江苏省南通市2020届高三高考考前模拟卷数学试题(十)含附加题
- 格式:doc
- 大小:221.33 KB
- 文档页数:8
1 开始S ←1 S ←S ⨯kk ←k +2 k ←1 江苏省南通市2020届高三第二学期开学模拟考试数 学 试 题2020.03(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1.已知集合{}|02A x x =<<,集合{}|1B x x =>,则A B =U ▲ . 2.设复数z 满足(2i)1i z -=+(i 为虚数单位),则复数z = ▲ .3.某路口一红绿灯东西方向的红灯时间为45 s ,黄灯时间为3 s ,绿灯时间为60 s .从西2向东行驶的一辆公交车通过该路口,遇到红灯的概率为 ▲ . 4.在某频率分布直方图中,从左往右有10个小矩形,若第一个 小矩形的面积等于其余9个小矩形的面积和的15,且第一组数据的频数为25,则样本容量为 ▲ .5.右图是一个算法的流程图,则输出的k 的值为 ▲ . 6.各棱长都为2的正四棱锥的体积为 ▲ .7.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3个单位后,所得图象关于直线πx =对称,则ω的最小值为 ▲ .8.已知()f x 是定义在R 上的偶函数.当0x ≥时,23()1x f x x -=+,则不等式(ln )f x <1的解集为 ▲ .9.已知公差不为零的等差数列{}n a 的前n 项和为n S ,且26a =,若137,,a a a 成等比数列,则8S = ▲ .10.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是___ _ ▲_ __.11.已知函数x m x f ln )(= 图像与函数x x g 2)(=图像在交点处切线方程相同,则m 的值为_________312.在平面直角坐标系xOy 中,已知直线l 1:y mx =与曲线3()2f x x x =+从左至右依次交于A 、B 、C 三点,若直线l 2:2y kx =+上存在P 满足PA PC 1+=u u ur u u u r ,则实数k 的取值范围是 .13.在平面直角在平面直角坐标系xOy 中,已知圆221O x y +=:,圆22(4)4C x y -+=:,动点P 在直线320x +-=上的两点E F ,之间,过点P 分别作圆O C ,的切线,切点为A B ,,若满足2PB PA ≥,则线段EF 的长度为 ▲ .14.若△ABC 中,AB 2,BC =8,B ∠=45°,D 为△ABC 所在平面内一点且满足()()4AB AD AC AD ⋅⋅⋅=u u u r u u u r u u u r u u u r,则AD 长度的最小值为 ▲ .二、解答题:本大题共6小题,15—17每小题14分,18—20每小题16分,共计90分. 请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)如图,在△ABC 中,a b c ,,为A B C ,,所对的边,CD ⊥AB 于D ,且12BD AD c -=. (1)求证:sin 2sin()C A B =-;(2)若3cos 5A =,求tan C 的值.CA DB(第15题)4ABCB 1C 1A 1MN (第16题)16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,已知M ,N 分别为线段1BB ,1A C 的中点,MN 与1AA 所成角的大小为90°,且1MA MC =.求证:(1)平面1A MC ⊥平面11A ACC ; (2)//MN 平面ABC .517.(本小题满分14分)已知点O 为坐标原点,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率2,点I ,J 分别是椭圆C 的右顶点、上顶点,IOJ △的边IJ 3.(1)求椭圆C 的标准方程; (2)过点()2,0H -的直线交椭圆C 于A ,B 两点,若11AF BF ⊥,求直线AB 的方程.18.(本小题满分16分)。
实战演练·高三数学附加分20套江苏省普通高等学校招生考试高三模拟测试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 、CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若PC =98,OP =12,求PD 的长.B. (选修4-2:矩阵与变换)已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22-222222对应的变换将曲线C 变为曲线C′,求曲线C′的方程.C. (选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为 ρ=2acos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数).若直线l 与圆C 相切,求实数a 的值.D. (选修4-5:不等式选讲)已知x 1、x 2、x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知点A(1,2)在抛物线Γ:y 2=2px 上.(1) 若△ABC 的三个顶点都在抛物线Γ上,记三边AB 、BC 、CA 所在直线的斜率分别为k 1、k 2、k 3,求1k 1-1k 2+1k 3的值; (2) 若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB 、BC 、CD 、DA 所在直线的斜率分别为k 1、k 2、k 3、k 4,求1k 1-1k 2+1k 3-1k 4的值.23. 设m 是给定的正整数,有序数组(a 1,a 2,a 3,…,a 2m )中a i =2或-2(1≤i ≤2m).(1) 求满足“对任意的k(k ∈N *,1≤k ≤m),都有a 2k -1a 2k=-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数A ;(2) 若对任意的k 、l(k 、l ∈N *,1≤k ≤l ≤m),都有| i =2k -12la i |≤4成立,求满足“存在k(k ∈N *,1≤k ≤m),使得a 2k -1a 2k≠-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数B.江苏省普通高等学校招生考试高三模拟测试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N ,且BN =2AM.求证:AB =2AC.B. (选修4-2:矩阵与变换)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 00 1,求B -1.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A 、B 两点,且AB =3,求直线l 的方程.D. (选修4-5:不等式选讲)已知x、y、z均为正数,求证:xyz+yzx+zxy≥1x+1y+1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.(1) 求S=32的概率;(2) 求S的分布列及数学期望E(S).23.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈N*).性质T:排列a1,a2,…,a n中有且只有一个a i>a i+1(i∈{1,2,…,n-1}).(1) 求f(3);(2) 求f(n).江苏省普通高等学校招生考试高三模拟测试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A 、B 、C 、D 、E ,求证:AB·CD =BC·DE.B. (选修4-2:矩阵与变换)已知a 、b ∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.C. (选修4-4:坐标系与参数方程)在极坐标系中,求点M ⎝⎛⎭⎫2,π6关于直线θ=π4的对称点N 的极坐标,并求MN 的长.D. (选修4-5:不等式选讲)已知x 、y 、z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Oxyz 中,正四棱锥PABCD 的侧棱长与底边长都为32,点M 、N 分别在PA 、BD 上,且PM PA =BN BD =13. (1) 求证:MN ⊥AD ;(2) 求MN 与平面PAD 所成角的正弦值.23.设ξ为随机变量,从棱长为1的正方体ABCDA 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ=0,当四点不共面时,ξ的值为四点组成的四面体的体积.(1) 求概率P(ξ=0);(2) 求ξ的分布列,并求其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A、B、C、D四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=34AD·AE,求∠BAC的大小.B. (选修4-2:矩阵与变换)求使等式⎣⎢⎡⎦⎥⎤1234=⎣⎢⎡⎦⎥⎤1002M⎣⎢⎡⎦⎥⎤100-1成立的矩阵M.C. (选修4-4:坐标系与参数方程)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O、B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M轨迹的长度.D. (选修4-5:不等式选讲)已知a、b、c均为正数,且a+2b+4c=3.求1a+1+1b+1+1c+1的最小值,并指出取得最小值时a、b、c的值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线.(1) 分别求出凸四边形、凸五边形、凸六边形的对角线的条数;(2) 猜想凸n边形的对角线条数f(n),并用数学归纳法证明.23.从集合M={1,2,3,4,5,6,7,8,9}中任取三个元素构成子集{a,b,c}.(1) 求a、b、c中任意两数之差的绝对值均不小于2的概率;(2) 记a、b、c三个数中相邻自然数的组数为ξ(如集合{3,4,5}中3和4相邻,4和5相邻,ξ=2),求随机变量ξ的分布列及其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,等腰梯形ABCD 内接于圆O ,AB ∥CD.过点A 作圆O 的切线交CD 的延长线于点E.求证:∠DAE =∠BAC.B. (选修4-2:矩阵与变换)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 112对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知点P ⎝⎛⎭⎫23,π6,直线l :ρcos ⎝⎛⎭⎫θ+π4=22,求点P 到直线l 的距离.D. (选修4-5:不等式选讲)已知x≥1,y≥1,求证:x2y+xy2+1≤x2y2+x+y.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O、D分别是AB、PB的中点,PO⊥AB,连结CD.(1) 若PA=2a,求异面直线PA与CD所成角的余弦值的大小;(2) 若二面角APBC的余弦值的大小为55,求PA.23. 设集合A、B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1) 若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2) 若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.江苏省普通高等学校招生考试高三模拟测试卷(六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,已知AB 是圆O 的直径,圆O 交BC 于点D ,过点D 作圆O 的切线DE 交AC 于点E ,且DE ⊥AC.求证:AC =2OD.B. (选修4-2:矩阵与变换)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.C. (选修4-4:坐标系与参数方程)求经过极坐标为O(0,0)、A ⎝⎛⎭⎫6,π2、B ⎝⎛⎭⎫62,π4三点的圆的直角坐标方程.D. (选修4-5:不等式选讲)已知正数a 、b 、c 满足abc =1,求(a +2)(b +2)(c +2)的最小值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知曲线C :y 2=2x -4.(1) 求曲线C 在点A(3,2)处的切线方程; (2) 过原点O 作直线l 与曲线C 交于A 、B 两不同点,求线段AB 的中点M 的轨迹方程.23已知数列{a n }满足a 1=23,a n +1·(1+a n )=1.(1) 试计算a 2,a 3,a 4,a 5的值;(2) 猜想|a n +1-a n |与115⎝⎛⎭⎫25n -1(其中n ∈N *)的大小关系,并证明你的猜想.江苏省普通高等学校招生考试高三模拟测试卷(七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 是圆O 的一条直径,C 、D 是圆O 上不同于A 、B 的两点,过B 作圆O 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN =BM.求证:(1) ∠NBD =∠DBM ;(2) AM 是∠BAC 的角平分线.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m 1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.C. (选修4-4:坐标系与参数方程)已知在平面直角坐标系xOy 中,圆M 的参数方程为⎩⎨⎧x =532+2cos θ,y =72+2sin θ(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点⎝⎛⎭⎫3,π3为圆心,且过点⎝⎛⎭⎫2,π2的圆.(1) 求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2) 求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D. (选修4-5:不等式选讲)已知:a +b +c =1,a 、b 、c>0.求证: (1) abc ≤127;(2) a 2+b 2+c 2≥3abc.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知直线l :y =2x -4与抛物线C :y 2=4x 相交于A 、B 两点,T(t ,0)(t>0且t ≠2)为x 轴上任意一点,连结AT 、BT 并延长与抛物线C 分别相交于A 1、B 1.(1) 设A 1B 1斜率为k ,求证:k·t 为定值;(2) 设直线AB 、A 1B 1与x 轴分别交于M 、N ,令S △ATM =S 1,S △BTM =S 2,S △B 1TN =S 3,S △A 1TN =S 4,若S 1、S 2、S 3、S 4构成等比数列,求t 的值.23如图,在三棱柱ABCA 1B 1C 1中,底面△ABC 为直角三角形,∠ACB =π2,顶点C 1在底面△ABC 内的射影是点B ,且AC =BC =BC 1=3,点T 是平面ABC 1内一点.(1) 若T 是△ABC 1的重心,求直线A 1T 与平面ABC 1所成的角;(2) 是否存在点T ,使TB 1=TC 且平面TA 1C 1⊥平面ACC 1A 1?若存在,求出线段TC 的长度;若不存在,说明理由.江苏省普通高等学校招生考试高三模拟测试卷(八)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .22. (本小题满分10分)已知直线l 的极坐标方程是ρcos ⎝⎛⎭⎫θ+π4=42,圆M 的参数方程是⎩⎨⎧x =1+2cos θ,y =-1+2sin θ(θ是参数).(1) 将直线的极坐标方程化为普通方程; (2) 求圆上的点到直线l 上点距离的最小值.23. (本小题满分10分)如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP =m.(1) 若m =1,求异面直线AP 与BD 1所成角的余弦;(2) 是否存在实数m ,使直线AP 与平面AB 1D 1所成角的正弦值是13若存在,请求出m的值;若不存在,请说明理由.24. (本小题满分10分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次.在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次.某同学在A 处的命中率为p ,在B 处的命中率为q.该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分,其分布列为X 0 2 3 4 5 Pp 1p 2p 3p 4p 5(1) 若p =0.25,p 1=0.03,求该同学用上述方式投篮得分是5分的概率;(2) 若该同学在B 处连续投篮3次,投中一次得2分,用Y 表示该同学投篮结束后所得的总分.若p<23q ,试比较E(X)与E(Y)的大小.江苏省普通高等学校招生考试高三模拟测试卷(九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角△ABC 的内心为D ,过点A 作直线BD 的垂线,垂足为F ,点E 为内切圆D 与边AC 的切点.若∠C =50°,求∠DEF 的度数.B. (选修4-2:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 00 b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值.D. (选修4-5:不等式选讲)已知a 、b 、c 均为正数,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某品牌汽车4S 店经销A 、B 、C 三种排量的汽车,其中A 、B 、C 三种排量的汽车依次有5、4、3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1) 求该单位购买的3辆汽车均为B 种排量汽车的概率;(2) 记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.23. 已知点A(-1,0),F(1,0),动点P 满足AP →·AF →=2|FP →|.(1) 求动点P 的轨迹C 的方程;(2) 在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M 、N ,问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由.江苏省普通高等学校招生考试高三模拟测试卷(十)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2 32 1,求矩阵M 的特征值,并任选择一个特征值,求其对应的特征向量.22.(本小题满分10分)在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =2,试判断圆C 是否通过极点,并求圆C 的极坐标方程.23. (本小题满分10分)如图,已知四棱锥SABCD的底面是边长为4的正方形,顶点S在底面上的射影O落在正方形ABCD内,且O到AB、AD的距离分别是2、1.又P是SC的中点,E是BC上一点,CE=1,SO=3,过O在底面内分别作AB、BC垂线Ox、Oy,分别以Ox、Oy、OS为x、y、z轴建立空间直角坐标系.(1) 求平面PDE的一个法向量;(2) 问在棱SA上是否存在一点Q,使直线BQ∥平面PDE?若存在,请给出点Q在棱SA上的位置;若不存在,请说明理由.24.(本小题满分10分)已知抛物线C:x2=4y,在直线y=-1上任取一点M,过M作抛物线C的两条切线MA、MB.(1) 求证:直线AB过一个定点,并求出这个定点;(2) 当弦AB中点的纵坐标为2时,求△ABM的外接圆的方程.江苏省普通高等学校招生考试高三模拟测试卷(十一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F.(1) 求证:四边形ACBE 为平行四边形; (2) 若AE =6,BD =5,求线段CF 的长.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D. (选修4-5:不等式选讲)已知x、y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某中学有4位学生申请A、B、C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1) 求恰有2人申请A大学的概率;(2) 求被申请大学的个数X的概率分布列与数学期望E(X).23.设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,有f(n)∈Z;②任意m、n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).(1) 求f(1),f(2),f(3)的值;(2) 求f(n)的表达式.江苏省普通高等学校招生考试高三模拟测试卷(十二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CD AB =ABBE.B. (选修4-2:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求:(1) 圆的普通方程; (2) 圆的极坐标方程.D. (选修4-5:不等式选讲)已知函数f(x)=|x +1|+|x -2|-|a 2-2a|.若函数f(x)的图象恒在x 轴上方,求实数a 的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1) 求甲同学至少有4次投中的概率;(2) 求乙同学投篮次数ξ的分布列和数学期望.23.设S n =C 0n -C 1n -1+C 2n -2-…+(-1)m C m n -m ,m 、n ∈N *且m <n ,其中当n 为偶数时,m =n2;当n 为奇数时,m =n -12. (1) 证明:当n ∈N *,n ≥2时,S n +1=S n -S n -1;(2) 记S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,求S 的值.江苏省普通高等学校招生考试高三模拟测试卷(十三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 内接于圆O ,D 为弦BC 上的一点,过D 作直线DP ∥CA ,交AB 于点E ,交圆O 在A 点处的切线于点P.求证:△PAE ∽△BDE.B. (选修4-2:矩阵与变换)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤ 1-1且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,设动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A(1,0)间的距离为d ,求d 的取值范围.D. (选修4-5:不等式选讲)已知:a ≥2,x ∈R .求证:|x -1+a|+|x -a|≥3.【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在长方体ABCDA 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点且AEEB =λ.(1) 证明:D 1E ⊥A 1D ;(2) 若二面角D 1ECD 的大小为π4,求λ的值.23. 设数列{a n }共有n(n ≥3,n ∈N )项,且a 1=a n =1,对每个i(1≤i ≤n -1,i ∈N ),均有a i +1a i ∈⎩⎨⎧⎭⎬⎫12,1,2. (1) 当n =3时,写出满足条件的所有数列{a n }(不必写出过程);(2) 当n =8时,求满足条件的数列{a n }的个数.江苏省普通高等学校招生考试高三模拟测试卷(十四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1(k ≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a 、k 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A(2,0)、B(0,23)是椭圆两个顶点,求四边形OAMB 面积的最大值.D. (选修4-5:不等式选讲)已知a 、b 、c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在正四棱锥PABCD 中,PA =AB =2,点M 、N 分别在线段PA 和BD 上,BN =13BD.(1) 若PM =13PA ,求证:MN ⊥AD ;(2) 若二面角MBDA 的大小为π4,求线段MN 的长度.23. 已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,…,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,…,数组T 中所有数的平均值记为m(T).(1) 若S ={1,2},求m(T);(2) 若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m(T).江苏省普通高等学校招生考试高三模拟测试卷(十五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 中,∠ACB =90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB 、AC 分别交于点E 、F ,EC 与圆O 交于点D ,连结AD 并延长交BC 于P ,已知AE =EB =4,AD =5,求AP 的长.B. (选修4-2:矩阵与变换)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.C. (选修4-4:坐标系与参数方程)如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π).圆A 的极坐标方程为ρ=2cos θ,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ 为斜边的等腰直角三角形,若C为OP 的中点,求点Q 的极坐标.D. (选修4-5:不等式选讲)已知不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x、y、z都成立,求实数a的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Axyz中,已知斜四棱柱ABCDA1B1C1D1的底面是边长为3的正方形,点B、D、B1分别在x、y、z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1) 写出点C1、P、D1的坐标;(2) 设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.23.如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N*,n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1) 写出a2,a3,a4的值;(2) 写出a n的表达式,并用数学归纳法证明.江苏省普通高等学校招生考试高三模拟测试卷(十六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F.求证:△DEF ∽△EAF.B. (选修4-2:矩阵与变换)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试求实数a 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,直线l 经过点P(0,1),曲线C 的方程为x 2+y 2-2x =0,若直线l 与曲线C 相交于A 、B 两点,求PA·PB 的值.D. (选修4-5:不等式选讲)已知x >0,y >0,a ∈R ,b ∈R .求证:⎝ ⎛⎭⎪⎫ax +by x +y 2≤a 2x +b 2y x +y .【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在平面直角坐标系xOy 中,已知定点F(1,0),点P 在y 轴上运动,点M 在x 轴上,点N 为平面内的动点,且满足PM →·PF →=0,PM →+PN →=0.(1) 求动点N 的轨迹C 的方程;(2) 设点Q 是直线l :x =-1上任意一点,过点Q 作轨迹C 的两条切线QS 、QT ,切点分别为S 、T ,设切线QS 、QT 的斜率分别为k 1、k 2,直线QF 的斜率为k 0,求证:k 1+k 2=2k 0.23.各项均为正数的数列{x n }对一切n ∈N *均满足x n +1x n +1<2.证明:(1) x n <x n +1; (2) 1-1n<x n <1.江苏省普通高等学校招生考试高三模拟测试卷(十七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E.若AB =10,ED =3,求BC 的长.B. (选修42:矩阵与变换) 已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2301对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.C. (选修44:坐标系与参数方程)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数),曲线C 在点(1,3)处的切线为l.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.D. (选修45:不等式选讲)设x 、y 、z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求证:x +y +z =3147.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验,否则不能通过检验,也不再抽检;若少于2件是合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.(1) 求这批产品通过检验的概率;(2) 已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ξ元,求ξ的概率分布及数学期望.23.已知数列{a n }和{b n }的通项公式分别为a n =3n -19,b n =2n .将{a n }与{b n }中的公共项按照从小到大的顺序排列构成一个新数列记为{c n }.(1) 试写出c 1,c 2,c 3,c 4的值,并由此归纳数列{c n }的通项公式; (2) 证明你在(1)所猜想的结论.江苏省普通高等学校招生考试高三模拟测试卷(十八)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为圆O 上一点,AE =AC ,DE 交AB 于点F.求证:△PDF ∽△POC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.C. (选修4-4:坐标系与参数方程) 在极坐标系中,已知圆A 的圆心为(4,0),半径为4,点M 为圆A 上异于极点O 的动点,求弦OM 中点的轨迹的极坐标方程.D. (选修4-5:不等式选讲)已知x、y、z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1) 求异面直线BA1与CB1夹角的余弦值;(2) 求二面角BAB1C平面角的余弦值.23.在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1) 当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2) 求出所有的正整数n,使得5a n+1a n+1为完全平方数.江苏省普通高等学校招生考试高三模拟测试卷(十九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,设AB 、CD 是圆O 的两条弦,直线AB 是线段CD 的垂直平分线.已知AB =6,CD =25,求线段AC 的长度.B. (选修4-2:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32,求ad -bc 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.设点A 、B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,求线段AB 的最小值.。
江苏省南通市2020届高三年级6月份模拟测试数 学 试 题(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1. 已知集合{}{}0,3,41,0,2,3A B =,=-,则A B ⋂=______. 2.已知复数341iz i+=-(i 为虚数单位),则z =______. 3. 某学校共有师生3 200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________. 4. 如图是一个算法的流程图,则输出的k 的值为________. 5.一个袋子中装有2个红球和2个白球(除颜色外其余均相同),现从中随机摸出2个球,则摸出的2个球中至少有1个是红球的概率为________.6.一种水稻品种连续5年的平均单位面积产量(单位:t/hm 2)分别为:9.4,9.7,9.8,10.3,10.8,则这组样本数据的方差为________.7.已知离心率2e =的双曲线2222:1(0,0)x y D a b a b-=>>的左、右焦点分别为12,F F ,虚轴的两个端点分别为12,A A ,若四边形1122A F A F 的面积为43,则双曲线D 的焦距为______. 8. 若不等式组⎩⎪⎨⎪⎧y ≤x +2,y ≥x ,0≤y ≤4,x ≥0表示的平面区域的面积为S ,则S 的值为________.9.已知圆锥的底面圆心到某条母线的距离为1,则该圆锥母线的长度取最小值时,该圆锥的体积为________. 10. 已知函数()=sin 2(0)3f x x x ππ⎛⎫+≤< ⎪⎝⎭,1()()()3f f αβαβ==≠,则αβ+=____.11.设函数21()lg(1)x xf x e ex -=+-+,则使得(21)(2)f x f x +<-成立的x 的取值范围是_________.12. 在平面直角坐标系xOy 中,已知直线3x +y -6=0与圆(x -3)2+(y -1)2=4交于A ,B 两点,则直线OA 与直线OB 的倾斜角之和为________.13.各项均为正偶数的数列1234a a a a ,,,中,前三项依次成公差为()0d d >的等差数列,后三项依次成公比为q 的等比数列.若4188a a -=,则q 的所有可能的值构成的集合为________.14. 在ABC △中,D 为边BC 上一点,若2,BD CD AD BD ==,则2tan cos BAC B∠•的最大值是__________.二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知向量a =(sin θ,1),b =(cos θ,3),且a ∥b ,其中θ∈(0,2π) (1)求θ的值; (2)若sin (θω-)=53,0<ω<2π,求cos ω的值。16.(本小题满分14分)如图所示,已知在五棱锥–P ABCDE 中,底面ABCDE 为凸五边形,2AE DC ==,3AB BC ==,1DE =,120EAB BCD CDE DEA ∠=∠=∠=∠=︒,F 为AE 上的点,且32AF =,平面PAE 与底面ABCDE 垂直.求证:(1)//BC 平面PAE ;(2)PA FC ⊥.(第16题图)FE D17.(本小题满分14分)如图,已知海岛A 到海岸公路BC 的距离AB 为50㎞,B ,C 间的距离为100㎞,从A 到C ,必须先坐船到BC 上的某一点D ,船速为25㎞/h ,再乘汽车到C ,车速为50㎞/h ,记∠BDA =θ.(1)试将由A 到C 所用的时间t 表示为θ的函数t (θ); (2)问θ为多少时,由A 到C 所用的时间t 最少?18.(本小题满分16分)已知圆C 方程为228(62)610(,0)x y mx m y m m R m +--+++=∈≠,椭圆中心在原点,焦点在x 轴上.(1)证明圆C 恒过一定点M ,并求此定点M 的坐标;(2)判断直线4330x y +-=与圆C 的位置关系,并证明你的结论;(3)当2m =时,圆C 与椭圆的左准线相切,且椭圆过(1)中的点M ,求此时椭圆方程;在x 轴上是否存在两定点,,A B 使得对椭圆上任意一点Q (异于长轴端点),直线,QA QB 的斜率之积为定值?若存在,求出,A B 坐标;若不存在,请说明理由.19.(本小题满分16分)设数列{}n a 的各项均为不等的正整数,其前n 项和为n S ,我们称满足条件“对任意的*m n ∈N ,,均有()()()n m n m n m S n m S S +-=+-”的数列{}n a 为“好”数列. (1)试分别判断数列{}n a ,{}n b 是否为“好”数列,其中21n a n =-,12n n b -=,*n ∈N ,并给出证明;(2)已知数列{}n c 为“好”数列.① 若20172018c =,求数列{}n c 的通项公式;② 若1c p =,且对任意给定正整数p s ,(1s >),有1s t c c c ,,成等比数列, 求证:2t s ≥.B A CD θ20.(本小题满分16分) 对任意x ∈R ,给定区间[k -21,k +21](k ∈Z ),设函数f (x )表示实数x 与x 所属的给定区间内唯一整数之差的绝对值。 (1)当x ∈[-21,21]时,求出f (x )的解析式;x ∈[k -21,k +21](k ∈Z )时,写出绝对值符号表示的f (x )解析式; (2)求f (34),f (34-),判断函数f (x )(x ∈R )的奇偶性,并证明你的结论; (3)当21-e <a <1时,求方程f (x )—alog x =0的实根。(要求说明理由,21-e>21)江苏省南通市2020届高三年级6月份模拟测试数学附加题(本部分满分40分,考试时间30分钟)21.[选做题](本题包括A 、B 、C 三小题,请选定其中两小题,并在答题相应的区域内作答.若多做,则按作答的前两小题评分.解答应写出文字说明、证明过程或演算步骤) A .(选修4-2:矩阵与变换)(本小题满分10分)已知矩阵⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=10021,2001N M ,试求曲线x y sin =在矩阵MN 变换下的函数解析式.B .(选修4-4:坐标系与参数方程)(本小题满分10分) 已知曲线C 的极坐标方程是π4cos()3ρθ=+.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是3x y ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),直线l 与曲线C 相交于A B ,两点. (1)求AB 的长;(2)求点(3P ,到A B ,两点的距离之积.C .(选修4-5:不等式选讲)(本小题满分10分)已知实数x ,y ,z 满足x + y + z = 2,求22232z y x ++的最小值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分) 如图,在直三棱柱111ABC A B C -中,已知AB AC ⊥,2AB =,4AC =,13AA =.D 是线段BC 的中点.(1)求直线1DB 与平面11A C D 所成角的正弦值; (2)求二面角111B A D C --的大小的余弦值.23.(本小题满分10分)已知数列{}n a 满足123012323C C C C 222n n n n na +++=++++…*C 2n n nn n ++∈N ,. (1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并证明.A BCDA 1B 1C 1(第22题)江苏省南通市2020届高三年级6月份模拟测试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}0,33.2004.65.566. 0.2447.48.69.3 10.76π 11.111,223⋃(-3,-)(-) 12. 60° 13.58,37⎧⎫⎨⎬⎩⎭14. 32 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)(1)∵=(sin θ,1),=(cos θ,3),且∥ ∴3 sin θ- cos θ=0,即tan θ=, ∵θ∈(0,2π),∴θ=6π,(2)∵ 0<ω<2π, θ=6π,∴-6π<ω-6π<3π.∵sin (ω-6π)=35,∴cos (ω-6π45.cos cos[())]cos cos()sin sin()666666ππππππωωωω=-+=---×4152-×3516.(本小题满分14分)证明 (1)如图凸五边形ABCDE ,延长,AE CD 交于点H .∵ 120AED EDC ∠=∠=︒,∴ 60HED HDE ∠=∠=︒. ∴ HED ∆为等边三角形,60H ∠=︒.∴ 60120180H BCD ∠+∠=︒+︒=︒,即有//BC AE .又∵ AE ⊂平面PAE ,BC /⊂平面PAE , ∴ //BC 平面PAE .(2)连结AC ,∵ HED ∆为等边三角形 ∴ 1HE HD ED ===,∴ 3HA HC ==. 又 ∵ 60H ∠=︒,∴ HAC ∆为正三角形.CA又∵ 12AF AH =,∴ CF AE ⊥. ∵ 平面PAE ⊥平面ABCDE , 平面PAE I 平面ABCDE AE =,CF ⊂平面ABCDE ,∴ CF ⊥平面PAE . 又∵ PA ⊂平面PAE ,∴ CF PA ⊥.17.(本小题满分14分) 解:(1)∵AD =50sin θ, ∴A 到D 所用时间t 1=2sin θBD =50tan θ=50cos θsin θ,CD =100-BD =100-50cos θsin θ∴D 到C 所用时间t 2=2-cos θsin θ∴t (θ)=t 1+t 2=2-cos θsin θ+2(θ0<θ<π2,其中tan θ0=12)··························6分 (2)t (θ)=sin 2θ-(2-cos θ)cos θsin 2θ=1-2cos θsin 2θ····································8分令t(θ)>0,得:cos θ<12 ∴π3<θ<π2;∴当θ∈⎝⎛π3,⎭⎫π2时,t (θ)单调递增;同理θ0<θ<π3,t(θ)<0,t (θ)单调递减·····················12分∴θ=π3,t (θ)取到最小值3+2;·························································13分答:当θ=π3时,由A 到C 的时间最少为3+2小时.·····························14分18.(本小题满分16分) (1)圆C 的方程可化为:22(21)(866)0x y y m x y +-+-+-=,……………………………………2分由22210,8660,x y y x y ⎧+-+=⎨+-=⎩………………………………………………………4分 解得0,1,x y =⎧⎨=⎩所以圆C 过定点(0,1)M ………………………………………5分(2) 圆C 的方程可化为:[]222(4)(31)25x m y m m -+-+=,………………………6分 圆心到直线l 的距离为22443(31)343m m d ⋅+⋅+-=+……………………………8分2555mm r ===……………………………………9分所以直线与圆C 相切. …………………………………………………………10分 (3)m=2C 当时,圆方程为22(8)(7)100x y -+-=,圆心为(8,7),半径为10,x x 与直线=(8-10) ,即=-2相切所以椭圆的左准线为2x =-,……………………………………………………11分 又椭圆过点(0,1),M 则b=1,所以22,1,a cb ⎧=⎪⎨⎪=⎩1,a b ⎧=⎪⇒⎨=⎪⎩所以椭圆方程为2212x y +=.………………………12分在椭圆上任取一点(,)(0)Q x y y ≠,设定点 (,0),(,0)A s B t ,则212()()QA QBx y y k k k x s x t x s x t -⋅=⋅==----(x ∈对恒成立,………13分 所以2211()2x kx k s t x kst -+=-++(x ∈对恒成立所以111,,,222()0,1,k k k k s t s s kst t t ⎧⎧⎧=-=-=-⎪⎪⎪⎪⎪⎪⎪⎪+=⇒==⎨⎨⎨⎪⎪⎪===⎪⎪⎪⎩⎪⎪⎩⎩或 …………………………………14分所以((A B A B 或者.……………………………16分19.(本小题满分16分)(1)若21n a n =-,则2n S n =,所以2()()()n m n m S n m n m +-=-+,而222()()()()()()n m n m S S n m n m n m n m +-=+-=+-, 所以()()()n m n m n m S n m S S +-=+-对任意的*m n ∈N ,均成立,即数列{}n a 是“好”数列; …… 2分 若12n n b -=,取21n m ==,,则3()7n m n m S S +-==,2()()36n m n m S S b +-==, 此时()()()n m n m n m S n m S S +-≠+-,即数列{}n b 不是“好”数列. …… 4分 (2)因为数列{}n c 为“好”数列,取1m =,则11(1)(1)()n n n S n S S +-=+-,即112(1)(1)n n S n a n a +=-++恒成立.当2n ≥,有112(2)n n S n a na -=-+,两式相减,得112(1)(2)n n n a n a n a a +=---+(2n ≥), 即11(1)n n na n a a +=-+(2n ≥), 所以11(1)(2)n n n a n a a --=-+(3n ≥), 所以11(1)(1)(2)n n n n na n a n a n a -+--=---,即11(22)(1)(1)n n n n a n a n a -+-=-+-,即112n n n a a a -+=+(3n ≥), 当2n =时,有23123S a a =+,即2312a a a =+, 所以112n n n a a a -+=+对任意2n ≥,*n ∈N 恒成立,所以数列{}n c 是等差数列. …… 8分 设数列{}n c 的公差为d ,① 若20172018c =,则120162018c d +=,即120182016c d -=,因为数列{}n c 的各项均为不等的正整数,所以*d ∈N ,所以1d =,12c =,所以1n c n =+. …… 12分 ② 若1c p =,则n c dn p d =+-,由1s t c c c ,,成等比数列,得21s t c c c =,所以2()()ds p d p dt p d +-=+-, 即2()(2)()0p d ds p d p d ds pt -+--+-= 化简得,2(12)(1)p t s d s +-=-,即212(1)t s d p s +-=-. …… 14分 因为p 是任意给定正整数,要使*d ∈N ,必须*212(1)t s s +-∈-N ,不妨设212(1)t s k s +-=-,由于s 是任意给定正整数, 所以222(1)21(1)21t k s s s s s =-+--+-=≥. …… 16分 20.(本小题满分16分)(1)当∈x ]21,21[-时,]21,21[-中唯一整数为0, 有定义知:x x f =)(,∈x ]21,21[-.当)](21,21[z k k k x ∈+-∈时,在]21,21[+-k k 中唯一整数为k ,有定义知:,)(k x x f -=)](21,21[z k k k x ∈+-∈.(2)∵],211,211[34+-∈ -]211,211[34+---∈,∴,31)34(,31)34(=-=f f 下判断)(x f 是偶函数.对任何R x ∈,存在唯一-k z ∈,使得2121+≤≤-k x k 则,)(k x x f -=由2121+≤≤-k x k 可以得出)(2121Z k k x k ∈+-≤-≤--,即-)](21,21[Z k k k x ∈-+---∈由(1)的结论,)()()(x f k x x k k x x f =-=-=---=-即)(x f 是偶函数.. (3)-)(x f ㏒ax =0,即21--k x ㏒a x =0,其中x >0; ① 当x >1时,210>≥-k x ㏒a x ,所以21--k x ㏒a x =0没有大于的实根;② 容易验证x =1为方程21--k x ㏒a x =0的实根;③ 当121<<x 时对应的k =1,方程21--k x ㏒a x =0变为1-x -21㏒a x =0设H (x )=21㏒a x -(1-x )(121<<x )则x x H 21)(='㏒a e +1=21ln 211ln 21e x a x <++1=011<+-x, 故当121<<x 时,H (x )为减函数,H (x )>H (1)=0,方程没有121<<x 的实根;④当0<x 21≤时,对应的k =0,方程21--k x ㏒a x =0变为x -21㏒a x =0,设G (x )=21㏒a x -x (0<x 21≤),明显G (x )为减函数.G (x )0)()21(>=≥x H G ,所以方程没有0<x ≤21的实根.综上,若121<<a e 时,方程-)(x f -)(x f ㏒a x =0有且仅有一个实数根,实根为1.附加题参考答案21A.MN =1002⎡⎤⎢⎥⎣⎦10201⎡⎤⎢⎥⎢⎥⎣⎦=10202⎡⎤⎢⎥⎢⎥⎣⎦, …………………………………4分 即在矩阵MN 变换下11022022x x x x y y y y ⎡⎡⎤⎤'⎡⎡⎡⎤⎤⎤⎢⎢⎥⎥→==⎢⎢⎢⎥⎥⎥⎢⎢⎥⎥'⎦⎦⎦⎣⎣⎣⎢⎣⎦⎦⎣, ………………6分 1,22x x y y ''==, ………………8分 代入得:1sin 22y x ''=,即曲线sin y x =在矩阵MN 变换下的函数解析式为2sin 2y x =.…………………10分21B .(1)由4cos()3πρθ=+,得2cos ρθθ=-,所以222x y x +=-,即22(1)(4x y -++=,所以曲线C是以(1,为圆心,2为半径的圆. 直线l的普通方程为30x y --.所以圆心(1,到直线l的距离为d =所以AB =.(2)点(3P ,在直线l 上,设A B ,两点对应的参数分别为12t t ,.将3xy⎧=⎪⎪⎨⎪=⎪⎩,与22(1)(4x y-++=联立可得20t+=,所以12t t==-,所以12||0PA PB t t⋅==.21C.证明:由柯西不等式可知22222221)1](23)z x y z++⋅≤++++所以2222()24231111123x y zx y z++++≥=++,当且仅当1112,114,116===zyx时取等号.………10分22.(本小题满分10分)解:因为在直三棱柱111ABC A B C-中,AB AC⊥,所以分别以AB、AC、1AA所在的直线为x轴、y轴、z轴,建立空间直角坐标系,则111(0,0,0),(2,0,0),(0,4,0),(0,0,3),(2,0,3),(0,4,3)A B C A B C.因为D是BC的中点,所以(1,2,0)D,……2分(1)因为111(0,4,0),(1,2,3)A C A D==-u u u u r u u u u r,设平面11A C D的法向量1111(,,)n x y z=u u r,则11111n A Cn A D⎧⋅=⎪⎨⋅=⎪⎩u u r u u u u ru u r u u u u r,即111140230yx y z=⎧⎨+-=⎩,取11131xyz=⎧⎪=⎨⎪=⎩,所以平面11A C D的法向量1(3,0,1)n=u u r,而1(1,2,3)DB=-u u u u r,所以111111cos,n DBn DBn DB⋅<>=⋅u u r u u u u ru u r u u u u ru u r u u u u r所以直线1DB与平面11A C D……5分(2)11(2,0,0)A B=u u u u r,1(1,2,3)DB=-u u u u r,设平面11B A D的法向量2222(,,)n x y z=u u r,则2112100n A B n DB ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u u r u u r u u u u r,即222220230x x y z =⎧⎨-+=⎩,取222032x y z =⎧⎪=⎨⎪=⎩,平面11B A D 的法向量2(0,3,2)n =u u r ,所以121212cos ,n n n n n n ⋅<>==⋅u u r u u ru u r u u r u u r u u r , 二面角111B A D C --. …… 10分23.(本小题满分10分)解:(1)12a =,24a =,38a =. …… 3分 (2)猜想:2n n a =. 证明:①当1n =,2,3时,由上知结论成立; …… 5分 ②假设n k =时结论成立,则有123012323C C C C C 22222kk k k k k kk kk a ++++=+++++=K .则1n k =+时,12311112131111231C C C C C2222k+k k k+k+k+k k k+a ++++++++=+++++K . 由111C C C k k k n n n +++=+得102132112233123C C C C C C C 222k k k k k k k ka ++++++++++=++++K11111C C C 22k k -k+k+k k+k k+k+k k+++++0121112311231C C C C C 222222k k+kk k k k k k+k+k k+-+++++=++++++K , 12110231111121C C C C 12(C )22222k k+kk k k k k+k+k k k ka -++++++-=++++++K 1211023********C C C C C 12(C )22222k k k+kk k k k -k+k k+kk k k+-+++++++-=++++++K .又111111(21)!(22)(21)!(21)!(1)12C C !(1)!(1)!(1)!(1)!(1)!2k+k+k+k k+k k k k k k =k k k k k k k ++++++++===+++++ 12110231111111211C C C C C 12(C )222222k k k+kk k k k -k+k k+k k k k k -++++++++-+=+++++++K , 于是11122k k k a a ++=+. 所以112k k a ++=, 故1n k =+时结论也成立.由①②得,2n n a =*n N ,. …… 10分。
开始输出n 输入p结束n ←1, S ←0S < pn ←n + 1S ←S + 2n NY(第5题)江苏省南通市2020届高三第二学期阶段性模拟考试数 学 试 题2020.05(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}1,2,3,4A =,{}2log (1)2B x x =-<,则A B =I ▲ . 2.设复数2(2i)z =+(i 为虚数单位),则z 的共轭复数为 ▲ .3.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线2x ﹣y ﹣1=0上方的概率为 .4.在平面直角坐标系xOy 中,若抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为 ▲ . 5.执行右边的程序框图,若p =14,则输出的n 的值为 ▲ .6.函数22log (32)y x x =--的值域为 ▲ .7.等差数列}{n a 中,若100119753=++++a a a a a , 则=-1393a a ▲ .8.现用一半径为10 cm ,面积为80π cm 2的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为 ▲ cm 3.9.已知() 0 αβ∈π,,,且()1tan 2αβ-=,1tan 5β=-,则tan α的值为 ▲ .10.已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.若函数()()ππ()sin 63f x a x x =++-是偶函数,则实数a 的值为 ▲ .12.在△ABC 中,cos 2sin sin A B C =,tan tan 2B C +=-,则tan A 的值为 ▲ . 13.已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 ▲ .14.已知[)0,2θπ∈,若关于k ()33sin cos k θθ-在(],2-∞-上恒成立,则θ的取值范围为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知sin cos θθ+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为梯形,//CD AB ,2AB CD =, AC 交BD 于O ,锐角PAD ∆所在平面PAD ⊥底面ABCD ,PA BD ⊥,点Q 在侧棱PC 上,且2PQ QC =. (1)求证://PA 平面QBD ; (2)求证:BD AD ⊥.17.(本小题满分14分)在平面直角坐标系xOy 中,圆O :224x y +=,直线l :43200x y +-=.43()55A ,为 圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P . (1)若MN ∥l ,求△PMN 的面积.(2)判断直线PM 与圆O 的位置关系,并证明.18.(本小题满分16分)如图,有一正三角形铁皮余料,欲利用余料剪裁出一个矩形(矩形的一个边在三角形的边上),并以该矩形制作一铁皮圆柱的侧面。
2020年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2020年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩∁U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.4.运行如图所示的伪代码,其结果为.【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,用裂项法即可求值得解.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,所以S=S=++…+=×(1﹣+﹣…+﹣)=(1﹣)=.故答案为:.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为﹣=1.【考点】双曲线的简单性质.【分析】求得已知双曲线的渐近线方程,设出所求双曲线的方程为﹣=1(a,b>0),求出渐近线方程和准线方程,由题意可得=,=,结合a,b,c的关系,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线的渐近线为y=±x,设所求双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,准线方程为y=±,由题意可得=,=,又a2+b2=c2,解得a=2,b=,即有所求双曲线的方程为﹣=1.故答案为:﹣=1.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为﹣2.【考点】函数恒成立问题.【分析】由题意可得a≤f(x)的最小值,运用单调性,可得f(0)取得最小值,即可得到a的范围,进而得到a的最大值.【解答】解:由,可得0≤x≤4,由f(x)=﹣,其中y=在[0,4]递增,y=﹣在[0,4]递增,可得f(x)在[0,4]递增,可得f(0)取得最小值﹣2,可得a≤﹣2,即a的最大值为﹣2.故答案为:﹣2.7.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.【考点】棱柱、棱锥、棱台的体积.【分析】求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.【解答】解:设正五棱锥高为h,底面正五边形的角为108°,底面正五边形中心到边距离为:tan54°,h=,则此正五棱锥体积为:×=20.故答案为:20.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,3).【考点】分段函数的应用.【分析】判断f(x)在R上递增,由f(x2﹣2x)<f(3x﹣4),可得或,解不等式即可得到所求解集.【解答】解:当x<3时,f(x)=﹣x2+6x=﹣(x﹣3)2+9,即有f(x)递增;故f(x)在R上单调递增.由f(x2﹣2x)<f(3x﹣4),可得或,解得或,即为1<x≤或<x<3,即1<x<3.即有解集为(1,3).故答案为:(1,3).10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[,1).【考点】余弦定理.【分析】设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.由于⊥,可得•=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).利用函数的单调性即可得出.【解答】解:设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.∴•=(t﹣)•(﹣)=﹣t2+(+1)•﹣2.∵⊥,∴•=﹣t2+(+1)•﹣2=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).由于f(t)是[0,1]是的单调递增函数,∴f(0)≤f(t)≤f(1),即:≤f(t)≤,即:≤cosA≤,∵A∈(0,π),∴cosA<1,∴cosA的取值范围是:[,1).故答案为:[,1).11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是(0,1)∪[3,+∞).【考点】简单线性规划的应用.【分析】由题意作平面区域,从而结合图象可知y=a x的图象过点(3,1)时为临界值a=3,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,y=a x的图象过点(3,1)时为临界值a=3,且当0<a<1时,一定成立;故答案为:(0,1)∪[3,+∞).12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是{a|a≤﹣4或a≥0} .【考点】利用导数研究函数的极值.【分析】函数f(x)=x2+2x+alnx在区间(0,1)内无极值点⇔函数f(x)在(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(01,)内恒成立.再利用导数的运算法则、分离参数法、函数的单调性即可得出.【解答】解:函数f(x)=x2+2x+alnx在区间(0,1)内无极值⇔函数f(x)=x2+2x+alnx 在区间(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(0,1)内恒成立.由f′(x)=2x+2≥0在(0,1)内恒成立⇔a≥(﹣2x﹣2x2)max,x∈(0,1).即a≥0,由f′(x)=2x+2≤0在(0,1)内恒成立⇔a≤(﹣2x﹣2x2)min,x∈(0,1).即a≤﹣4,故答案为:a≤﹣4或a≥0.故答案为:{a|a≤﹣4或a≥0}.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为(2,4).【考点】全称命题;特称命题.【分析】由①可得当x≤﹣1时,g(x)<0,根据②可得g(1)=a(1﹣a+3)>0,由此解得实数a的取值范围.【解答】解:∵已知函数,根据①∀x∈R,f(x)<0,或g(x)<0,即函数f(x)和函数g(x)不能同时取非负值.由f(x)≥0,求得x≤﹣1,即当x≤﹣1时,g(x)<0恒成立,故,解得:a>2;根据②∃x∈(﹣1,1),使f(x)•g(x)<0成立,∴g(1)=a(1﹣a+3)>0,解得:0<a<4,综上可得:a∈(2,4),故答案为:(2,4)14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为64或65.【考点】数列递推式.【分析】由题意可得:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,则2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论后求得满足条件的正整数A的值.【解答】解:依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,∴2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:2t≤A<2t+1,2t+d﹣3≤A<2t+d﹣2,,故max{}≤A<min{},由以下关系:2t+d﹣3<2t+1,,得d<4,∵d为正整数,∴d=1,2,3.当d=1时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=2时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=3时,max{}=max{}=2t,min{}=min{}=>2t,适合题意.此时2t≤A<,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴≤A<.当t=4时,24≤A<,∴无解.当t=5时,25≤A<,∴无解.当t=6时,26≤A<,∴64≤A<.当t=7时,27≤A<,∴无解.则26≤A<.∵A∈N*,∴A=64或A=65.综上:A=64或65.故答案为:64或65.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)利用已知条件求出sin()与cos(),然后利用二倍角公式以及两角和的正弦函数化简求解即可.(2)求出正切函数的二倍角的值,利用两角和的正切函数化简求解即可.【解答】解:(1)角α终边逆时针旋转与单位圆交于点,可得sin()=,cos()=,sin(2)=2sin()cos()==,cos(2)=2×=.=sin(2﹣)=sin(2)cos﹣sin cos(2)==.(2)∵,∴tan(2α+2β)===.sin(2)=,cos(2)=.tan(2)=.tan(2α+2β)=tan[()+(2)]==,解得=.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC ⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.【解答】证明:(1)∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,∴PA⊥AB,PA⊥AD,又AB∩AD=A,∴PA⊥平面ABCD,∵BD⊥PA,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∩PA=A,∴BD⊥平面PAC.解:(2)直线l不能与平面ABCD平行.理由如下:∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,∴CD与AB有交点P,∴P∈l,∴直线l∩平面ABCD=P,∴直线l不能与平面ABCD平行.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.【考点】椭圆的简单性质.【分析】(1)设P(x,y),由题意可得k PD•k PE=﹣,运用直线的斜率公式,化简即可得到所求轨迹方程;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,设A(x1,y1),B(x2,y2),运用韦达定理,点满足直线方程,再由过O的直线x=﹣my交椭圆C于M,N两点,求得M,N的坐标,运用直线的斜率公式,化简整理,即可得到直线AM与直线BN斜率之和为定值0.【解答】解:(1)设P(x,y),由题意可得k PD•k PE=﹣,即有•=﹣,化为+=1;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,可得(2+m2)y2+2my﹣2=0,设A(x1,y1),B(x2,y2),即有y1+y2=﹣,y1y2=﹣,x1=my1+,x2=my2+,由题意可得,过O的直线x=﹣my交椭圆C于M,N两点,解得M(﹣,),N(,﹣),可得k AM+k BN=+,通分后的分子=x2y1﹣x2﹣y1+x1y2+x1+y2+=2my1y2+(y1+y2)+(x1﹣x2)+(y2﹣y1)+=﹣﹣+(y1﹣y2)+(y2﹣y1)+=0.即有直线AM与直线BN斜率之和为定值0.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.【考点】旋转体(圆柱、圆锥、圆台);基本不等式在最值问题中的应用.【分析】(1)根据面积得出圆锥的底面半径,利用勾股定理求出圆锥的高,代入体积公式即可;(2)利用基本不等式得出体积的最值及取得最值得条件;(3)求出圆锥内切球的半径,与0.5比较大小.【解答】解:(1)由题意知圆锥的母线l=3,设圆锥的底面半径为r,则2πr=3α,∴r=,∴圆锥的高h===.∴V==.(2)V==≤=2.当且仅当4π2﹣α2=即α=时,取等号.∴当α=时,体积V取得最大值.(3)当圆锥体积最大时,圆锥的底面半径r=.设圆锥轴截面△ABC的内切圆⊙O半径为R,如图所示,则OD=R,CD=CE=,AC=3,∴AE=,AD=3﹣.由△AOD∽△ACE得,∴,解得R=3≈0.8.∵0.8>0.5,∴容积最大的圆锥形容器能完全盖住桌面上一个半径为0.5分米的球.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.【考点】数列的求和;等比关系的确定.=1作差可知a n+1=3a n(n≥2),进而可知数列{a n}【分析】(1)通过S n+1﹣3S n=1与S n﹣3S n﹣1是首项为1、公比为3的等比数列;(2)通过(1)可知a n=3n﹣1、S n=(3n﹣1),假设存在满足题意的项a k,则3k﹣1=S r+t﹣S t,进而化简可知不存在r满足3r﹣x﹣=2,进而可得结论;(3)通过(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,通过化简可知q=3q﹣p(2p﹣3p﹣1),利用当p≥3时2p﹣3p﹣1<0可知当p≥3时不满足题意,进而验证当p=2时是否满足题意即可.【解答】(1)证明:∵S n+1﹣3S n=1,=1,∴当n≥2时,S n﹣3S n﹣1两式相减得:a n+1=3a n,又∵S n+1﹣3S n=1,a1=1,∴a2=S2﹣S1=2a1+1=3满足上式,∴数列{a n}是首项为1、公比为3的等比数列;(2)解:结论:不存在满足题意的项a k;理由如下:由(1)可知a n=3n﹣1,S n==(3n﹣1),假设数列{a n}中存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和,则3k﹣1=S r+t﹣S t=(3r+t﹣1)﹣(3t﹣1)=(3r+t﹣3t)=•3t(3r﹣1),于是(3r﹣1)=3x(其中x为大于1的自然数),整理得:3r﹣x﹣=2,显然r无解,故假设不成立,于是不存在满足题意的项a k;(3)解:结论:存在唯一的数组(p,q)=(2,3)满足题意;理由如下:由(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,则2b p=b1+b q,即2=+,整理得:2p•3q﹣p=3q﹣1+q,∴q=2p•3q﹣p﹣3q﹣1=3q﹣p(2p﹣3p﹣1),∵当p≥3时2p﹣3p﹣1<0,∴当p≥3时不满足题意,当p=2时,2=+即为:=+,整理得:=,解得:q=3,综上所述,存在唯一的数组(p,q)=(2,3)满足题意.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.【考点】函数恒成立问题.【分析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.【解答】解:(1)若ax>lnx恒成立,则a>,在x>0时恒成立,设h(x)=,则h′(x)==,由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,即当x=e时,函数h(x)取得极大值同时也是最大值h(e)==.即a>.(2)设f(x)=lnx,g(x)=ax,(x>0),则f′(x)=,当g(x)与f(x)相切时,设切点为(m,lnm),则切线斜率k=,则过原点且与f(x)相切的切线方程为y﹣lnm=(x﹣m)=x﹣1,即y=x﹣1+lnm,∵g(x)=ax,∴,得m=e,a=.即当a>时,ax>lnx恒成立.当a=时,当x0≥时,要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.当0<a<时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,当x>x0时,ax>lnx恒成立.∴∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.【考点】与圆有关的比例线段.【分析】连结OD、AD,证出△ADB≌△ODC,得到AB=CO,从而证出结论.【解答】证明:如图示:,连结OD、AD,∵AB是圆O的直径,∴∠ADB=90°,AB=2AO,∵DC是⊙O的切线,∴∠CDO=90°,∵DB=DC,∴∠B=∠C,∴△ADB≌△ODC,∴AB=CO,即2OA=OA+CA,∴CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.【考点】几种特殊的矩阵变换.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.【考点】简单曲线的极坐标方程.【分析】求出点A,B的直角坐标,利用点斜式方程得出直线l的直角坐标方程,再求出曲线C的普通方程,求出圆心和半径,利用d=r构建出a的方程,解出a的值.【解答】解:由直线l过点,可得A,B的直角坐标为A(,),B(0,3),直线AB的斜率k==,即有直线l的方程为:y﹣3=x,即y=x+3,由曲线C:ρ=asinθ(a>0),可得曲线C的普通方程为x2+y2﹣ay=0,即有圆心C(0,),r==,直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点即直线和圆相切,可得,解得a=2或﹣6,由a>0,可得a=2.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.【考点】函数的最值及其几何意义.【分析】根据条件利用平方关系结合一元二次函数的性质进行求解即可.【解答】解:由得,即5≤x≤7,由平方得y2=x﹣5+7﹣x+2=2+2,∵5≤x≤7,∴当x=6时,函数y2=2+2取得最大值为y2=2+2=4,当x=5或7时,函数y2=2+2取得最小值为y2=2,即2≤y2≤4,则≤y≤2,即函数的最大值为2.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PC与BD所成角的余弦值.(2)求出平面PBC的法向量和平面PCD的法向量,利用向量法能求出钝二面角B﹣PC﹣D的大小.【解答】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设AP=AB=AD=2BC=2,则P(0,0,2),C(2,1,0),B(2,0,0),D(0,2,0),=(2,1,﹣2),=(﹣2,2,0),设异面直线PC与BD所成角为θ,则cosθ===.∴异面直线PC与BD所成角的余弦值为.(2)=(2,0,﹣2),=(2,1,﹣2),=(0,2,﹣2),设平面PBC的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(1,2,2),设钝二面角B﹣PC﹣D的平面角为θ,cosθ=﹣|cos<>|=﹣||=﹣,∴θ=135°,∴钝二面角B﹣PC﹣D的大小为135°.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?【考点】归纳推理.【分析】(1)若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得a7,a10中一个为1,一个为0,进而得到答案;(2)若第十一层十一个数为0或1,a1为5的倍数,则a56,a66中一个为1,一个为0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,进而得到答案.【解答】解:(1)若第二层的两个数为0或1,则a1=a2+a3,由a1为奇数,可得第二层的两个数有2种不同的取法;若第三层的三个数为0或1,则a1=a4+2a5+a6,由a1为奇数,可得第三层的三个数有4种不同的取法;若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得第四层的四个数有8种不同的取法;(2)根据(1)中结论,若第十一层十一个数为0或1,则a1=a56+2(a57+a58+…+a65)+a66,若a1为5的倍数,则a56,a66中一个为1,一个为0,a57+a58+…+a65=2,或a57+a58+…+a65=7,即a57,a58,…,a65中有2个1或2个0,则第十一层十一个数共有=144种不同取法.2020年8月12日。
1 绝密★启用前
江苏省南通市普通高中
2020届高三毕业班下学期高考适应性练习
数学试题
2020年6月
数学Ⅱ(附加题)
21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在.........答题卡...相应的答题区域内........作答..
.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分)
已知a b ∈,R ,矩阵13a b ⎡⎤=⎢⎥⎣⎦M 的特征值3λ=所对应的一个特征向量为11⎡⎤⎢⎥⎣⎦
. (1)求矩阵M ;
(2)若曲线1C :292y x x =-在矩阵M 对应的变换作用下得到另一曲线2C ,
求曲线2C 的方程.
B .[选修4-4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy 中,已知直线l 的参数方程为112
x y t ⎧=+⎪⎨⎪=⎩,
(t 为参数).在以坐标
原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4cos ρθ=,求直线l 被。
高三数学模拟考试试卷 数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在.........答题卡...相应的答题区域内作答...........若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分)已知a b ∈,R ,矩阵13a b ⎡⎤=⎢⎥⎣⎦M 的特征值3λ=所对应的一个特征向量为11⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)若曲线1C :292y x x =-在矩阵M 对应的变换作用下得到另一曲线2C ,求曲线2C 的方程.B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为112x y t ⎧+⎪⎨⎪=⎩,(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4cos ρθ=,求直线l 被 曲线截得的弦长.C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 是正实数,且=5x y z ++,求证:222210≥x y z ++.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中, 已知点A (0,1),点B 在直线:1l y =-上,点T 满足 TB u u r ∥OA u u u r ,()2AB AB TB ^-u u u r u u u r u u r,T 点的轨迹为曲线C .(1)求曲线C 的方程;(2)过点P ()()00t t ,>的直线交曲线C 于点M N ,,分别过M ,N 作直线l 的垂线,垂足分别为11M N ,. ① 若1190M PN ?°,求实数t 的值;② 点M 关于y 轴的对称点为Q (与N 不重合),求证:直线NQ 过一定点,并求出 这个定点的坐标.23.(本小题满分10分)已知数列}{n a 满足:11||n n a a n n*+-∈N ≤,.(1)证明:||n k n k a a n k n*+-∈≤,,N ;(2)证明:221(1)||2m i mi m m a a m *=--∈∑≤,N .xyA TBO(第22题)。
6.设实数 x,y 满足 ⎨ x + y ≤ 1, 则 3x+2y 的最大值为____.⎪ x + 2 y ≥ 1, = 1 的左、右顶点为 A 、B,焦点在 y 轴上的椭圆以 A 、B 为顶点,且离心率为2 ,若 f (α ) = 212.△在 ABC 中,若 uu ur uuur = uuur uuur = uuur uuur , 则 cosC 的值为____.2020 届江苏省南通市高三年级第三次模拟考试高考全真冲刺模拟卷数学试题(含附加题)一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分。请把答案填写在答题卡相应位置上.1.设集合 A={1,x},B={2,3,4},若 A∩B={4},则 x 的值为___2.已知复数 z 满足 zi=1+i(i 为虚数单位),则复数 z-i 的模为____.3.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为 200,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为___.4.幂函数 f ( x ) = x -2 的单调增区间为____5.根据图中所示的伪代码,可知输出的结果 S 为____⎧ x - y ≥ 0, ⎪⎩7.已知双曲线 C : x 2 y2 -a 2b2 = 1(a > 0, b > 0) 的一条渐近线平行于直线 l:y=2x+10,且它的一个焦点在直线 l 上,则双曲线 C 的方程为___y 2 3 8.已知双曲线 x 2 -,42u u u r uuuur过 A 作斜率为 k 的直线 l 交双曲线于另一点 M,交椭圆于另一点 N,若 AN = NM , 则 k 的值为____.9.已知函数 f ( x ) = cos x(sin x + cos x)- 1π ,则 cos( - 2α ) 的值为_____.6 410.已知函数 f ( x ) =x + 2 | x | +2, x ∈R,则 f ( x 2 - 2 x ) < f (2 - x) 的解集是____.11.定义在[-1,1]上的函数 f(x)=sinx-ax+b(a>1)的值恒非负,则 a-b 的最大值为______.35 21 15 CA ⋅ AB AB ⋅ BC BC ⋅ C A3,1).13.△若ABC中,AB=2,BC=8,∠B=45°,D△为ABC所在平面内一点且满足uuur uuur uuur uuur(AB⋅AD)⋅(AC⋅AD)=4,则AD长度的最小值为___.14.已知偶函数y=f(x)满足f(x+2)=f(2-x),且在x∈[-2,0]时,f(x)=-x2+1,若存在x,x,L,x满足12n0≤x<x<L<x,且|f(x)-f(x)|+|f(x)-f(x)|+L+|f(x)-f(x)|=2017,则x 12n1223n-1n最小值为_____.二、解答题:本大题共6小题,共计90分。n15.(本小题满分14分)已知函数f(x)=Asin(x+φ)(A>0,0<φ<π)的最小值是-2,其图象经过点M(ππ824(1)求f(x)的解析式;(2)已知α,β∈(0,),且f(α)=,f(β)=2513,求f(α-β)的值.16.(本小题满分14分)如图,在四棱锥P-ABCD中,∠BAD=90°,AD//BC,AD=2BC,AB⊥PA.(1)求证:平面P AD⊥平面ABCD;(2)若E为PD的中点,求证:CE//平面PAB.217.(本小题满分14分)有一块以点O为圆心,半径为2百米的圆形草坪,草坪内距离O点2百米的D 点有一用于灌溉的水笼头,现准备过点D修一条笔直小路交草坪圆周于A,B两点,为了方便居民散步,同时修建小路OA,OB,其中小路的宽度忽略不计(1)若要使修建的小路的费用最省,试求小路的最短长度;(2)若要在△ABO区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和π)18.(16分)在平面直角坐标系xOy中,已知椭圆C:x2y23+=1(a>b>0)的离心率为a b22,且过点(1,3).设P为椭圆C在第一象限上的点,A,B分别为椭圆C的左顶点和下顶点,且PA交y轴于点2E,PB交x轴于点F.(1)求a,b的值;(2)若F为椭圆C的右焦点,求点E的坐标;(3)求证:四边形ABFE 的面积为定值.; , 19.(16 分)已知数列{a } 的首项 a = a (a>0),其前 n 项和为 S , 设 b = a + an1nnnn +1(n ∈ N * ) .(1)若a = a + 1, a = 2a , 且数列{b } 是公差为 3 的等差数列,求 S (2)设数列{b } 的前 n 项和为 T , 满 2 32n2nnn足 T = n 2 . ①求数列{a } 的通项公式;②若对 n ∈N * 且 n≥2,不等式 (a - 1)(a nnn立,求 a 的取值范围.n +1- 1) ≥ 2(1- n) 恒成20.(本小题满分 16 分)已知函数 f ( x ) = x k ln x,k ∈ N * , g(x)=cx-1,c ∈R . (1)当 k=1 时,(i)若曲线 y=f(x)与直线 y=g(x)相切,求 C 的值;(ii)若曲线 y=f(x)与直线 y=g(x)有公共点,求 c 的取值范围.(2)当 k≥2 时,不等式 f ( x ) ≥ ax 2 + bx ≥ g ( x ) 对于任意正实数 x 恒成立,当 c 取得最大值时,求 a,b 的值,y ⎦ ⎣ y⎦ ⎣ 已知点 A 在变换 T : ⎢ ⎥ → ⎢ ⎥=⎢ ⎥ 作用后,再绕原点逆时针旋转 90°,得到点 B.若点 B 的坐 y ⎣ ⎦21.[选做题]本题包括 A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修 4--2:矩阵与变换](本小题满分 10 分)⎡ x ⎤ ⎡ x ' ⎤ ⎡ x + 2 y ⎤ '标为(-3,4),求点 A 的坐标.B.[选修 4--4:坐标系与参数方程](本小题满分 10 分)π在极坐标系中,设 P 为曲线 C:ρ=2上任意一点,求点 P 到直线 l: ρ sin(θ -) = 3 最大距离.3C.[选修 4--5:不等式选讲](本小题满分 10 分)已知正数 a,b,c 满足 2a+3b+6c=2,求 3 2 1+ + 的最小值.a b c[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(10分)如图,在直三棱柱ABC-A B C中,已知AB⊥AC,AB=2,AC=4,AA=3.D是线段BC的中1111点.(1)求直线DB与平面AC D所成角的正弦值;(2)求二面角B-A D-C的大小的余弦值.11111123.(本小题满分10分)(1)求证:kC kn-k=(n-k)C k-1n-k-11008;(2)求证:∑n=0(-1)n1C n=2017-n2017-n2017.。
(第5题) 江苏省南通市2020届高三第二学期开学模拟考试数 学 试 题2020.03(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1.已知集合{}|02A x x =<<,集合{}|1B x x =>,则A B =U ▲ .2.设复数z 满足(2i)1i z -=+(i 为虚数单位),则复数z = ▲ .3.某路口一红绿灯东西方向的红灯时间为45 s ,黄灯时间为3 s ,绿灯时间为向东行驶的一辆公交车通过该路口,遇到红灯的概率为 ▲ . 4.在某频率分布直方图中,从左往右有10个小矩形,若第一个 小矩形的面积等于其余9个小矩形的面积和的15,且第一组数据的频数为25,则样本容量为 ▲ .5.右图是一个算法的流程图,则输出的k 的值为 ▲ .6.各棱长都为2的正四棱锥的体积为 ▲ .7.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3πx =对称,则ω的最小值为 ▲ .8.已知()f x 是定义在R 上的偶函数.当0x ≥时,23()1x f x x -=+,则不等式(ln )f x <1的解集为 ▲ .9.已知公差不为零的等差数列{}n a 的前n 项和为n S ,且26a =,若137,,a a a 成等比数列,则8S = ▲ .10.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是___ _ ▲_ __.11.已知函数x m x f ln )(= 图像与函数x x g 2)(=图像在交点处切线方程相同,则m 的值为_________12.在平面直角坐标系xOy 中,已知直线l 1:y mx =与曲线3()2f x x x =+从左至右依次交于A 、B 、C 三点,若直线l 2:2y kx =+上存在P 满足PA PC 1+=u u u r u u u r ,则实数k 的取值范围是 .13.在平面直角在平面直角坐标系xOy 中,已知圆221O x y +=:,圆22(4)4C x y -+=:,动点P在直线20x +-=上的两点E F ,之间,过点P 分别作圆O C ,的切线,切点为A B ,,若满足2PB PA ≥,则线段EF 的长度为 ▲ .14.若△ABC 中,AB,BC =8,B ∠=45°,D 为△ABC 所在平面内一点且满足()()4AB AD AC AD ⋅⋅⋅=u u u r u u u r u u u r u u u r,则AD 长度的最小值为 ▲ .二、解答题:本大题共6小题,15—17每小题14分,18—20每小题16分,共计90分. 请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)如图,在△ABC 中,a b c ,,为A B C ,,所对的边,CD ⊥AB 于D ,且12BD AD c -=. (1)求证:sin 2sin()C A B =-; (2)若3cos 5A =,求tan C 的值.16.(本小题满分14分)CADB(第15题)ABCB 1C 1A 1MN (第16题)如图,在三棱柱111ABC A B C -中,已知M ,N 分别为线段1BB ,1A C 的中点,MN 与1AA 所成角的大小为90°,且1MA MC =.求证:(1)平面1A MC ⊥平面11A ACC ; (2)//MN 平面ABC .17.(本小题满分14分)已知点O 为坐标原点,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F,离心率,点I ,J 分别是椭圆C 的右顶点、上顶点,IOJ △的边IJ .(1)求椭圆C 的标准方程; (2)过点()2,0H -的直线交椭圆C 于A ,B 两点,若11AF BF ⊥,求直线AB 的方程.18.(本小题满分16分)某校有一块圆心O, 为半径为200 米, 圆心角为32π的扇形绿地OPQ , 半径OP ,OQ 的中点分别为N M ,,A 为弧PQ 上的一点, 设α=∠AOQ , 如图所示,拟准备两套方案对该绿地再利用..(1) 方案一:将四边形绿地OMAN 建成观赏鱼池, 其面积记为1S , 试将1S 表示为关于α 的函数关系式; 并求α 为何值时, 1S 取得最大?(2) 方案二:将弧AQ 和线段NQ AN ,围成区域建成活动场地, 其面积记为2S , 试将2S 表示为关于α 的函数关系式; 并求α 为何值时,2S 取得最大?19.(本小题满分16分)已知正项数列{}n a ,其前n 项和为n S ,满足22n nn S a a =+,*n N ∈. (1)求数列{}n a 的通项公式n a ;(2)如果对任意正整数n ,不等式22nn n a a a ++->都成立,求证:实数c 的最大值为1.20.(本小题满分16分)已知函数()xax bf x e-=(其中,a b R ∈). (1)当1a =时,若函数()y f x =在[)0,+∞上单调递减,求b 的取值范围;(2)当1b =,0a ≠时,①求函数()y f x =的极值;②设函数()y f x =图象上任意一点处的切线为l ,求l 在x 轴上的截距的取值范围.江苏省南通市2020届高三第二学期开学模拟考试附加题2020.03(总分160分,考试时间120分钟)21.【选做题】本题包括A 、B 、C 三个小题,请选定其中两个小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答题应写出文字说明、证明过程或演算步骤.A .[选修4—2 :矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵111 3341 33-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A .求矩阵A 的特征值和相应的特征向量.B .[选修4—4 :坐标系与参数方程](本小题满分10分)在极坐标系中,已知圆C 的圆心极坐标为(2,)4π,且圆C 经过极点,求圆C 的极坐标方程.C .[选修4—5 :不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,33311127abc a b c +++的最小值为m .22.把编号为1,2,3,4,5的五个大小、形状相同的小球,随机放入编号为1,2,3,4,5的五个盒子里.每个盒子里放入一个小球.(1)求恰有两个球的编号与盒子的编号相同的概率;(2)设小球的编号与盒子编号相同的情况有X 种,求随机变量X 的分布列与期望.23.设0()(1)nk knk m P n m C m k==-+∑,,()n n m Q n m C +=,,其中*m n ∈N ,. (1)当1m =时,求(1)(1)P n Q n ⋅,,的值;(2)对*m ∀∈N ,证明:()()P n m Q n m ⋅,,恒为定值.江苏省南通市2020届高三第二学期开学模拟考试数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1.{}|0x x > 2.13+i 55 3. 512 4. 150 5. 76.7. 12 8. 441(,)e e9. 88 10.x 25+y 24=111. e12. k k ≤≥13.14.二.解答题:本大题共6小题,15—17每小题14分,18—20每小题16分,共计90分.AB CB 1C 1A 1 MN请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)(1)证明:因为12BD AD c -=,所以1cos cos 2a Bb Ac -=, …… 3分由正弦定理,得1sin cos sin cos sin 2A B B A C -=,所以sin 2sin()C A B =-. …… 6分(2)解:由(1)得,sin()2sin()A B A B +=-, …… 8分 所以sin cos cos sin 2(sin cos cos sin )A B A B A B A B +=-,化简,得3cos sin sin cos A B A B =. …… 10分又3cos 5A =,所以4sin 5A =,所以4tan 3A =,4tan 9B =, …… 12分所以44tan tan 4839tan tan()1tan tan 4411139A B C A B A B ++=-+=-=-=---⋅. …… 14分16.证明:(1)因为MN 与1AA 所成角的大小为90°,所以MN ⊥1AA ,因为1MA MC =,且N 是A 1C 的中点,所以MN ⊥1A C . 又111AA AC A =I ,1AC ,1AA ⊂平面11A ACC , 故MN ⊥平面11A ACC ,因为MN ⊂平面1A MC ,所以平面1A MC ⊥平面11A ACC . (2)取AC 中点P ,连结NP ,BP .因为N 为A 1C 中点,P 为AC 中点,所以PN //AA 1,且PN 12=AA 1.在三棱柱111ABC A BC -中,BB 1 // AA 1,且BB 1=AA 1. 又M 为BB 1中点,故BM // AA 1,且BM 12=AA 1.所以PN // BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN // BP .又MN ⊄平面ABC ,BP ⊂平面ABC ,故//MN 平面ABC .17. (1)由题意得IOJ △,所以IJ = 设椭圆C 的半焦距为c,则222c aa b c ===⎧⎪+⎪⎪⎩1a b ⎧==⎪⎨⎪⎩所以椭圆C 的标准方程为2212x y +=.(2)由题知,点1F 的坐标为()1,0-,显然直线AB 的斜率存在, 设直线AB 的方程为()()20y k x k =+≠,点()11,A x y ,()22,B x y . 联立()22122x y y k x +==+⎧⎪⎨⎪⎩,消去y ,得()2222128820k x k x k ++-+=,所以()()()()222228412828120Δk k k k =+=-->-,所以2102k <<.()* 且2122812k x x k +=-+,21228212k x x k -=+.因为11AF BF ⊥,所以110AF BF ⋅=u u u u r u u u r,则()()1122110x y x y ---⋅---=,,,12121210x x x x y y ++++=,()()1212121220x x x x k x k x ⋅++++++=, 整理得()()()2221212121140k x x k x xk +++++=+.即()()()22222221828121401212k k k k k k k +-⎛⎫+⋅-+++= ⎪++⎝⎭. 化简得2410k -=,解得12k =±.因为12k =±都满足()*式,所以直线AB 的方程为()122y x =+或()122y x =-+.即直线AB 的方程为220x y -+=或220x y ++=.18. (1)由已知,AOQ α∠=,]3π2,0(∈α,1ONA OMA S S S =+△△; 故1112100200sin 100200sin()223S π=⨯⨯⨯α+⨯⨯⨯-α, ……3分整理得1)6S π=+α(平方米), ……5分∴当3π=α时,1max ()S =(平方米). ……7分 (2)由已知,2ONA AOQ S S S ∆=-扇形,∴211200200100200sin 22S =⨯⨯⨯α-⨯⨯⨯α,即2100002sin S =α-α(); (10)分∴2()100002cos S 'α=-α(),故2()0S 'α>; ……11分∴2()S α在2π(0]3,上为增函数, ……12分∴当32π=α时,2max 4()100003S π=-((平方米). ……14分答:(1)当3π=α时,1max ()S =(平方米); (2)2S 关于α的函数表达式2100002sin S =α-α(),2π(0]3,α∈当32π=α时,2max 4()100003S π=((平方米). ……16分19.解:⑴当1n =时,21112S a a =+,解得11a =,或10a =(舍). ………………2分 由22n n n S a a =+得,21112n n n S a a +++=+,2211122()()n n n n n n S S a a a a +++-=+-+, 即221112()()n n n n n a a a a a +++=-+-,也就是2211()()0n n n n a a a a ++--+=,11()(1)0n n n n a a a a +++--=, ……………4分 由于数列{}n a 各项均为正数,所以110n n a a +--=,即11n n a a +-=.所以数列{}n a 是首项为1,公差为1的等差数列,所以数列{}n a 的通项公式为n a n =. ……………………………………6分 ⑵对任意正整数n ,1==>=,所以c 的最大值为max 1c ≥. …………………10分另一方面,任取实数1a >时.==-==. ……………………12分 ①当2a ≥时,对任意的正整数n< ……………14分②当12a <<时,只要(20a -<,即22(2)(2)a n a n -+<,也就是2(2)2(1)a n a ->-所以满足条件的1c ≤,从而max 1c ≤. 因此c 的最大值为1. ………………16分20.(1)1a =时, ()x x b f x e -=的导函数1'()xx bf x e -++=,∴由题意知对任意()0,x ∈+∞有1'()0xx bf x e -++=≤,即10x b -++≤ ∴()min 1b x ≤-,即1b ≤-.(2)1b =时, 1()x ax f x e -=的导函数1'()xax af x e -++=,①(i)当0a >时,有'1(,),()0a x f x a +∈-∞>;'1(,),()0a x f x a +∈+∞<, ∴函数()y f x =在1(,)a x a +∈-∞单调递增,1(,)a x a+∈+∞单调递减, ∴函数()y f x =在1a x a+=取得极大值1a a a e +-⋅,没有极小值.(ii)当0a <时,有'1(,),()0a x f x a +∈-∞<;'1(,),()0a x f x a +∈+∞>, ∴函数()y f x =在1(,)a x a +∈-∞单调递减,1(,)a x a+∈+∞单调递增,∴函数()y f x =在1a x a+=取得极小值1a a a e +-⋅,没有极大值.综上可知: 当0a >时,函数()y f x =在1a x a +=取得极大值1a a a e +-⋅,没有极小值;当0a <时,函数()y f x =在1a x a+=取得极小值1a a a e +-⋅,没有极大值.②设切点为1(,)t at T t e -,则曲线在点T 处的切线l 方程为11()t tat at ay x t e e --++-=-, 当1a t a+=时,切线l 的方程为11a a t at y a e e +--==⋅,其在x 轴上的截距不存在. 当1a t a+≠时, ∴令0y =,得切线l 在x 轴上的截距为1(1)111111111111211at at a a a x t t t t at a at a at a t a t a at a---+=+=+=++=++--------=--+++--∴当110t a -->时,11111122411x t a a a a t a =--+++≥+=+--,当110t a --<时,1111112211x t a a a a t a =--+++≤-+=--,∴当切线l 在x 轴上的截距范围是11,4,a a ⎛⎤⎡⎫-∞++∞ ⎪⎥⎢⎝⎦⎣⎭U .江苏省南通市2020届高三第二学期开学模拟考试数学附加题参考答案与评分标准21A 解:由111334133-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,得1141⎡⎤=⎢⎥⎣⎦A , …………………………5分 由特征多项式1141λλ----=2(1)40λ--=,得1231 λλ==-,, 所以特征值13λ=对应的特征向量12⎡⎤=⎢⎥⎣⎦α1,特征值21λ=-对应的特征向量12⎡⎤=⎢⎥-⎣⎦α2. ………………………10分21B .解:方法一设圆C 上任意一点的极坐标(,)P ρθ,过OC 的直径的另一端点为B ,连接,PO PB . 则在直角三角形OPB 中,,24OPB POB ππθ∠=∠=-.所以4cos()4πρθ=-,即为圆C 的极坐标方程.……………………………………10分方法二(2,)4C π的直角坐标为),半径2r =,所以圆C的直角坐标方程为22((4x y +=,…………………………5分即220x y +--=,故圆C 的极坐标方程为24cos()04πρρθ--=,即4cos()4πρθ=-. ……………………………………………………………10分21C 解关于x 的不等式12x x m +-<.因为a ,b ,0c >, 所以3331112727abc abc a b c +++≥327abc abc=+18=≥,当且仅当a b c ====”, 所以18m =.…………………………………………………………………………6分 所以不等式12x x m +-<即1218x x +<+,所以2181218x x x --<+<+,解得193x >-, 所以原不等式的解集为19(,)3-+∞.………………………………………………10分 22.(1)记恰有2个小球与盒子编号相同为事件A ,将5个小球随机放入五个盒子中,每个盒子放一个共有55A 即120种不同的放法,事件A 共有24220C ⨯=种放法,201()1206P A ∴== 答:恰有2个盒子与小球编号相同的概率为16…………………… 4分 (2)随机变量X 的可能值为0,1,2,3,515(2333)4411(0)12012030C P X+++====15(333)453(1)1201208C P X++====252201(2)1201206C P X⨯====35101(3)12012012C P X====1(5)P X==()012351308612120E x ∴=⨯+⨯+⨯+⨯+⨯= …………………… 10分 23.(1)当1m =时,110111(1)(1)(1)111nn kkk k nn k k P n C C k n n ++===-=-=+++∑∑,,………………………………2分又11(1)1n Q n C n +==+,,显然(1)(1)1P n Q n ⋅=,,. ………………………………………………4分(2)0()(1)nkk nk m P n m C m k ==-+∑,111111(1)()(1)n k k k nn n k m m C C m k m k ----==+-++-++∑ 1111111(1)(1)n nkk k k n n k k m m CC m k m k----===+-+-++∑∑ 111(1,)(1)nk k n k mP n m C m k--==-+-+∑ 0(1,)(1)n k knk m m P n m C n m k==-+-+∑(1,)(,)mP n m P n m n=-+即()(1)nP n m P n m m n=-+,,,………………………………………………………8分由累乘,易求得!!1()(0)()!n n mn m P n m P m n m C +==+,,,又()nn m Q n m C +=,,所以()()1P nm Q n m ⋅=,,.…………………………………10分。
(第5题) 江苏省南通市2020届高三第二学期开学模拟考试数 学 试 题2020.03(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1.已知集合{}|02A x x =<<,集合{}|1B x x =>,则A B =U ▲ .2.设复数z 满足(2i)1i z -=+(i 为虚数单位),则复数z = ▲ .3.某路口一红绿灯东西方向的红灯时间为45 s ,黄灯时间为3 s ,绿灯时间为西向东行驶的一辆公交车通过该路口,遇到红灯的概率为 ▲ . 4.在某频率分布直方图中,从左往右有10个小矩形,若第一个 小矩形的面积等于其余9个小矩形的面积和的15,且第一组数据的频数为25,则样本容量为 ▲ .5.右图是一个算法的流程图,则输出的k 的值为 ▲ . 6.各棱长都为2的正四棱锥的体积为 ▲ .7.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3πx =对称,则ω的最小值为 ▲ .8.已知()f x 是定义在R 上的偶函数.当0x ≥时,23()1x f x x -=+,则不等式(ln )f x <1的解集为 ▲ .9.已知公差不为零的等差数列{}n a 的前n 项和为n S ,且26a =,若137,,a a a 成等比数列,则8S = ▲ .10.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝ ⎛⎭⎪⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是___ _ ▲_ __.11.已知函数x m x f ln )(= 图像与函数x x g 2)(=图像在交点处切线方程相同,则m 的值为_________12.在平面直角坐标系xOy 中,已知直线l 1:y mx =与曲线3()2f x x x =+从左至右依次交于A 、B 、C 三点,若直线l 2:2y kx =+上存在P 满足PA PC 1+=u u ur u u u r ,则实数k 的取值范围是 .13.在平面直角在平面直角坐标系xOy 中,已知圆221O x y +=:,圆22(4)4C x y -+=:,动点P在直线20x -=上的两点E F ,之间,过点P 分别作圆O C ,的切线,切点为A B ,,若满足2PB PA ≥,则线段EF 的长度为 ▲ .14.若△ABC 中,AB,BC =8,B ∠=45°,D 为△ABC 所在平面内一点且满足()()4AB AD AC AD ⋅⋅⋅=u u u r u u u r u u u r u u u r,则AD 长度的最小值为 ▲ .二、解答题:本大题共6小题,15—17每小题14分,18—20每小题16分,共计90分. 请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)如图,在△ABC 中,a b c ,,为A B C ,,所对的边,CD ⊥AB 于D ,且12BD AD c -=. (1)求证:sin 2sin()C A B =-; (2)若3cos 5A =,求tan C 的值.CADB(第15题)ABCB 1C 1A 1MN (第16题)16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,已知M ,N 分别为线段1BB ,1A C 的中点,MN 与1AA 所成角的大小为90°,且1MA MC =.求证:(1)平面1A MC ⊥平面11A ACC ; (2)//MN 平面ABC .17.(本小题满分14分)已知点O 为坐标原点,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率,点I ,J 分别是椭圆C 的右顶点、上顶点,IOJ △的边IJ .(1)求椭圆C 的标准方程; (2)过点()2,0H -的直线交椭圆C 于A ,B 两点,若11AF BF ⊥,求直线AB 的方程.18.(本小题满分16分)某校有一块圆心O, 为半径为200 米, 圆心角为32π的扇形绿地OPQ , 半径OP ,OQ 的中点分别为N M ,,A 为弧PQ 上的一点, 设α=∠AOQ , 如图所示,拟准备两套方案对该绿地再利用..(1) 方案一:将四边形绿地OMAN 建成观赏鱼池, 其面积记为1S , 试将1S 表示为关于α 的函数关系式; 并求α 为何值时, 1S 取得最大?(2) 方案二:将弧AQ 和线段NQ AN ,围成区域建成活动场地, 其面积记为2S , 试将2S 表示为关于α 的函数关系式; 并求α 为何值时,2S 取得最大?19.(本小题满分16分)已知正项数列{}n a ,其前n 项和为n S ,满足22n nn S a a =+,*n N ∈. (1)求数列{}n a 的通项公式n a ;(2)如果对任意正整数n ,不等式22n n n a a a ++->都成立,求证:实数c 的最大值为1.20.(本小题满分16分)已知函数()xax bf x e -=(其中,a b R ∈). (1)当1a =时,若函数()y f x =在[)0,+∞上单调递减,求b 的取值范围;(2)当1b =,0a ≠时,①求函数()y f x =的极值;②设函数()y f x 图象上任意一点处的切线为l ,求l 在x 轴上的截距的取值范围.江苏省南通市2020届高三第二学期开学模拟考试附加题2020.03(总分160分,考试时间120分钟)21.【选做题】本题包括A 、B 、C 三个小题,请选定其中两个小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答题应写出文字说明、证明过程或演算步骤.A .[选修4—2 :矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵111 3341 33-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A .求矩阵A 的特征值和相应的特征向量.B .[选修4—4 :坐标系与参数方程](本小题满分10分)在极坐标系中,已知圆C 的圆心极坐标为(2,)4π,且圆C 经过极点,求圆C 的极坐标方程.C .[选修4—5 :不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,33311127abc a b c+++的最小值为m .22.把编号为1,2,3,4,5的五个大小、形状相同的小球,随机放入编号为1,2,3,4,5的五个盒子里.每个盒子里放入一个小球.(1)求恰有两个球的编号与盒子的编号相同的概率;(2)设小球的编号与盒子编号相同的情况有X 种,求随机变量X 的分布列与期望.23.设0()(1)nk knk m P n m C m k==-+∑,,()n n m Q n m C +=,,其中*m n ∈N ,. (1)当1m =时,求(1)(1)P n Q n ⋅,,的值;(2)对*m ∀∈N ,证明:()()P n m Q n m ⋅,,恒为定值.江苏省南通市2020届高三第二学期开学模拟考试数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. {}|0x x > 2. 13+i 55 3. 512 4. 150 5.7 6. 37. 12 8. 441(,)e e9. 88 10.x 25+y 24=111. e12. k k ≤≥14.AB CB 1C 1A 1 MN二.解答题:本大题共6小题,15—17每小题14分,18—20每小题16分,共计90分. 请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)(1)证明:因为12BD AD c -=,所以1cos cos 2a Bb Ac -=, …… 3分由正弦定理,得1sin cos sin cos sin 2A B B A C -=,所以sin 2sin()C A B =-. …… 6分(2)解:由(1)得,sin()2sin()A B A B +=-, …… 8分 所以sin cos cos sin 2(sin cos cos sin )A B A B A B A B +=-,化简,得3cos sin sin cos A B A B =. …… 10分又3cos 5A =,所以4sin 5A =,所以4tan 3A =,4tan 9B =, …… 12分所以44tan tan 4839tan tan()1tan tan 4411139A B C A B A B ++=-+=-=-=---⋅. …… 14分16.证明:(1)因为MN 与1AA 所成角的大小为90°,所以MN ⊥1AA ,因为1MA MC =,且N 是A 1C 的中点,所以MN ⊥1A C . 又111AA AC A =I ,1AC ,1AA ⊂平面11A ACC ,故MN ⊥平面11A ACC ,因为MN ⊂平面1A MC ,所以平面1A MC ⊥平面11A ACC . (2)取AC 中点P ,连结NP ,BP .因为N 为A 1C 中点,P 为AC 中点,所以PN //AA 1,且PN 12=AA 1.在三棱柱111ABC A BC -中,BB 1 // AA 1,且BB 1=AA 1. 又M 为BB 1中点,故BM // AA 1,且BM 12=AA 1.所以PN // BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN // BP .又MN ⊄平面ABC ,BP ⊂平面ABC ,故//MN 平面ABC . 17. (1)由题意得IOJ △,所以IJ 设椭圆C 的半焦距为c,则2222c aa b c ===⎧⎪+⎪⎪⎩1a b ⎧==⎪⎨⎪⎩所以椭圆C 的标准方程为2212x y +=.(2)由题知,点1F 的坐标为()1,0-,显然直线AB 的斜率存在, 设直线AB 的方程为()()20y k x k =+≠,点()11,A x y ,()22,B x y . 联立()22122x y y k x +==+⎧⎪⎨⎪⎩,消去y ,得()2222128820k x k x k ++-+=,所以()()()()222228412828120Δk k k k =+=-->-,所以2102k <<.()* 且2122812k x x k +=-+,21228212k x x k-=+. 因为11AF BF ⊥,所以110AF BF ⋅=u u u u r u u u r,则()()1122110x y x y ---⋅---=,,,12121210x x x x y y ++++=,()()1212121220x x x x k x k x ⋅++++++=, 整理得()()()2221212121140k x x k x xk +++++=+.即()()()22222221828121401212k k k kk k k +-⎛⎫+⋅-+++= ⎪++⎝⎭. 化简得2410k -=,解得12k =±.因为12k =±都满足()*式,所以直线AB 的方程为()122y x =+或()122y x =-+.即直线AB 的方程为220x y -+=或220x y ++=. 18. (1)由已知,AOQ α∠=,]3π2,0(∈α,1ONA OMA S S S =+△△; 故1112100200sin 100200sin()223S π=⨯⨯⨯α+⨯⨯⨯-α, ……3分整理得1)6S π=+α(平方米), ……5分∴当3π=α时,1max ()S =(平方米). ……7分 (2)由已知,2ONA AOQ S S S ∆=-扇形,∴211200200100200sin 22S =⨯⨯⨯α-⨯⨯⨯α,即2100002sin S =α-α(); (10)分∴2()100002cos S 'α=-α(),故2()0S 'α>; ……11分∴2()S α在2π(0]3,上为增函数, ……12分∴当32π=α时,2max 4()100003S π=-((平方米). ……14分答:(1)当3π=α时,1max ()S =(平方米); (2)2S 关于α的函数表达式2100002sin S =α-α(),2π(0]3,α∈当32π=α时,2max 4()100003S π=((平方米). ……16分19.解:⑴当1n =时,21112S a a =+,解得11a =,或10a =(舍). ………………2分 由22n n n S a a =+得,21112n n n S a a +++=+,2211122()()n n n n n n S S a a a a +++-=+-+, 即221112()()n n n n n a a a a a +++=-+-,也就是2211()()0n n n n a a a a ++--+=,11()(1)0n n n n a a a a +++--=, ……………4分 由于数列{}n a 各项均为正数,所以110n n a a +--=,即11n n a a +-=.所以数列{}n a 是首项为1,公差为1的等差数列,所以数列{}n a 的通项公式为n a n =. ……………………………………6分 ⑵对任意正整数n ,1==>=,所以c 的最大值为max 1c ≥. …………………10分另一方面,任取实数1a >时.==-==. ……………………12分 ①当2a ≥时,对任意的正整数n< ……………14分②当12a <<时,只要(20a -<,即22(2)(2)a n a n -+<,也就是2(2)2(1)a n a ->-所以满足条件的1c ≤,从而max 1c ≤. 因此c 的最大值为 1. ………………16分20.(1)1a =时, ()x x b f x e -=的导函数1'()xx bf x e -++=,∴由题意知对任意()0,x ∈+∞有1'()0xx bf x e -++=≤,即10x b -++≤ ∴()min 1b x ≤-,即1b ≤-.(2)1b =时, 1()x ax f x e -=的导函数1'()xax af x e -++=,①(i)当0a >时,有'1(,),()0a x f x a +∈-∞>;'1(,),()0a x f x a +∈+∞<, ∴函数()y f x =在1(,)a x a +∈-∞单调递增,1(,)a x a+∈+∞单调递减, ∴函数()y f x =在1a x a+=取得极大值1a a a e +-⋅,没有极小值.(ii)当0a <时,有'1(,),()0a x f x a +∈-∞<;'1(,),()0a x f x a+∈+∞>,∴函数()y f x =在1(,)a x a +∈-∞单调递减,1(,)a x a+∈+∞单调递增, ∴函数()y f x =在1a x a+=取得极小值1a a a e +-⋅,没有极大值.综上可知: 当0a >时,函数()y f x =在1a x a +=取得极大值1a a a e +-⋅,没有极小值;当0a <时,函数()y f x =在1a x a+=取得极小值1a a a e +-⋅,没有极大值.②设切点为1(,)t at T t e -,则曲线在点T 处的切线l 方程为11()t tat at ay x t e e --++-=-, 当1a t a+=时,切线l 的方程为11a a t at y a e e +--==⋅,其在x 轴上的截距不存在. 当1a t a+≠时, ∴令0y =,得切线l 在x 轴上的截距为1(1)111111111111211at at a a a x t t t t at a at a at a t a t a a t a---+=+=+=++=++--------=--+++--∴当110t a -->时,11111122411x t a a a a t a =--+++≥+=+--,当110t a --<时,1111112211x t a a a a t a =--+++≤-+=--,∴当切线l 在x 轴上的截距范围是11,4,a a⎛⎤⎡⎫-∞++∞ ⎪⎥⎢⎝⎦⎣⎭U .江苏省南通市2020届高三第二学期开学模拟考试数学附加题参考答案与评分标准21A 解:由111334133-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,得1141⎡⎤=⎢⎥⎣⎦A , …………………………5分由特征多项式1141λλ----=2(1)40λ--=,得1231 λλ==-,, 所以特征值13λ=对应的特征向量12⎡⎤=⎢⎥⎣⎦α1,特征值21λ=-对应的特征向量12⎡⎤=⎢⎥-⎣⎦α2. ………………………10分21B .解:方法一设圆C 上任意一点的极坐标(,)P ρθ,过OC 的直径的另一端点为B ,连接,PO PB . 则在直角三角形OPB 中,,24OPB POB ππθ∠=∠=-.所以4cos()4πρθ=-,即为圆C 的极坐标方程.……………………………………10分方法二(2,)4C π的直角坐标为),半径2r =,所以圆C的直角坐标方程为22((4x y +=,…………………………5分即220x y +--=,故圆C 的极坐标方程为24cos()04πρρθ--=,即4cos()4πρθ=-. ……………………………………………………………10分21C 解关于x 的不等式12x x m +-<.因为a ,b ,0c >, 所以3331112727abc abc a b c +++≥327abc abc=+18=≥,当且仅当a b c ====”,所以18m =.…………………………………………………………………………6分 所以不等式12x x m +-<即1218x x +<+,所以2181218x x x --<+<+,解得193x >-, 所以原不等式的解集为19(,)3-+∞.………………………………………………10分 22.(1)记恰有2个小球与盒子编号相同为事件A ,将5个小球随机放入五个盒子中,每个盒子放一个共有55A 即120种不同的放法,事件A 共有24220C ⨯=种放法,201()1206P A ∴== 答:恰有2个盒子与小球编号相同的概率为16…………………… 4分 (2)随机变量X 的可能值为0,1,2,3,515(2333)4411(0)12012030C P X+++====15(333)453(1)1201208C P X++====252201(2)1201206C P X⨯====35101(3)12012012C P X====1(5)P X==()012351308612120E x ∴=⨯+⨯+⨯+⨯+⨯= …………………… 10分 23.(1)当1m =时,1100111(1)(1)(1)111nn kkk k nn k k P n C C k n n ++===-=-=+++∑∑,,………………………………2分又11(1)1n Q n C n +==+,,显然(1)(1)1P n Q n ⋅=,,. ………………………………………………4分(2)0()(1)n k k n k m P n m C m k ==-+∑,111111(1)()(1)n k k k nn n k m m C C m k m k ----==+-++-++∑ 1111111(1)(1)n nkk k k n n k k m m CC m k m k----===+-+-++∑∑ 111(1,)(1)nk k n k mP n m C m k--==-+-+∑0(1,)(1)n k knk m m P n m C n m k==-+-+∑(1,)(,)mP n m P n m n=-+即()(1)nP n m P n m m n=-+,,,………………………………………………………8分由累乘,易求得!!1()(0)()!n n mn m P n m P m n m C +==+,,,又()nn m Q n m C +=,,所以()()1P nm Q n m ⋅=,,.…………………………………10分。
南通市2020届高考考前模拟卷(十)数 学Ⅰ(南通数学学科基地命题)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.若集合{|24},{|}A x x B x x a =<=>≤,若{|34}A B x x =<<I ,则实数a = ▲ . 2.设复数z +1z -1=-i ,其中i 为虚数单位,则||z = ▲ . 3. 根据如图所示的伪代码,当输出y 的值为1时,则输入的x 的值为 ▲ .4. 在等比数列{a n }中,a 1+a 2=1,a 5+a 6=16,则a 9+a 10= ▲ .5. 已知双曲线x 2-y 2=1,则其两条渐近线的夹角为 ▲ .6.设实数x ,y 满足条件01,02,21,x y y x ⎧⎪⎨⎪-⎩≤≤≤≤≥则|343|x y ++的最大值为 ▲ .7.若函数sin()(0)y x ωϕω=+>的部分图象如图所示, 则ω的值为 ▲ .8. 设集合B 是集合A =(1,2,3,4}的子集,若记事件M 为:“集合B 中的元素之和为5”,则事件M 发生的概率为 ▲ .9. 若函数f (x )=2cos(x +2θ)+ cos2x (0<θ<π2)的图象过点M (0,1),则f (x )的值城为 ▲ .10. 设函数f (x )=x 3+ax 2+bx +c 的三个零点x 1,x 2,x 3是公差为1的等差数列,则f (x )的极小值为 ▲ .11. 在△ABC 中,AB =8,AC =6,A =60°,M 为△ABC 的外心,若AM →=λAB →+μAC →,λ、μ∈R ,则4λ+3μ= ▲ .12. 已知△ABC 的面积等于1,若BC =1,当三边之积取得最小值时,则sin A = ▲ .(第3题图)13. 已知F 是椭圆C : x 2a 2+y 2b2=1(a >b >0)的一个集点,P 是椭圆C 上的任意一点,则PF 称为椭圆C 的焦半径.设椭圆C 的左顶点与上顶点分别为A ,B ,若存在以A 为圆心,PF 长为半径的圆经过点B ,则椭圆C 的离心率的最小值为 ▲ .14. 已知f (x ) = a cos x -4cos 3x ,若对任意的x ∈R ,都有|f (x )|≤1,则a = ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知函数f (x ) = sin(ωx +φ) (ω>0,|φ|<π2)的图象关于直线x =π6对称,两个相邻的最高点之间的距离为2π. (1) 求函数f (x )的解析式;(2) 在△ABC 中,若f (A )=一35,求sin A 的值.16.(本小题满分14分)如图在平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,E 为CC 1的中点, 平面AA 1C 1C ⊥平面A 1B 1C 1D 1, 证明: (1) A 1C ∥平面B 1D 1E ;(2) 平面AA 1C 1C ⊥平面B 1D 1E(第16题图)ACA 1B 1C 1D 1DEB某工厂两幢平行厂房间距为50m ,沿前后墙边均有5m 的绿化带,现在绿化带之间空地上建造一个无盖的长方体贮水池,其容积为4800m 3,深度为3m ,水池一组池壁与厂房平行.如果池底总造价为c 元,垂直于厂房的池壁每1m 2的造价为a 元,平行于厂房的池壁每1m 2的造价为b 元,设该贮水池的底面垂直于厂房的一边的长为x (m ). (1)求建造该长方体贮水池总造价y 的函数关系,并写出函数的定义域; (2)试问怎样设计该贮水池能使总造价最低?并求出最低总造价.18.(本小题满分16分)已知椭圆C 的方程是: x 24+y 23=1.(1)设椭圆的左,右焦点分别为F 1,F 2,点P 在椭圆上运动,求|PF 1→|・|PF 2→|+PF 1→・PF 2→的值;(2)设S 为椭圆的右顶点,过椭圆C 的右焦点的直线l 与椭圆C 交于P ,Q 两点(异于点S ),直线PS ,QS 分别交直线x =4于A ,B 两点,求证: A ,B 两点的纵坐标之积为定值.(第17题图)已知等差数列{a n }的前n 项和为S n ,且S n =12n 2+12n +a ,数列{b n }满足b 2n -1= a 2n -1 (n ∈N *),且对任意正整数m ,使得b 2m ,b 2m +1,b 2m +2,…,b 2m +1成等比数列,公比为q m . (1) 求a 的值;(2) 求数列{q n }的前n 项积T n ;(3) 记数列{b n }的前n 项和为B n ,求证: S n ≥B n .20.(本小题满分16分)已知函数f (x )=e x -a 2x 2,(a >0),其中e 为自然对数的底数.(1)∀x 1,x 2∈R ,x 1≠x 2,均有e x 2-e x 1x 2-x 1>m ,求实数m 的取值范围;(2) ① 设曲线y = f (x )在x =In a 处的切线为直线l ,求曲线y = f (x )与直线l 的公共点的个数;② 求证: 存在唯一的x 0∈R ,使得对任意的x 1∈(-∞,x 0)且x 2∈(x 0,+∞),均有f (x 2)-f (x 1)x 2-x 1>f ′(x 0).数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤13-10,N =⎣⎢⎢⎡⎦⎥⎥⎤12102,求矩阵AB 的逆矩阵(AB )-1B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l :⎩⎪⎨⎪⎧x =t ,y =-2+kt (t 是参数,k 是实数),曲线C 1的方程为⎩⎪⎨⎪⎧x =2cosθ,y =sinθ (θ为参数),若直线l 与曲线C 1无公共点,求实数k 的取值范围.C .[选修4-5:不等式选讲](本小题满分10分)若关于x 的不等式2|x -a |+|x |≥2x -3恒成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四核锥P -ABCD 中,底面四边形ABCD 为正方形,已知P A ⊥平面ABCD ,AB =2,P A =2. (1) 求PC 与平面PBD 所成角的正弦值; (2) 在棱PC 上是否存在一点E ,使得平面BDE ⊥平面PBD.若存在,求PE PC的值若不存在,请说明理由.23.(本小题满分10分)请先阅读:对于组合恒等式C m n = C n-mn 我们可以例设一个情境来解释:一方面,可以从n 个元素中选择其中m 个元素;另一方面,也可以从n 个元素中别除n -m 个元素,留下剩余的部分运用“算两次”的方法,原恒等式成立.(1) 请尝试创设一个情境,解释恒等式: kC k n =n C k -1n -1(2) 在集合A =(1,2,3,…,3n (n ≥2,n ∈N *)中,随机选择其中n 个元素,组成集合A 的一个子集M ,设集合M 中能被3整除的元素个数记为随机变量X ,证明:随机变量X 的数学期望E (X )=n3.PA B C D E试题Ⅰ参考答案(详细答案见教参)一、填空题:本大题共14小题,每小题5分,共70分.1、答案:3 参考解答或提示:因为{|4}A B x a x =<<I ={|34}x x <<,所以a =3.2、答案:1 参考解答或提示:化简得1i1iz -+=+,所以||z =1. 3、答案: 0或e 4、答案: 256 5、答案:90°6、答案:14 参考解答或提示:画出可行域(如图),可知0,0x y >>,所以目标函数|343|343z x y x y =++=++在点1,2A ()处取得最大值14.7、答案:4 参考解答或提示:由图可知1152424ωωππ-=π,所以=4ω. 8、答案:189、答案:[-3,32]10、答案:- 23911、答案:73 12、答案:81713、答案:-1+3214、答案:3二、解答题(共90分) 15、(本小题满分14分)(1)f (x ) = sin(x +π3);(2)43-34.16、(本小题满分14分) (略,见图) 17、(本小题满分14分)(1)y =c +6(ax +1600bx),x ∈(0,40];(2)当b ≤a 时,水池设计成垂直于厂房的一边的边长为40bam ,平行于厂房的一边的 (第16题图)A CA 1B 1C 1D 1DEB边长为40ab的长方形时,造价最低为(c+480ab )元; 当b >a 时,水池设计成底面边长为40m 的正方形时,造价最低为(c +240a +240b )元.解(1)由题意,贮水池的底面垂直于厂房的一边长为x m , 则平行于厂房的一边长为4800m 3x ,即1600m x, 所以总造价16002323y c a x b x =+⨯⨯+⨯⨯⨯,即(]160060,40.b y c a x x x ⎛⎫=+⨯⋅+∈ ⎪⎝⎭,(2)因为0,0a b >>,所以1600b a x x ⋅+≥当且仅当1600,ba x x⋅=即x =.若b a ≤,则(0,40⎤⎦,当x =,min y c =+; 若b a >,则当(]0,40x ∈时,22216001600660b ax b y a x x ⎛⎫-⎛⎫'=⨯-=⨯< ⎪ ⎪⎝⎭⎝⎭, 所以函数y 在x ∈(0,40]上单调递减,也即当x =40时,min 240240y c a b =++.综上可知,当b a ≤时,水池设计成垂直于厂房的一边的边长为,平行于厂房的一边的边长为,最低造价为c +当b a >时,水池设计成底面边长为40m 18、(本小题满分16分)(1)6;(2)定值为-9. 19、(本小题满分16分)(1)a=0;(2)T n =21-12n (3)(略)20、(本小题满分16分) (1)(-∞,0]; (2)(略)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换](本小题满分10分)答案:(AB)-1=⎣⎢⎡⎦⎥⎤-13-7316 16B .[选修4-4:坐标系与参数方程](本小题满分10分)答案:(-32,32)C .[选修4-5:不等式选讲](本小题满分10分)答案:(-∞,3];【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分10分)(1)1010; (2)23.23.(本小题满分10分)(略)。