考生在备考的时候有必要结合下面的内容合理地安排自己的时间:第一轮复习:每年的2月—8月底这段时间是整个专业复习的黄金时间,因为在复习过程遇到不懂的难题可以尽早地寻求帮助得到解决。
这半年的时间相对来说也是整个专业复习压力最小、最清闲的时段。
考生不必要在这个时期就开始紧张。
很多考生认为这个时间开始复习有些过早,但是只有早准备才能在最后时刻不会因为时间不够而手忙脚乱。
南开大学陈省身数学研究所数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年数学物理主意2003——2023年年数学科学学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002第 1 页/共22 页微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000数学物理主意2003——2023年年物理科学学院材料化学2023年年材料物理2004——2023年年热力学统计物理2003——2004统计物理1999——2000理论力学1999——2000,2003——2004固体物理(基础部分)2004——2023年年大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004普通物理1999——2000,2003——2004晶体物理2004激光物理2003——2004光学(信息技术科学学院)2000,2003——2023年年光物理学2023年年应用光学1999——2000,2003——2023年年电动光学1999晶体管原理1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年量子物理概论2003——2004细胞生物学1999——2000高等数学1999——2000高等数学(信息技术科学学院)2003——2023年年电磁学2003——2023年年电力电子学基础2003——2004经典物理学2023年年普通生物化学2003——2023年年生物物理学2003——2023年年数学物理主意2003——2023年年泰达生物技术学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)微生物学1999——2000细胞生物学1999——2000生物化学1999——2000动物学1999,2003——2023年年昆虫学2003——2023年年普通生物化学2003——2023年年信息技术科学学院高等数学1999——2000第 3 页/共22 页高等数学(信息技术科学学院)2003——2023年年光学(信息技术科学学院)2000,2003——2023年年应用光学1999——2000,2003——2023年年信号与系统1999——2023年年控制原理1999——2000自动控制2023年年自动控制原理2003——2004现代控制论基础1999——2000,2003——2004综合基础课(光学、电路与系统、通信与信息系统、信号与信息系统、物理电子学、微电子学与固体电子学、光学工程专业)1999——2000,2002——2023年年编译原理1998数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000软件基础1999——2000计算机软硬件基础2023年年C语言与数据结构2004计算机原理1999——2000,2003综合基础课(模拟电路、数字电路、计算机原理)1999——2000大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004晶体管原理2003——2004普通物理1999——2000,2003——2004通信原理2003——2023年年物理学2023年年运筹学2003——2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年环境科学与工程学院水污染控制工程2004——2023年年安全学导论2004——2023年年环境监测1999——2000,2002——2023年年环境经济学2003——2023年年环境微生物学1999——2000环境生物学2003——2023年年环境学导论2004——2023年年环境管理1999——2000,2003——2023年年动物生理学1999——2000环境化学1999——2000,2002,2023年年环境化学与分析化学2003——2004(注:2004年试卷缺页,惟独“环境化学”内容)环境质量评价1999——2000环境工程1999——2000细胞生物学1999——2000生物化学1999——2000环境科学概论1999——2000,2002——2003化学学院综合化学2023年年——2023年年无机化学1999——2000,2003——2023年年分析化学1999——2000,2003——2023年年,2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年有机化学1999——2000,2003——2023年年,2023年年物理化学2000,2003,2023年年——2023年年第 5 页/共22 页药物化学2004——2023年年细胞生物学1999——2000生物化学1999——2000固体物理(基础部分)2004——2023年年普通生物化学2003——2023年年植物化学保护1999——2000,2004生命科学学院微生物学1999——2000,2003——2023年年细胞生物学1999——2000生物化学1999——2000数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)遗传学1999——2000,2003,2023年年真菌学1999——2000普通植物生理学1999——2000,2003——2023年年植物学1999——2000,2003动物学1999,2003——2023年年昆虫学2003——2023年年分子遗传学1999——2000植物生理学2000,2003——2023年年植物化学保护1999——2000,2004植物解剖学2023年年普通生态学1999——2000,2003——2023年年普通生物化学2003——2023年年普通微生物学2003——2023年年普通物理1999——2000,2003——2004数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000医学院病理学2004——2023年年人体解剖学2004——2023年年生理学2004——2023年年生物化学(医)2004——2023年年药理学2004——2023年年汉语言文化学院汉语2023年年古代汉语2002现代汉语(文学院)2001现代汉语(汉语言文化学院)2002——2004语言学理论基础(汉语言文化学院)2001——2004 语言学理论2023年年文学院文学基础2023年年中国古代文学2023年年人文社科基础2004——2023年年世界文学2023年年综合考试(文学)1999——2000文学综合1999——2000文艺理论1999——2000,2004——2023年年文艺评论2004——2023年年文艺写作2023年年文艺评论写作1999——2000中国文学史1998——2002第7 页/共22 页中国文学批评史1998——2001古代汉语2002现代汉语与古代汉语2003——2023年年古典文学文献学2004——2023年年语言学概论2023年年现代汉语(文学院)2001现代汉语(汉语言文化学院)2003——2004语言理论基础(文学院)2003——2004语言学理论基础(汉语言文化学院)2001——2004 汉语基础知识2004汉语知识2004中国文学史2003——2023年年人文地理学1999——2000传扬学2003传扬学原理2004——2023年年绘画基础与创作2004——2023年年美学原理2003——2023年年书法技法2003——2004书法史论2003——2004新闻学原理2004——2023年年艺术史论2004——2023年年艺术与设计史论2003——2023年年中外美术史论2003——2023年年专业设计(环境设计)2003专业设计(设计艺术学、环境设计专业)2004专业设计(设计艺术学、视觉设计)2023年年历史学院古代汉语2003——2023年年古代文献2003——2004古典文献学2004——2023年年拉丁美洲史2003——2004历史地理2004——2023年年历史文献学2004——2023年年历史学基础理论2023年年美国史2003——2004美国学综论2023年年明清史2003——2004史学史2023年年世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年世界上古中古史2003——2023年年世界通史2003——2023年年文物博物馆学2003——2023年年中国古代史2003——2023年年中国近现代史2003——2023年年中国史学史与史学理论2003——2004中国思想史2003——2023年年中国通史1994——1997,2003——2023年年中国文献学基础2003——2004中国近代史(中共党史专业)2003——2023年年哲学系马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年宗教学概论2004——2023年年伦理学原理2004——2023年年美学概论2023年年第9 页/共22 页欧美哲学通史2003——2023年年西方哲学通史2023年年形式逻辑2003——2023年年中国哲学史2023年年中外哲学史2003——2023年年外国语学院二外日语2001——2023年年二外德语2001——2023年年二外法语2001——2023年年二外俄语2003——2023年年专业英语2000——2003,2023年年——2023年年(2023年年——2023年年有答案)(注:2023年年答案惟独英美文学部分,2023年年答案有英美文学部分和语言学部分)基础英语1997,2000——2023年年(1997,2004——2023年年,2023年年有答案)语言学基础2023年年(2023年年有答案)翻译2004(2004有答案)双语翻译与文学2004英美文学2004(2004有答案)语言学2004——2023年年(2004——2023年年有答案)二外英语2001,2003——2023年年,2023年年基础日语2001,2003——2023年年专业日语2001,2003——2023年年基础俄语2004——2023年年法学院刑法学2023年年法学综合(含法理学、宪法、民法、刑法、刑诉、民诉)2000——2023年年(2023年年试题有答案)民法与商法2003——2023年年,2023年年民法(民商法专业)2002民法(经济法专业)2002民法2000——2001(法理学)法学理论2023年年法学理论2003法制史(含中国法制史、外国法制史)2003——2023年年,2023年年国际法学(含国际经济法、国际公法、国际私法)2003——2023年年,2023年年国际经济法概论2000经济法与商法2003——2023年年,2023年年经济法1999诉讼法学(含行政诉讼法、刑事诉讼法、民事诉讼法)2004——2023年年,2023年年宪法学、行政法与行政诉讼法2003——2023年年,2023年年(2004有答案)环境法2023年年周恩来政府管理学院行政管理学2003——2023年年政策原理与政策分析2003——2023年年(2004有答案)国际关系史1999——2000,2003——2023年年国际关系学2003——2023年年国际关系概论1999——2000外交学概论与当代中国外交2004——2023年年外国政治制度史1999——2000政治学原理1999——2023年年中国政治制度史1999——2000中国通史1994——1997第11 页/共22 页中外政治思想史2003——2023年年中国政治思想史1999——2000,2002西方政治思想史1999——2000中外经济地理1999——2000世界近现代历史2002社会保障学2004——2023年年社会学理论2023年年社会学概论1995——2001,2003——2004社会调查主意与社会统计1995——2023年年社会工作2001环境学与环境法2004——2023年年西方经济学流派2004——2023年年(2004——2023年年有答案)心理学主意2004——2023年年(2004有答案)心理学基础2004——2023年年(2004有答案)马克思主义教诲学院马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年科学社会主义原理2004——2023年年专业综合基础理论(科学社会主义与国际共产主义运动理论专业)2004——2023年年思想政治教诲原理2003——2023年年中共党史2003——2023年年中国近代史(中共党史专业)2003——2023年年中外哲学史2003——2023年年经济学院微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年第13 页/共22 页有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000综合基础课(保险)1999——2000金融学基础(联考)2002——2023年年(2002——2023年年有答案)商学院会计学综合2023年年——2023年年会计学综合考试1999——2000,2003——2023年年(2000,2003——2023年年有答案)财务管理1999——2000财务管理与管理会计1999——2000(1999——2000有答案)公司治理2023年年技术经济学2003——2023年年市场学1999——2000管理综合(含管理学、微观经济学)2003——2023年年(2003——2023年年有答案)(注:2023年年——2023年年的答案惟独管理学部分的答案,无微观经济学部分的答案)管理学概论2002信息系统技术1999——2000管理信息系统2003——2023年年旅游管理1999旅游学综合(旅游概论和旅游经济学)2001——2023年年旅游学概论1997企业人力资源开辟与管理1999——2000(1999——2000有答案)人文地理学1999——2000中外经济地理1999——2000计算机应用(设计程序、数据库系统)2004——2023年年编辑学2001出版学2001网络技术基础2001档案管理学2004——2023年年档案学概论2004——2023年年目录学(含目录学概论、中西文工具书)2003——2004文献目录学2023年年情报学(含情报学概论、科技文献检索、计算机情报检索)2003情报学(含情报学概论、信息检索)2004第15 页/共22 页情报学综合2023年年图书馆学理论2003——2023年年高等教诲研究所高等教诲原理2003——2023年年(2023年年有答案)经济学原理2023年年——2023年年(2023年年——2023年年有答案)高等教诲管理学2003——2023年年教诲社会学2004——2023年年教诲学原理2004——2023年年(2004有答案)普通心理学2003——2023年年(2004有答案)中国高等教诲史2003——2023年年经济与社会发展研究院专业综合(含微观经济学、区域经济学)2004——2023年年(2004——2023年年有答案)专业综合(宏观经济学、产业经济学)2004——2023年年(2004——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第17 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000深圳金融工程学院专业基础(金融学)2003——2023年年(2003——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第19 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000日本研究院日本经济2004日本史2003,2023年年日本通史2004世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)第21 页/共22 页中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000。
2016年南开大学基础数学考研招生目录考研笔记内部资料主导教师复试分数线专业课的复习和应考有着与公共课不同的策略和技巧,虽然每个考生的专业不同,但是在总体上都有一个既定的规律可以探寻。
以下就是针对考研专业课的一些十分重要的复习方法和技巧。
一、专业课考试的方法论对于报考本专业的考生来说,由于已经有了本科阶段的专业基础和知识储备,相对会比较容易进入状态。
但是,这类考生最容易产生轻敌的心理,因此也需要对该学科能有一个清楚的认识,做到知己知彼。
跨专业考研或者对考研所考科目较为陌生的同学,则应该快速建立起对这一学科的认知构架,第一轮下来能够把握该学科的宏观层面与整体构成,这对接下来具体而丰富地掌握各个部分、各个层面的知识具有全局和方向性的意义。
做到这一点的好处是节约时间,尽快进入一个陌生领域并找到状态。
很多初入陌生学科的同学会经常把注意力放在细枝末节上,往往是浪费了很多时间还未找到该学科的核心,同时缺乏对该学科的整体认识。
其实考研不一定要天天都埋头苦干或者从早到晚一直看书,关键的是复习效率。
要在持之以恒的基础上有张有弛。
具体复习时间则因人而异。
一般来说,考生应该做到平均一周有一天的放松时间。
四门课中,专业课(数学也属于专业课)占了300分,是考生考入名校的关键,这300分最能拉开层次。
例如,专业课考试中,分值最低的一道名词解释一般也有4分或者更多,而其他专业课大题更是动辄十几分,甚至几十分,所以在时间分配上自然也应该适当地向专业课倾斜。
根据我们的经验,专业课的复习应该以四轮复习为最佳,所以考生在备考的时候有必要结合下面的内容合理地安排自己的时间:第一轮复习:每年的2月—8月底这段时间是整个专业复习的黄金时间,因为在复习过程遇到不懂的难题可以尽早地寻求帮助得到解决。
这半年的时间相对来说也是整个专业复习压力最小、最清闲的时段。
考生不必要在这个时期就开始紧张。
很多考生认为这个时间开始复习有些过早,但是只有早准备才能在最后时刻不会因为时间不够而手忙脚乱。
南开大学2016年数学分析考研试题解答1.(15分)求定积分xdx en x ln 1⎰,Z n ∈.解:令t x =ln ,则[]1,0,∈=t x e t 且.则原积分化为dt t etn )1(10+⎰=11+n )()1(1etn d t +⎰=11+n ⎥⎦⎤⎢⎣⎡-⎰++10)1(1dt e e t n n =11+n . 2.(20分)求曲线积分,2yzds L x -⎰其中L 是0=++z y x 和1222=++z y x 的交线.解:首先,根据对称性可知,=⎰ds Lx 2ds zy x L 22231++⎰=32π又有⎰-Lyzds =61-⎰++Lzxds yz xy 222=61-ds zy x z y x L2222)(---⎰++=3π 故原积分=-⎰yzds L x 23π+32π=π. 3.(15分)求)2(120121x xn n n +∑+∞=+的收敛域及和函数. 解:命()=x a n)2(12121x x n n +++,则()=+x a n 1)2(32321xx n n +++.故 ()()x x a a nn n 1lim +∞→=)2()2(lim 12323212x x x x n n n n n ++++∞→++=)2(2xx +, 故由Alembert d '判别法可知, 当)2(2xx +<1时所给的广义幂级数绝对收敛;当xx+2=-1时,由Leibnitz 判别法易知级数收敛.解上述关于x 的不等式即得此广义幂级数的收敛域为)[∞+-,1. 记()=x S )2(120121xxn n n +∑+∞=+,则易验证其在)(∞+-,1内一致收敛.因而()∑+∞=='02)2(n nxx x S =xx x 444442+++,)(∞+-∈∀,1x .两边对x 积分及结合()00=S 即可得到())1ln(4181432x x x S x +++=,)(∞+-∈∀,1x . 又由于()41π=-S ,即得()x S 表达式. 4.(15分)求)(y xy y x f y x 12469,22-++=在闭域D :)({}3669,22≤+y x y x 内的最大值.5.(15分)设()x f n 在I 上一致连续,且()x f n 一致收敛于()x f .证明:()x f 在I上一致连续.证明:由()x f n 一致连续知,0>∀ε,0>∃δ只要δ<-x x 21就有()()321ε<-x f x f nn.又由()x f n一致收敛于()x f 知,对上述,0>εN N ,+∈∃当N n >时,()()3ε<-x f x f n 对I x ∈成立.则有()()≤-x x f f 21()()+-x f x nf 11()()x f x f nn21-()()x x f f n22-+3ε<εεε=++33.由此知()x f 在I上一致连续.6.(15分)设()x f 在)(∞+,0上非负,对,0>∀A ()x xf 在][A ,0上可积,且()dx x f ⎰+∞收敛.证明:().01lim 0=⎰+∞→dx x xf A AA证明:()dx x f ⎰+∞0收敛知:,0>∀ε..,0t s M >∃()ε<⎰+∞dx x f M.取A,..M A t s >ε则()=⎰dx x xf A A1()=⎰dx x f AxA()()dx x f A x dx x f AxA A A ⎰⎰+εε()()dx x f dx x f AA A ⎰⎰+<εεε0()⎪⎭⎫ ⎝⎛+<⎰+∞01dx x f ε 由此即可得证. 7.(20分)求极限+∞→x lim ⎥⎥⎦⎤⎢⎢⎣⎡-++++)11()111(12x x x xx 解:注意到+∞→x lim ⎥⎥⎦⎤⎢⎢⎣⎡-++++)11()111(12x x x xx =()⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++++∞→e e x x x x x x 11ln 111ln 12lim ,则有()⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛++++∞→ee xx x x x x 11ln 111ln 12lim=⎥⎦⎤⎢⎣⎡-+++-+++∞→++e xxx x x x xx )111ln()1()11ln(211lim )111(=()⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+++++++∞→)11ln(111ln 1lim 21)111(x x x x x xxx , ()1 又有()()⎥⎥⎦⎤⎢⎢⎣⎡+-++=⎪⎭⎫ ⎝⎛+++++)(21111111ln 1)11()11(22x x o x x x x ,as +∞→x ,及 ⎥⎥⎦⎤⎢⎢⎣⎡+-=+)1()1(21)11ln(22x x o x x x x ,as +∞→x .代入()1中即可得,+∞→x lim ⎥⎥⎦⎤⎢⎢⎣⎡-++++)11()111(12x x x xx =2e .8.(20分)设二元函数)(y x f ,二阶可偏导,)({}1,22≤+=y x y x D 且.12222=∂+∂∂∂y xf f求证:dxdy y fy x f x D)(∂∂+∂∂⎰⎰=4π.证:先引进Laplacian f ∆,则.1=∆f我们只要考虑fdxdy Dy x ∆+⎰⎰)2(22即可.根据第二Green 公式可知,fdxdy Dy x ∆+⎰⎰)2(22=-dxdy y f y x f xD)(∂∂+∂∂⎰⎰+ds n Ly x ∂+⎰2(22, 其中L 方向为单位圆周沿逆时针方向,n 为外法向量.故dxdy y f y x f xD)(∂∂+∂∂⎰⎰=n L y x ∂+⎰2(22-fdxdy Dy x ∆+⎰⎰)2(22=ds n L ⎰∂21-dxdy Dy x ⎰⎰+)2(22=)(21dx y fdy x f L ∂∂-∂∂⎰-rdr d r ⎰⎰102202πθ =4π,证毕!9.(15分)已知()x f 在][1,0上连续,在)(1,0上可导.且()x f =()1+x f ,()0f =0,()x f '单调递减,对x ∀和Z n ∈∀,求证:()nx f ≤()x nf .证:)1由于()0f =0,故当0=x 时,()()x nf nx f =(Z n ∈∀).又()x f =()1+x f ,故()()1nf n f =也易验证.)2[]1,0∈∀x 注意到()nx f =()dtt f nx⎰'0=()dt t f nk kxx k ∑⎰=-'1)1(以及()x nf =()dt t f nk x∑⎰='1,因此只要证()dt t f kxxk ⎰-')1(≤()dt t f x⎰'0即可.N k +∈∀,若][][1,0,)1(⊂-kx x k ,根据()01≥-x k ,0≥kx 以及()x f '的递减性,上述不等式显然成立.若()x k 1-1<2<<kx (the case where1=kxis trivial),则有()dt t f kxxk ⎰-')1(=()()dt t f dt t f kxxk ⎰⎰'+'-11)1(=()()dt t f dt t f kx xk ⎰⎰--'+'101)1(将上述不等式左边减去右边,有()()dt t f dt t f kx xk ⎰⎰--'+'11)1(-()dt t f x⎰'0=()dt t f xk ⎰-'1)1(-()01≤'⎰-dt t f xkx ,此即所要证明的命题成立.。