【解题回顾】①在本题解题过程中,容易将f(x)=mx2+(m3)x+1看成是二次函数,从而忽视对m=0的讨论
②实系数方程ax2+bx+c=0(a≠0)的两实根异号的充要条件
为c
0 ;有两正实根的充要条件是
a
0
c
根的充要条件是
c
a
b a
0
0
a
b
a
0
0
0
;有两负实
能力·思维·方法
2.二次函数的图象与性质 定义域: R 单调性与值域: 奇偶性: 函数为偶函数b=0 图象:二次函数的图象是一条抛物线,对称轴方程是
x b ,当a>0 时, 图象开口向上;当a<0 时,图象开口向下.
2a
当 △>0 时, 图象与 x 轴有两个交点,两个交点的距离为 ;
|a |
当 △<0 时, 若a>0,则函数值恒正; 若a<0, 则函数值恒负.
的值都非负,求关于x的方程 x a12的根的范围.
解解题:分解 由析已:得知由3得已,知a△方2≤程0,即a(x-42aa)2|-2a4(21a|+122将)≤0x,表示为 a 的
函(数1)当 ,这3样求a2方程1时 根的,问题就原转方化程成化求为函x=数-值a2+域a+的6问题。
a22a6a1225
(2)本题是“定”二次函数,“动”区间,依照此法也可以 讨论“动”二次函数,“定”区间的二次函数问题 .
“顶点定,区间动”;
“顶点动,区间定”.
误解分析
1.在讨论方程根的分布情况时,要写出它的充要条件,注 意观察方程对应的函数图象是避免将充要条件写成必要条 件的有效办法.