数字信号处理实验讲义
- 格式:ppt
- 大小:1.82 MB
- 文档页数:79
《数字信号处理》实验指导书实验一 常见离散信号的产生一、实验目的1. 加深对离散信号的理解。
2. 掌握典型离散信号的Matlab 产生和显示。
二、实验原理及方法在MATLAB 中,序列是用矩阵向量表示,但它没有包含采样信息,即序列位置信息,为此,要表示一个序列需要建立两个向量;一是时间序列n,或称位置序列,另一个为取值序列x ,表示如下: n=[…,-3,-2,-1,0,1,2,3,…]x=[…,6,3,5,2,1,7,9,…]一般程序都从0 位置起始,则x= [x(0), x(1), x(2),…]对于多维信号需要建立矩阵来表示,矩阵的每个列向量代表一维信号。
数字信号处理中常用的信号有指数信号、正弦信号、余弦信号、方波信号、锯齿波信号等,在MATLAB 语言中分别由exp, sin, cos, square, sawtooth 等函数来实现。
三、实验内容1. 用MATLAB 编制程序,分别产生长度为N(由输入确定)的序列:①单位冲击响应序列:()n δ可用MATLAB 中zeros 函数来实现; ②单位阶跃序列:u(n)可用MATLAB 中ones 函数来实现; ③正弦序列:()sin()x n n ω=; ④指数序列:(),nx n a n =-∞<<+∞⑤复指数序列:用exp 函数实现()0()a jb n x n K e += ,并给出该复指数序列的实部、虚部、幅值和相位的图形。
(其中00.2,0.5,4,40a b K N =-===.)参考流程图:四、实验报告要求1. 写出实验程序,绘出单位阶跃序列、单位阶跃序列、正弦序列、指数序列的图形以及绘 出复指数序列的实部、虚部、幅值和相位的图形。
2. 序列信号的实现方法。
3. 在计算机上实现正弦序列0()sin(2)x n A fn πϕ=+。
实验二 离散信号的运算一、实验目的1. 掌握离散信号的时域特性。
2. 用MATLAB 实现离散信号的各种运算。
数字信号处理讲义线性时不变系统的变换分析1. 数字信号处理概述数字信号处理(Digital Signal Processing,简称DSP)是一种利用计算机对数字信号进行采集、处理和传输的技术。
它在许多领域都有广泛的应用,如通信、音频处理、图像处理、雷达、声纳等。
数字信号处理的核心任务是对离散时间信号进行采样、量化、编码和解码等操作,以实现信号的高效处理和传输。
采样:从连续时间信号中抽取一系列有限长度的样本点。
采样频率是指单位时间内抽取的样本点数,通常用赫兹(Hz)表示。
采样频率越高,还原出的连续时间信号越接近原始信号。
量化:将采样得到的样本值映射到一个固定范围(如8位整数)内的离散值。
量化过程引入了量化误差,但可以通过增加量化比特数来减小误差的影响。
编码:将量化后的离散值编码成二进制数据,以便于存储和传输。
常见的编码方式有频移键控(Frequency Shift Keying, FSK)、相移键控(Phase Shift Keying, PSK)等。
解码:将接收到的二进制数据还原为原始的离散值。
解码过程需要根据预先设定的解码算法进行计算。
数字信号处理技术的发展使得信号处理系统具有更高的实时性、可靠性和灵活性。
现代数字信号处理器(Digital Signal Processor,简称DSP)在性能和功耗方面已经达到了很高的水平,可以满足各种复杂信号处理的需求。
1.1 信号与系统信号是信息的载体,它可以是声音、图像、数据等任何可以传递信息的物理量。
在数字信号处理中,我们通常研究的信号是随时间变化的连续或离散取值序列。
信号可以根据其时间特性分为连续时间信号和离散时间信号,根据取值特性分为模拟信号和数字信号。
系统是由相互关联、相互作用的元素组成的,具有特定功能和行为的整体。
在信号处理中,系统通常指的是对输入信号进行某种处理或转换的装置。
根据系统对输入信号的响应特性,系统可以分为线性系统、非线性系统、时不变系统和时变系统。
数字信号处理讲义--第5章线性时不变系统的变换分析第5章线性时不变系统的变换分析[教学⽬的]1.了解LTI 系统频率响应的概念;2.掌握线性常系数差分⽅程所表征系数的系统函数的⽅法; 3.掌握有理系统频率响应分析⽅法4.理解线性相位系统、⼴义线性相位系统与因果⼴义线性相位系统的概念,⼏类线性相位系统。
[教学重点与难点] 重点:1.线性常系数差分⽅程所表征系数的系统函数的⽅法; 2.有理系统频率响应分析⽅法; 3.⼏类线性相位系统。
难点:1.有理系统频率响应分析⽅法⼏类线性相位系统5.1 LTI 系统的频率响应前⾯已经讨论过,在时域中,⼀个线性时不变系统完全可以由它的单位脉冲响应h (n )来表⽰。
对于⼀个给定的输⼊x (n ),其输出y (n )为对等式两端取Z 变换,得则 (5-1)两边做离散傅⽴叶变换有: |Y (e j ω)|=|H (e j ω)|·|X (e j ω)| (5-2)|Y (e j ω)|=|H (e j ω)|·|X (e j ω)|arg [Y (e j ω)]=arg [H (e j ω)]+arg [X (e j ω)]|H (e j ω)| 幅度响应 : 增益/幅频特性调整输⼊信号各频率分量的相对强度(幅度)关系Arg[H (e j ω)] 频率响应的相位响应 : 相移/相频特性调整输⼊信号各频率分量的相对位置(相位)关系H (e j ω) 调整输⼊信号各频率分量的相对⼤⼩(幅度)及位置(相∑∞-∞=-=*=m m n h m x n h n x n y )()()()()()()()(z X z H z Y =)()()(z X z Y z H =位)关系5.1.1 理想低通滤波器的选择性5.1.2相位失真与延时线性相位 : 不会改变信号的相对位置,时延相同线性相位的效应 : 时延⾮线性相位:改变信号的相对位置时延不相同≤<≤=πωωωωω||,0||,1)(c c j H n n n h c F πωsin ][=?→←()()|()|j H j H j H j e ωωω= 0 : ()near Phase H j t ωω=- 0()H j tωω≠-5.2 ⽤线性常系数差分⽅程所表征系统的系统函数⼀个线性时不变系统也可以⽤常系数线性差分⽅程来表⽰,其N 阶常系数线性差分⽅程的⼀般形式为若系统起始状态为零,这样就可以直接对上式两端取Z 变换,利⽤Z 变换的线性特性和移位特性可得这样就得到系统函数为(5-3)由此看出系统函数分⼦、分母多项式的系数分别就是差分⽅程的系数。
数字信号处理实验指导书(2009版)宋宇飞编南京工程学院目录实验一信号、系统及系统响应 (1)一、实验目的 (1)二、实验原理与方法 (1)三、实验内容及步骤 (4)四、实验思考 (4)五、参考程序 (4)实验二离散时间傅里叶变换DTFT及IDTFT (9)一、实验目的 (9)二、实验原理与方法 (9)三、实验内容及步骤 (9)四、实验思考 (10)五、参考程序 (10)实验三离散傅里叶变换DFT及IDFT (12)一、实验目的 (12)二、实验原理与方法 (13)三、实验内容及步骤 (14)四、实验思考 (14)五、参考程序 (14)实验四用FFT做频谱分析 (17)一、实验目的 (17)二、实验原理与方法 (17)三、实验内容及步骤 (19)四、实验思考 (20)五、参考程序 (21)实验五用双线性变换法设计IIR数字滤波器 (25)一、实验目的 (25)二、实验原理与方法 (25)三、实验内容及步骤 (27)四、实验思考 (27)五、参考程序 (27)实验六用窗函数法设计FIR数字滤波器 (29)一、实验目的 (29)二、实验原理与方法 (29)三、实验内容及步骤 (33)四、实验思考 (34)五、参考程序 (34)附录一滤波器设计示例 (38)一、Matlab设计IIR基本示例 (38)二、Matlab设计IIR高级示例 (42)附录二部分习题参考答案 (50)习题一(离散信号与系统) (50)习题二(离散傅里叶变换及其快速算法) (51)习题三(IIR滤波器设计) (53)习题四(FIR滤波器) (54)习题五(数字信号处理系统的实现) (56)附录三相关MATLAB习题及答案 (57)第1章离散时间信号与系统 (57)第2章离散傅里叶变换及其快速算法 (60)第3章无限长单位脉冲响应(IIR)滤波器的设计方法 (63)第4章有限长单位脉冲响应(FIR)滤波器的设计方法 (67)第5章数字信号处理系统的实现 (69)第6章多采样率信号处理 (73)实验一 信号、系统及系统响应一、实验目的1、掌握时域离散信号的表示及产生方法;2、掌握时域离散信号简单的基本运算方法;3、掌握离散系统的响应特点。
实验报告实验一:1.用三种不同的DFT程序计算x(n)=R8(n)的傅里叶变换;比较三种程序计算机运行时间。
(1)编制用for loop语句的M函数文件dft1.m,用循环变量逐点计算X(k);(2)编写用Matlab矩阵运算的M函数文件dft2.m,完成下列矩阵运算;(3)调用FFT库函数,直接计算X(k);(4)编写M程序文件,分别得到序列x(n)的傅里叶变换,并画出相应的幅频和相频特性;比较用三种不同方式编写的DFT程序各自的计算机运行时间。
%%%主程序:x=[ones(1,8),zeros(1,248)];t=cputime;[Am1,pha1]=dft1(x);t1=cputime-t;n=[0:(length(x)-1)];w=(2*pi/length(x))*n;figure(1);subplot(2,1,1);plot(w,Am1,'b');title('Magnitude part');xlabel('frequency in radians');ylabel('|X(exp(jw))|');subplot(2,1,2), plot(w,pha1,'r');grid;xlabel('frequency in radians');ylabel('arg(X[exp(jw)]/radians|');%%%%子程序dft1.mfunction [Am,pha]=dft1(x)N=length(x);w=exp(-j*2*pi/N);for k=1:Nsum=0;for n=1:Nsum=sum+x(n)*w^((k-1)*(n-1));endAm(k)=abs(sum);pha(k)=angle(sum);End%%%%子程序dft2.mfunction[Am,pha]=dft2(x)N=length(x);n=[0:N-1];k=[0:N-1];w=exp(-j*2*pi/N);nk=n'*k;wnk=w.^(nk);Xk=x*wnk;Am=abs(Xk);pha=angle(Xk);%%%%子程序dft3.mfunction[Am,pha]=dft3(x)Xk=fft(x);Am=abs(Xk);pha=angle(Xk);运行结果:t1 =0.1563 t2 =0.2969 t3 =02.用DFT实现两序列的卷积运算,并研究DFT点数与混迭的关系给定:x(n)=n*R16(n),h(n)=R8(n),用FFT和IFFT分别求线性卷积及混叠结果的输出,画出相应的图形(用stem(n,y)).N=16;x=[0:N-1];h=ones(1,8);Xk1=fft(x,23); %做23点fftHk1=fft(h,23);Yk1=Xk1.*Hk1;y1=ifft(Yk1);n=0:22;figure(1)stem(n,y1);Xk2=fft(x);Hk2=fft(h,16); %做16点fftYk2=Xk2.*Hk2;y2=ifft(Yk2);n=0:15;figure(2)stem(n,y2)3.高密度频谱与高分辨率频谱的研究对连续信号)1000*9*2cos()1000*7*2cos()1000*5.6*2cos()(t t t t x a πππ++=以fs=32kHz 对x a (t)采样:1) 做N=16点的采样 和 补零到256点的频谱;2) 做N=256点的采样,并做出其FFT 幅度特性;做出分析。
数字信号处理实验讲义实验一序列、频谱、卷积一、实验目的1.掌握序列的输入方法;2.熟悉不同序列的特征;3.了解确定性信号谱分析的方法;4.验证卷积的计算过程;二、实验要求1.利用matlab程序,生成几种常用的序列,如矩形序列,单位脉冲序列;2.绘制图形,观察序列特征;3.研究其频率特性,绘制图形,观察频率响应特征;4.利用matlab程序,验证卷积的过程;三、实验步骤1.矩形序列(1)生成长度为N的矩形序列,观察并记录生成的图形;n=1:50x=sign(sign(10-n)+1);close all;subplot(3,1,1);stem(x);title('单位矩形信号序列');(2)研究其频率特性,()∑∞-∞=-=n nj Nj en R e H ωω)(,分别研究其幅频特性和相频特性,观察并记录生成的图形;k=-25:25;X=x*(exp(-j*pi/25)).^(n'*k); magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title('单位矩形信号的幅度谱'); angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title ('单位矩形信号的相位谱')2.单位脉冲序列(1)生成单位脉冲序列,观察并记录生成的图形;n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB中数组下标从1开始x(1)=1;close all;subplot(3,1,1);stem(x);title('单位冲击信号序列');(2) 研究其频率特性,()∑∞-∞=-=n nj j en x e H ωω)(,分别研究其幅频特性和相频特性,观察并记录生成的图形;k=-25:25;X=x*(exp(-j*pi/12.5)).^(n'*k); magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title('单位冲击信号的幅度谱'); angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title ('单位冲击信号的相位谱')3.卷积过程∑∞-∞=-= =mmnhmxnhnxny)()()(*)()(,n=1:50; %定义序列的长度是50hb=zeros(1,50); %注意:MATLAB中数组下标从1开始hb(1)=1;hb(2)=2.5;hb(3)=2.5;hb(4)=1;close all;subplot(3,1,1);stem(hb);title('系统hb[n]');m=1:50; %定义序列的长度是50A=444.128; %设置信号有关的参数a=50*sqrt(2.0)*pi;T=0.001; %采样率w0=50*sqrt(2.0)*pi;x=A*exp(-a*m*T).*sin(w0*m*T);subplot(3,1,2);stem(x);title('输入信号x[n]');y=conv(x,hb);subplot(3,1,3);stem(y);title('输出信号y[n]');四、实验报告要求1.写出生成对应序列的matlab程序,并分析;2.记录生成的图形;3.描述对应的序列和频率特性的特征;4.验证卷积计算结果;五、思考:1.如何生成实指数序列?写出对应的matlab程序a1=2n=1:50x1=(a1.^n)subplot(1,1,1)stem(x1);title('实指数序列')2.编写程序验证卷积定律。
实验一 常见离散信号产生和实现一、实验目的1.加深对常用离散信号的理解;2.掌握matlab 中一些基本函数的建立方法。
二、实验原理1.单位抽样序列如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:2.单位阶跃序列3.正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中,n=0:N-1;x=A*sin(2*pi*f 0*n/fs+phi)4.复指数序列n j e r n x ϖ⋅=)(在MATLAB 中,n=0:N-1;x=r*exp(j*w*n)5.指数序列n a n x =)(在MATLAB 中,n=0:N-1;x=a.^n三、实验内容实现和图形生成1.五种基本函数的生成程序如下:(1)单位抽样序列方法一:% 单位抽样序列和延时的单位抽样序列n=0:10; x1=[1 zeros(1,10)];x2=[zeros(1,5) 1 zeros(1,5)];subplot(1,2,1);stem(n,x1,'.');xlabel ('时间序列n');ylabel('振幅');title('单位抽样序列x1');grid on;subplot(1,2,2);stem(n,x2,'.'); xlabel('时间序列n');ylabel('振幅');title('延时了5的单位抽样序列'); grid on;方法二:先在matlab中定义单位抽样序列:function [x,n]=impseq(n1,n2,n0)n=[n1:n2];x=[(n-n0)==0]; /n等于n0时1在运行命令:[x,n]=impseq(-5,5,3)stem(n,x,'.');xlabel('n');title('单位抽样序列x');grid(2)单位阶跃序列方法一:n=-4:6;u=[zeros(1,4) ones(1,7)];stem(n,u,'.');xlabel ('时间序列n');ylabel('振幅');title('单位阶跃序列');grid 所得的图形如下所示:方法二;先在matlab中定义单位阶跃序列:function [x,n]=stepseq(n1,n2,n0)n=[n1:n2];x=[(n-n0)>=0];在运行命令:[x,n]=stepseq(-5,5,3)stem(n,x,'.');xlabel('n');title('单位阶跃序列x');grid(3)正弦函数n=-5:20;x=2*sin(pi*n/6+pi/3); stem(n,x,'.'); xlabel ('时间序列n'); ylabel('振幅'); title('正弦函数序列x=2*sin(pi*n/6+pi/3)');grid on(4)复指数序列n=-5:30;x=2*exp(j*3*n);stem(n,real(x),'.'); xlabel ('时间序列n');ylabel('振幅');title('复指数序列x=2*exp(j*3*n)的实部');grid on图形如下:(5)指数序列n=1:30;x=1.2.^n;stem(n,x,'.'); xlabel ('时间序列n');ylabel('振幅');title('指数序列x=1.2.^n'); grid on2、绘出信号sn e n x =)(,当6121πj s +-=、6121πj s +=、121=s 、62πj s +=、6πj s =时的信号实部和虚部图;程序如下:s1=-1/12+j*pi/6;s2=1/12+j*pi/6;s3=1/12;s4=2+j*pi/6;s5=j*pi/6;n=0:20;x1=exp(s1*n);x2=exp(s2*n); x3=exp(s3*n);x4=exp(s4*n); x5=exp(s5*n);subplot(5,2,1);stem(n,real(x1),'.'); xlabel ('时间序列n');ylabel('实部'); title('复指数s1=-1/12+j*pi/6时序列实部');grid onsubplot(5,2,2);stem(n,imag(x1),'.'); xlabel ('时间序列n');ylabel('虚部'); title('复指数s1=-1/12+j*pi/6时序列虚部');grid onsubplot(5,2,3);stem(n,real(x2),'.'); xlabel ('时间序列n');ylabel('实部'); title('复指数s2=1/12+j*pi/6时序列实部');grid onsubplot(5,2,4);stem(n,imag(x2),'.'); xlabel ('时间序列n');ylabel('虚部'); title('复指数s2=1/12+j*pi/6时序列虚部');grid onsubplot(5,2,5);stem(n,real(x3),'.'); xlabel ('时间序列n');ylabel('实部');title('复指数s3=1/12时序列实部');grid onsubplot(5,2,6);stem(n,imag(x3),'.'); xlabel ('时间序列n');ylabel('虚部');title('复指数s3=1/12时序列虚部');grid onsubplot(5,2,7);stem(n,real(x4),'.'); xlabel ('时间序列n');ylabel('实部');title('复指数s4=2+j*pi/6时序列实部');grid onsubplot(5,2,8);stem(n,imag(x4),'.'); xlabel ('时间序列n');ylabel('虚部');title('复指数s4=2+j*pi/6时序列虚部');grid onsubplot(5,2,9);stem(n,real(x5),'.'); xlabel ('时间序列n');ylabel('实部');title('复指数s5=j*pi/6时序列实部');grid onsubplot(5,2,10);stem(n,imag(x5),'.'); xlabel ('时间序列n');ylabel('虚部'); title('复指数s5=j*pi/6时序列虚部');grid on由图的实部部分可以看出,s=j*pi/6时,序列周期为12。
数字信号处理讲义--第4章z变换第4章 z 变换[教学⽬的]1.了解Z 变换的概念,能求常⽤函数的Z 变换,能确定Z 变换的收敛域。
2.掌握各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换。
[教学重点与难点] 重点:1.Z 变换的概念,常⽤函数的Z 变换求解,Z 变换的收敛域; 2.各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换;难点:本章主要内容基本在信号与系统中学过,基本⽆难点,但如学⽣基础较差,还是要从以上三个重点内容去复习。
8.了解离散时间随机信号的概念。
[教学重点与难点] 重点:1.掌握线性时不变系统的概念与性质; 2.离散时间信号与系统的频域表⽰;难点:离散信号系统的性质如线性性,时不变性,因果性,稳定性的判定是本章的⼀个难点。
4.1 Z 变换(1) Z 变换的定义⼀个离散序列x (n )的Z 变换定义为式中,z 是⼀个复变量,它所在的复平⾯称为Z 平⾯。
我们常⽤Z [x (n )]表⽰对序列x (n )进⾏Z 变换,也即这种变换也称为双边Z 变换,与此相应的单边Z 变换的定义如下:∑∞-∞=-=n nz n x z X )()()()]([z X n x Z =∑∞=-=0)()(n nz n x z X这种单边Z 变换的求和限是从零到⽆穷,因此对于因果序列,⽤两种Z 变换定义计算出的结果是⼀样的。
单边Z 变换只有在少数⼏种情况下与双边Z 变换有所区别。
⽐如,需要考虑序列的起始条件,其他特性则都和双边Z 变换相同。
本书中如不另外说明,均⽤双边Z变换对信号进⾏分析和变换。
(2)Z 变换与傅⽴叶变换的关系:单位圆上的Z 变换是和模拟信号的频谱相联系的,因⽽常称单位圆上序列的Z 变换为序列的傅⾥叶变换,也称为数字序列的频谱。
数字频谱是其被采样的连续信号频谱周期延拓后再对采样频率的归⼀化。
单位圆上序列的Z 变换为序列的傅⾥叶变换,根据式(1-54)Z 变换的定义,⽤ej ω代替z ,从⽽就可以得到序列傅⾥叶变换的定义为可得其反变换:(3)Z 变换存在的条件: 正变换与反变换:存在的⼀个充分条件是:∑∞-∞==Ω=??-=Ω==k a Taj e z T k j X T j X e X z X j πωωωω21)(?)()(/nj n j en x e X n x F ωω-∞-∞=∑==)()()]([ωππωππωωd e eX dz z z X j e X F n x n j j n z j ??--=-===)(21)(21)]([)(11||1∑∞-∞=-==n nj j en x e X n x F ωω)()()]([ωπωωππωd e e X n x e X F n j j j )(21)()]([1?--==即:绝对可加性是傅⾥叶变换表⽰存在的⼀个充分条件。
实验一 连续时间信号的时域取样与重建实验目的:1、 掌握连续时间信号的离散化过程,深刻理解时域取样定理;2、 掌握由取样序列恢复原连续信号的基本原理与实现方法。
实验原理:取样解决的是把连续信号变成适于计算机处理的离散信号的问题。
取样就是从连续信号)(t f 中取得一系列的离散样点值。
1、理想取样设待取样信号为)(t x ,理想取样表示成:)()()(t t x t x T s δ=,其中 ∑-=nT nT t t )()(δδ。
T 为取样周期(间隔),T x s /1=为取样频率,T s /2πω=为取样角频率。
由傅里叶变换频域卷积定理,得取样信号的频谱)(ωj X s :∑-=ns s n j X T j X ))((1)(ωωω。
取样定理给出了取样信号包含原连续信号的全部信息的最大取样间隔。
时域取样定理的内容是:若带限信号)(t f 的最高角频率为m ω,其频谱函数在m ωω>||各处为零;对该信号以m f T 21≤的取样间隔(即取样频率为m s f f 2≥)进行等间隔取样时,则信号)(t f 可以由取样点值唯一地恢复。
其中πω2)(m m HZ f =。
在实际取样时,关键是确定信号的最高频率。
如果信号频率很宽或无限宽,无法满足取样定理,会引起频谱混叠误差,可以通过提高取样率减少误差。
例:对信号)*2*20cos()*2*10cos()(t t t x ππ+=进行取样。
解:信号最高频率为20HZ 取样频率为80HZ Fs=80;%sampling frequencyt=0:1/Fs:1;%one second worth of samples xn=cos(2*pi*10*t)+cos(2*pi*20*t);2、信号的重建当以满足取样定理的速率对信号)(t x 取样后,由取样信号)(t x s 恢复原信号)(t x 的过程称为重建。
用一个截止频率为2s c ωω=的理想低通滤波器对)(t x s 进行滤波,就能从)(t x s 中将原信号)(t x 恢复。
前言数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。
20世纪60年代以来,随着信息科学和计算技术的迅速发展,数字信号处理的理论与应用飞跃发展,它的重要性日益在通信、信息技术、图像处理、遥感、声呐、雷达、生物医学、地震、语音处理等领域的应用中表现出来,并发展成为一门极其重要的学科。
数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固难基本理论知识,锻炼初学者用计算机和MA TLAB语言及其工具箱函数解决数字处理算法的仿真和滤波器设计问题的能力。
由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。
Matlab是1984年美国MathWorks公司的产品,MATLAB语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。
早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。
从1996年后,美国新出版的信号处理教材就没有一本是不用MA TLAB的。
本学期实验结合数字信号处理的基本理论和基本内容,设计了五个上机实验,每个实验对应一至两个主题内容。
包括常见离散信号的MA TLAB产生和图形显示、离散时间信号的Z变换、快速傅立叶变换FFT 及其应用、数字滤波器的MATLAB实现、用窗函数法设计FIR数字滤波器。
每个实验中均给出了实验方法和步骤,及部分的MATLAB程序,此外,还有习题和上机实验。
通过实验可以使学生掌握数字信号处理的基本原理和方法。
用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。
实验一 常见离散信号的MATLAB 产生和图形显示一、实验目的1、学会用MA TLAB 在时域中产生一些基本的离散时间信号。
实验一 离散信号与系统S1 信号、系统及系统响应 1、实验目的(1)掌握几种基本典型数字信号在Matlab 中的实现。
(2)掌握序列的基本操作。
(3)熟悉时域离散系统的基本特征。
(4)利用卷积求线性时不变系统的输出序列。
2、实验器材PC 机;MATLAB 语言环境3、实验原理在数字信号处理中,所有的信号都是离散(时间)信号,数字信号是通过对模拟信号进行取样得到的。
图1-1是模拟信号数字化处理的简化框图。
模拟信号先转换成数字信号,经过一定的处理之后,再还原成模拟信号输出。
图1-1对模拟信号x(t)进行采样得到的信号为()t x a ^,其中:()()()t p t x t x a a =^;()()∑∞-∞=-=m nT t t p δ令:()()⎥⎦⎤⎢⎣⎡=Ω^^t x FT j X a a ;()()[]t x FT j X a a =Ω采样定理——采样与重构(1)对连续信号进行等间隔采用形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期延拓形成的,满足公式(1-1):()()s k a a jk j X T j X Ω-Ω=Ω∑∞-∞=1^(1-1)(2)设连续信号()t x a 为带限信号,其最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样信号()t x a ^通过一个增益为T ,截止频率为2sΩ的理想低通滤波器,可以唯一的恢复出连续信号()t x a ,否则将发生频谱混叠,导致信号失真。
在线性时不变系统中,若系统的输入为x(n),系统的单位脉冲响应为h(n),则系统的输出为:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(;其对应的频域特性为:()()()jwjwjwe H e X e Y =。
为了在数字计算机上观察分析各种序列的频域特性,通常对()jwe X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:()()∑-=-=10N n njw jwkk em x eX ,其中kM w k π2=,k=0,1,…,M-1通常M 应取大一些,以便观察谱的细节变化。
数字信号处理讲义--第6章离散时间系统结构第6章离散时间系统结构教学⽬的1.掌握线性常系数差分⽅程的⽅框图表⽰; 2.掌握IIR 系统、FIR 系统的基本结构;3.了解有限精度数值效应的概念,系数量化的影响,极限环的概念和产⽣原因。
教学重点与难点重点:IIR 系统、FIR 系统的基本结构;难点:有限精度数值效应的概念,系数量化的影响,极限环的概念和产⽣原因。
6.1 线性常系数差分⽅程的⽅框图表⽰时域离散系统或者⽹络⼀般⽤差分⽅程、单位脉冲响应以及系统函数进⾏描述。
如果系统输⼊和输出服从N 阶差分⽅程: (6-1)则系统函数H (z )⽤下式表⽰: (6-2)数字信号处理中有三种基本算法,即加法、乘法和移位,它们的⽅框图如图7-1(a)所⽰。
三种基本算法的流图则如图6-1(b)所⽰。
图6-1例6-1 1y[n-1]+p 0x[n]+p 1x[n-1]的结构图. 解:.此结构图包含了这三种算法的各部分.∑∑-----=M i i M i i i n y a i n x b n y 00)()()(∑∑=-=-+==N i i i M i i i z a z b z X z Y z H 001)()()((a )(b )x - 1)x (- 1)-1x 1(2n )+x 2(n )x 1(n 2x 1(n )+x 2图6-2 例6-1的结构框图6.2线性常系数差分⽅程的信号流图表⽰图6-3表⽰的是⼀种信号流图,流图中每⼀个节点都⽤⼀个节点变量表⽰,输⼊x (n ) 称为输⼊节点变量,y(n)表⽰输出节点变量,w 1(n ), w 2(n ), w 3(n )和w 4(n )也是节点变量。
这些节点变量和其他节点变量之间的关系⽤下式表⽰: w 1(n ) =x (n)+aw 3(n ) w 2(n ) =w 1(n ) w 3(n ) =w 2(n -1)w 4(n ) =b 0w 2(n )+b 1w 3(n ) y (n )=w 4(n )基本信号流图以上这些公式是⽤序列形式写的,也可以通过Z 变换写成下式: W 1(z )=X (z )+aW 3(z ) W 2(z )=W 1(z ) W 3(z )=z -1W 2(z )W 4(z)=b 0W 2(z )+b 1W 3(z ) Y (z)=W 4(z)从基本运算考虑,如果满⾜以下条件,则称为基本信号流图:(1) 信号流图中所有⽀路都是基本的,即⽀路增益是常数或者是z -1;(2) 流图环路中必须存在延时⽀路;(3) 节点个数和⽀路个数都是有限的。