手性和手性药物
- 格式:ppt
- 大小:514.50 KB
- 文档页数:27
手性合成与手性药物【摘要】手性是自然界的基本属性,也是生命系统最重要的属性之一。
作为生命体三大物质基础的蛋白质、核酸及糖等均是由具有手性的结构单元组成。
如组成蛋白质的氨基酸除少数例外,大多是L-氨基酸;组成多糖和核酸的天然单糖大都是D构型的。
因此生物体内所有的生化反应、生理反应无不表现出高度的立体特异性,外源性物质进入体内所引发的生理生化反应过程也具有高度的立体选择性。
手性药物是指分子结构中含有手性中心或不对称中心的药物,它包括单一的立体异构体、两个或两个以上立体异构体的混合物。
手性化合物除了通常所说的含手性中心的化合物外,还包括含有轴手性、平面手性、螺旋手性等因素的化合物。
由于药物作用靶点(如受体、酶或离子通道等)结构上的高度立体特异性,手性药物的不同立体异构体与靶点的相互作用有所不同,从而产生不同的药理学活性,表现出立体选择性。
同样,药物进入体内后与机体内具有高度立体特异性的代谢酶及血浆蛋白或转运蛋白等相互作用,手性药物的不同异构体在体内也将表现出不同的药代动力学特征,具有立体专一性。
更值得注意的是,有些手性化合物在体内甚至可能发生构型变化而改变其药效和毒副作用。
【关键字】手性药物化学医学一,手性含义这种情形像是镜子里和镜子外的物体那样,看上去互为对应。
由于是三维结构,它们不管怎样旋转都不会重合,如果你注意观察过你的手,你会发现你的左手和右手看起来似乎一模一样,但无论你怎样放,它们在空间上却无法完全重合。
如果你把你的左手放在镜子前面,你会发现你的右手才真正与你的左手在镜中的像是完全一样的,你的右手与左手在镜中的像可以完全重叠在一起。
实际上,你的右手正是你的左手在镜中的像,反之亦然。
所以又叫手性分子。
在化学中,这种现象被称之为“手性”(chirality)。
几乎所有的生物大分子都是手性的。
两种在分子结构上呈手性的物质,它们的化学性质完全相同,唯一的区别就是:在微观上它们的分子结构呈手性,在宏观上它们的结晶体也呈手性。
手性化学的新型应用——手性药物研发手性化学是有机化学中的一个重要分支,涉及到分子的手性(左右旋性质),可以应用在生物学、医学、材料科学等多个领域。
其中,手性药物研发是手性化学一个非常重要的应用方向。
本文将详细介绍手性药物研发的基本知识、挑战以及最新研究成果。
一、什么是手性药物?手性药物是指分子有左右手之分,被称为手性分子(或“不对称”分子)。
与不对称分子相对的是对称分子,它们的化学结构展现出轴对称或面对称的各种形式。
手性药物可以具有不同的生物学活性,因此它们可能会在人体中产生不同的效应。
根据手性药物分子的左右旋和活性关系,可以分为三种类型:1. 明显的两性型分子,即左右旋分子都有一定的药效(如舒芬太尼)。
2. 明显的单性型分子,即左右旋分子只有其中之一具有药效(如沙丁胺醇)。
3. 难以确定单性型与两性型的分子(如甲基多巴)。
二、手性药物的挑战虽然手性药物具有广泛的应用前景,但它们的研究和开发也面临着很多挑战。
其中最困难的挑战之一是如何获得高纯度的手性化合物。
因为手性化合物在自然界中往往存在多种可能的配对方式,而且它们通常具有非常相似的性质,因此很难通过传统的物理和化学方法进行分离纯化。
另外,手性药物不同的手性体往往具有不同的药物效应和副作用,因此如何确定最有效和最安全的手性体也是非常困难的问题。
三、手性药物研发的新型应用虽然手性药物研发面临着很多挑战,但在近年来的研究中,一些新型应用得到了广泛的关注。
1. 右旋甲状腺素国外学者最近发现,右旋甲状腺素(L-甲状腺素)在治疗儿童先天性心脏病等方面具有很好的效果。
此前,通常被视为是无效成分的左旋甲状腺素(D-甲状腺素)则被认为是不必要的药剂量,并存在副作用。
2. 手性纤维素酯类最近,手性纤维素酯类也被广泛研究,这些化合物通过手性化学合成,能够为干燥的皮肤提供保护,有助于潮湿细胞平衡保持。
同时,它们还能在受损皮肤创口预防感染。
3. 化学酶催化而近年来最引人注目的是,越来越多的研究者利用胆碱酯酶类似物的特性,开发了全新的化学酶催化技术,成败由手性,实现了对手性药物分离和催化对映选择性的大规模制备。
手性药物和手性分离技术在药物研发中的应用在药物研发领域中,手性药物和手性分离技术是两个十分重要的概念。
手性指的是分子具有的立体异构体,即左旋和右旋两种形式。
这种分子异构体的存在对药物的治疗作用和毒副作用有着重要的影响。
因此,对手性药物的研究和合成方法的选择都要考虑这个问题。
手性药物的研究和合成方法在药物研发过程中,科学家们研究的不仅仅是分子本身,还包括分子的立体异构体。
药物分子的立体异构体在体内的代谢、吸收和作用机制等方面均有影响。
例如,地匹哌酮是一种旋光性药物,其中左旋异构体有镇痛作用,右旋异构体则具有镇静和肌肉松弛的作用。
又如西布曲明,虽然是一种非手性药物,但是它本身可以代谢成具有不同药理作用的母化合物。
相对于非手性药物,手性药物的研究和开发则更具有挑战性。
因为手性药物的立体异构体在生物体内会产生不同的作用,所以只有研究出合适的合成方法才能使得手性药物的合成更加有效。
例如利多卡因和布比卡因,都是一种局部麻醉剂,但是分别包含左旋和右旋异构体。
如果选用不当的合成方法,则可能导致对药物活性产生负面的影响。
手性药物研发的过程中,科学家们还需要了解药物的作用机理,因为立体异构体可能会影响药物的作用方式。
在很多情况下,开发出合适的手性药物需要经过试错,这也是制约手性药物研发的一个难题。
不过,随着科技的发展,研究人员也在不断努力尝试开发新的方法,以提高手性药物合成的效率和质量。
手性分离技术手性分离技术是一种将药物分子的立体异构体分离开来的方法。
手性分离技术通常包括晶体分离、手性色谱和毒用抗体等方法。
晶体分离法:利用晶体的尺寸限制,选择适当的晶体使其中只能产生一种立体异构体的晶体被保留下来,而另一种立体异构体因无法晶化而被分离出来。
这种方法是一种比较简单有效的手性分离方法,但是由于该方法对晶体的选择和合成条件有较高的要求,所以选用晶体分离法时需要较为谨慎。
手性色谱法:利用液相色谱或气相色谱系统进行手性分离。
学年论文题目:学院:专业:指导教师:学生姓名:学号:年月日手性拆分技术及其在手性药物合成中的应用新进展摘要:手性是一种很普遍的自然现象对生命体新陈代谢有着深远的影响,特别是在医药行业,随着医药行业对手性单体需求量的增加和对药理的探究如何获得高纯度手性单体已成为一个令人困扰的问题。
手性拆分是获得手性药物的重要途径, 由于自身的优势深受广大研究者的关注。
本文就目前手性拆分技术及其在手性药物合成中的应用新进展进行了展望,以及对经典的结晶法拆分、动力学拆分和色谱分离法拆分等手性拆分方法的新进展进行综述,并介绍膜拆分法、萃取拆分法等新技术在手性药物合成中的应用。
关键词:手性手性药物发展现状手性拆分手性,它是三维物体的基本属性,指一个物体不能与其镜中的影像相重合,就如同人的左手与右手,彼此互为实物与镜像的关系而不能重叠物体具有这样的性质就具有了手性。
手性药物是指由具有药理活性的手性化合物组成的药物,由于药物分子所作用的受体或靶位是由氨基酸核苷膜等组成的手性蛋白质和核酸大分子等。
它们对与其结合的药物分子的空间立体构型(手性)有一定的要求。
因此,手性药物的两个对映体往往在生物体内的药理活性、代谢过程、代谢速率及毒性等存在显著的差异具体可能存在以下几种情况:只有一种对映体有药理活性,而另一种无显著的药理作用;对映体中,一个有活性而另一个可发生拮抗作用;两个对映体具有等同或相近的药理活性,有时两个对映体都有相近的活性,但从全面平衡仍宜选用单一对映体;两个对映体具有完全不同的生理活性,例如其中一种对映体是食欲抑制剂,另一种则是精神振奋剂;两个对映体中一个有活性,另一个不仅没有活性反而有毒副作用。
由于之前对手性药物认识的不足有了许多惨痛的教训,这些使人们认识到,药物必须注意它们不同的构型。
手性药物的发展现状美国的食品与医药管理局(FAD)1992年提出的法规强调,申报手性药物时,必须对不同对映体的作用叙述清楚。
到2003年,在全世界最畅销的药物中,单一对映体药物都达到或超过50%。
什么是手性药物?四川大学华西药学院郑虎教授解释说,如人体的左右手一样,在空间上不能完全叠合,却能互为镜像的奇特属性,我们就称之为“手”性。
具有互呈镜像结构的化学物分子互称为对映异构体或光学异构体,即左(右)手与右(左)手互称对映异构体。
手性药物是指只含单一对映体的药物,即只有一只“左手”或一只“右手”的药物。
而含有一对对映异构体的药物则好像人的左右手一样,左手——左旋体((R型,D型,(+)型)与右手——右旋体((S型,L型,(-)型)以同等的量共生,这样构成的药物称为消旋药物。
手性是自然界的本质属性之一,郑教授说,作为生命活动重要基础的生物大分子,如核酸、蛋白质、多糖等分别由具有手性的D-DNA、L-氨基酸、D-单糖构成,载体、酶、受体等也都具有手性,它们一起构成了人体内高度复杂的手性环境。
药物在进入体内后,其药理作用是通过与体内这些靶分子之间的严格手性匹配和分子识别能力而实现的。
立体结构相匹配的药物通过与体内酶、核酸等大分子中固有的结合位点产生诱导契合,从而抑制(或激动)该大分子的生理活性,达到治疗的目的。
一般情况下,具有手性药的药物,它的两个对映体在体内以不同的途径被吸收、活化或降解,所以在体内的药理活性、代谢过程及毒性存在着显著的差异。
当一个有手性的化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。
药物能起作用的仅是其中的一只“手”,这只高活性的“手”我们称为优对映体;而另一只“手”效力微小或干脆使不出“劲”,或不能很好地契合而成为无效对映体,或与其它大分子契合产生不同的药理作用,甚至产生毒性,称为劣对映体。
以前由于对此缺少认识,人类曾经有过惨痛的教训。
发生在欧洲震惊世界的“反应停”事件就是一例。
20世纪50年代,德国一家制药公司开发出一种镇静催眠药反应停(沙利度胺),对于消除孕妇妊娠反应效果很好,但很快发现许多孕妇服用后,生出了无头或缺腿的先天畸形儿。
虽然各国当即停止了销售,但却造成6000多名“海豹儿”出生的灾难性后果。
手性,手性药物及手性合成胡文浩,周静(华东师范大学化学系,上海200062)摘要:手性是自然界的属性,也是人类赖以生存的本质属性之一,在生命过程中发生的各种生化反应过程均与手性的识别和变化有关,从而联系到药物的手性,由于手性药物的对映异构体的药效也有差别,导致在药物合成过程中不对称合成成为重中之重。
以乌苯美司为例,介绍了原料手性诱导合成和不对称催化合成方法,提出了不对称多组分反应在乌苯美司合成中的新应用。
关键词:手性,手性药物,手性合成,不对称催化,乌苯美司文章编号:1005-6629(2009)05-0001-03 中图分类号:G633.8 文献标识码:B手性是自然界的属性。
手性(英文名为chirality, 源自希腊文cheir)是用来表达化合物分子结构不对称性的术语。
人的手是不对称的,左手和右手相互不能叠合,彼此是实物和镜像的关系,这种关系在化学中称为“对映关系”,具有对映关系的两个物体互为“对映体”。
化合物的手性与其空间结构有关,因为化合物分子中的原子的排列是三维的。
例如,图1中表示乳酸分子的结构式1 a和1 b,虽然连接在中心碳原子上的4个基团,即H, COOH, OH 和CH3都一样,但它们却是不同的化合物。
它们之间的关系如同右手和左手之间的关系一样,互为对映体[1]。
手性是人类赖以生存的自然界的本质属性之一。
生命现象中的化学过程都是在高度不对称的环境中进行的。
构成机体的物质大多具有一定空间构型,如组成蛋白质和酶的氨基酸为L-构型,糖为D-构型,DNA的螺旋结构为右旋。
在机体的代谢和调控过程中所涉及的物质(如酶和细胞表面的受体)一般也都具有手性,在生命过程中发生的各种生物-化学反应过程均与手性的识别和变化有关[2]。
由自然界的手性属性联系到化合物的手性,也就产生了药物的手性问题。
手性药物是指药物的分子结构中存在手性因素,而且由具有药理活性的手性化合物组成的药物,其中只含有效对映体或者以有效的对映体为主。
手性和手性药物的研究进展8800字[摘要]近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。
本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。
[正文]要阐明这一主题,首先我们要认识什么是手性和手性药物以及了解他们的性质。
1、手性手性是自然界的普遍特征。
构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。
在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。
因此,分子手性在自然界生命活动中起着极为重要的作用。
人类的生命本身就依赖于手性识别。
如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。
人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。
当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。
1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。
1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。
即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。
20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。
结果在欧洲导致1.2万例胎儿致残,即海豹婴。
于是1961年该药从市场上撤消。
后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。
研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。
药物分析中的手性分析技术研究手性分析技术在药物分析中的研究药物是人类对抗疾病的重要工具,但很多药物都存在手性的特性。
手性分析技术的发展对于药物的研究与合成具有重要的意义。
本文将介绍药物分析中的手性分析技术及其研究进展。
一、手性与药物手性是化学中常见的现象,指的是分子存在两个非重叠的立体异构体,分别被称为左旋体和右旋体。
由于手性分子的空间结构不对称,其在生物体内的代谢与作用机制往往存在差异。
一种手性药物的两个异构体在生物作用上可能具有完全相反的效果。
因此,对手性药物的手性分析具有重要的理论和实践意义。
二、手性分析技术的原理在药物分析中,常用的手性分析技术主要包括气相色谱法(GC)、液相色谱法(HPLC)、毛细管电泳法(CE)等。
这些技术利用手性分离柱或手性分离剂作为分离介质,通过衡量手性分子的分离度来确定样品中手性异构体的相对含量。
1. 气相色谱法(GC)气相色谱法是一种常用的手性分析技术。
该技术利用手性柱通过手性相互作用实现手性分离。
常见的手性柱包括化学手性柱和拓展手性柱。
气相色谱法具有分离度高、分析速度快、准确性高的优点,广泛应用于药物分析中。
2. 液相色谱法(HPLC)液相色谱法是另一种常用的手性分析技术。
该技术主要利用手性分离剂与手性分析物之间的相互作用实现手性分离。
液相色谱法分离度较高,适用性广泛,常用于药物的手性分析及手性异构体的定量分析。
3. 毛细管电泳法(CE)毛细管电泳法是利用毛细管中的电渗流和电泳作用实现手性分离的一种分析技术。
该技术具有分离度高、样品消耗少等特点,适用于药物样品中手性异构体的分析与检测。
三、手性分析技术的应用手性分析技术在药物研究与开发中具有广泛的应用。
通过手性分析,可以评估药物的手性纯度、分离手性异构体、研究手性异构体的代谢过程等。
1. 评估药物的手性纯度药物合成过程中,常常会产生手性异构体的混合物。
通过手性分析技术,可以确定药物样品中各个手性异构体的相对含量,评估药物的手性纯度,确保药物的质量和疗效。
什么叫手性药物_手性药物是什么手性药物可能你连听都没听过,更不可能知道什么叫手性药物,那么你知道什么叫手性药物吗?下面是为你整理的什么叫手性药物的相关内容,希望对你有用!手性药物的概念手性(Chirality)是自然界的本质属性之一。
作为生命活动重要基础的生物大分子,如蛋白质、多糖、核酸和酶等,几乎全是手性的,这些小分子在体内往往具有重要生理功能。
目前所用的药物多为低于50个原子组成的有机小分子,很大一部分也具有手性,他们的药理作用是通过与体内大分子之间严格手性匹配与分子识别实现的。
含手性因素的的化学药物的对映体在人体内的药理活性、代谢过程及毒性存在显著的差异。
当前手性药物的研究已成为国际新药研究的主要方向之一。
绝大多数的药物由手性分子构成,两种手性分子可能具有明显不同的生物活性。
药物分子必须与受体(起反应的物质)分子几何结构匹配,才能起到应有的药效,就如右手只能带右手套一样。
因此,往往两种异构体中仅有一种是有效的,另一种无效甚至有害。
手性药物的合成方法从天然产物中提取是获得手性药物的最基本方法之一但天然的原料是有限的不能够获得大量的低价药物。
外消旋体拆分法的化学拆分需要选择适当的溶剂,更为关键的是找出一个很合适的拆分剂是这是十分困难的。
对外消旋底物进行不对称水解拆分制备手性化合物缺点是必需先合成外消旋目标产物,拆分的最高收率不会超过50%。
酶催化手性药物合成与化学法相比,微生物酶转化法的立体选择性强,反应条件温和,操作简便,成本较低,污染少,且能完成一些在化学反应中难以进行的反应。
然而,有些生物催化剂价格较高,对底物的适用有一定的局限性。
具有高区域和立体选择性、反应条件温和、环境友好的特点。
化学合成的前三类方法都要使用化学计量的手性物质。
虽然在某些情况他们可以回收重新使用。
但试剂价格昂贵不宜使用于生产中等价格的大众化手性药物。
不对称催化法,它具有手性增殖、高对映选择性、经济,易于实现工收化的优点,是最有希望、最有前途的合成手性性药物的方法。