高层住宅剪力墙结构设计[论文]
- 格式:doc
- 大小:25.50 KB
- 文档页数:6
高层住宅建筑剪力墙结构的设计与分析在现代城市的建设中,高层住宅建筑如雨后春笋般涌现。
剪力墙结构作为高层住宅建筑中一种常见且重要的结构形式,其设计的合理性和科学性直接关系到建筑物的安全性、稳定性以及使用功能的实现。
本文将对高层住宅建筑剪力墙结构的设计进行详细的探讨与分析。
一、剪力墙结构的基本概念与特点剪力墙结构是由一系列纵向和横向的钢筋混凝土墙体组成,这些墙体不仅承担着竖向荷载,还能有效地抵抗水平荷载,如风荷载和地震作用。
其主要特点包括:具有良好的抗侧刚度,能够有效控制建筑物在水平荷载下的变形;结构整体性强,空间整体性好,能够提供较为规则的建筑平面布局;墙体自身的承载能力较高,能够承受较大的竖向和水平荷载。
二、高层住宅建筑中剪力墙结构的设计要点1、结构布置在设计过程中,剪力墙的布置应遵循均匀、对称、周边化的原则。
均匀布置可以使结构在各个方向上的刚度相近,减少扭转效应;对称布置有助于减小水平荷载作用下的偏心影响;周边化布置则能增强结构的抗扭性能,提高结构的整体稳定性。
同时,要注意避免出现短肢剪力墙,因为短肢剪力墙的抗震性能相对较弱。
对于较长的剪力墙,应设置洞口将其分成若干墙段,以避免墙段过长而导致脆性破坏。
2、墙体厚度剪力墙的厚度应根据建筑物的高度、抗震等级以及墙体所承担的荷载等因素来确定。
一般来说,底层剪力墙的厚度较大,随着楼层的增加逐渐减小。
在满足结构要求的前提下,应尽量减小墙体厚度,以增加建筑的使用面积。
3、混凝土强度等级混凝土的强度等级应根据结构的受力情况、耐久性要求以及施工条件等综合确定。
高强度等级的混凝土可以减小墙体的截面尺寸,但过高的强度等级可能会导致混凝土的脆性增加,不利于结构的抗震性能。
4、配筋设计剪力墙的配筋包括竖向分布钢筋和水平分布钢筋。
竖向分布钢筋主要承受墙体的竖向荷载,水平分布钢筋则主要用于抵抗水平荷载产生的剪力。
配筋量应根据计算结果和规范要求进行确定,同时要注意钢筋的间距和锚固长度等构造要求。
高层住宅剪力墙结构在如今城市的高楼大厦中,高层住宅剪力墙结构扮演着至关重要的角色。
对于大多数人来说,或许只是每天生活在其中,却并不真正了解其背后的原理和奥秘。
什么是剪力墙结构呢?简单来说,剪力墙就像是一道道坚固的墙壁,它们承担着抵抗水平荷载(如风荷载、地震作用等)的重要任务。
在高层住宅中,这些剪力墙纵横交错,形成了一个稳固的结构体系,为居民提供了安全可靠的居住环境。
与其他结构形式相比,剪力墙结构具有不少独特的优点。
首先,它的抗震性能非常出色。
在地震来临时,剪力墙能够有效地吸收和分散地震能量,减少建筑物的晃动和破坏,从而保障居民的生命和财产安全。
其次,剪力墙结构具有较好的整体性和刚度。
这意味着整个建筑在承受各种外力作用时,能够保持较好的稳定性,不易出现过大的变形和裂缝。
此外,剪力墙结构还能够提供较大的室内空间利用率,因为它不像框架结构那样需要大量的柱子,使得房间的布局更加灵活和自由。
那么,剪力墙是如何在高层住宅中发挥作用的呢?当风或者地震作用于建筑物时,水平力会传递到剪力墙上。
剪力墙通过自身的抗弯和抗剪能力,将这些水平力转化为内力,并传递到基础。
在这个过程中,剪力墙的厚度、长度、混凝土强度等因素都会影响其承载能力和抗震性能。
为了确保剪力墙结构的安全性和可靠性,在设计和施工过程中需要进行严格的计算和控制。
在设计阶段,工程师们需要根据建筑物的高度、使用功能、所在地区的抗震设防要求等因素,确定剪力墙的布置、数量、尺寸等参数。
他们会运用复杂的力学理论和计算机模拟技术,对结构进行分析和优化,以确保其满足各项规范和标准的要求。
同时,还需要考虑到建筑物的经济性和美观性,在保证结构安全的前提下,尽量减少材料的使用和施工的难度。
施工过程也是至关重要的。
首先,要保证剪力墙所用的混凝土和钢筋的质量符合设计要求。
混凝土的配合比、浇筑工艺、养护条件等都会影响其强度和耐久性;钢筋的规格、数量、连接方式等也必须严格按照设计图纸进行施工。
高层建筑结构设计要点研究论文六篇关于《高层建筑结构设计要点研究论文六篇》,是我们特意为大家整理的,希望对大家有所帮助。
第一篇摘要:随着我国人口急剧上升,土地资源稀缺问题愈加明显,为了提升土地利用率,开发商开始将目光投向高层建筑。
近年来,复杂高层与超高层建筑得到广泛应用,它即满足了城市发展的需要,也实现了有限土地资源的有效利用。
因此,本文主要对复杂高层与超高层建筑结构设计要点进行探讨,用以提高高层建筑的合理性与科学性。
关键词:复杂高层;超高层;建筑结构;设计要点1引言随着复杂高层与超高层建筑的不断增加,政府对高层建筑的质量提出更高要求,尤其是建筑结构的持久性、可靠性已经成为社会关注的焦点。
因此,在进行复杂高层与超高层建筑结构设计时,要结合建筑物的形态特征、功能需要等进行,为提高复杂高层与超高层建筑的安全性能做铺垫。
2复杂高层与超高层建筑结构设计的主要控制因素2.1重力荷载与其他类型的建筑相比,复杂高层与超高层建筑具有特殊性,不仅建筑高度不可比拟,还需要面临重力荷载的挑战。
特别是随着建筑高度不断攀升,地面受力与重力荷载会逐渐上升,在力的作用下墙上的轴压力与竖向构件柱的压力也不断增加,从而加大超高层建筑的困难性。
其次,复杂高层与超高层建筑的水平位移也是建筑结构设计的矛盾点,主要体现在两个方面:①楼层越高风效应就越大,在风的作用下其合力作用点的位置就越高,由此自然风效应对超高层建筑产生的作用效应就更大。
②在建筑结构设计中,建筑的结构自重是企业必须考虑的问题,因为它关乎建筑物的稳定性。
而结构自重与重心位置相关,随着建筑楼层不断升高其重心位置随之升高,从而结构自重不断加大,成为强力作用下的薄弱环节,比如地震等。
2.2风振加速度风力大小与建设楼层的高低相关,通常楼层越高其风力效果越强,因此在超高层建筑中的风力作用特别显著。
但是,人们对风作用的舒适度有一定的感知,若风振作用过强则会令人产生不适感,从而降低居住品质。
基于高层住宅中混凝土剪力墙结构优化设计研究【摘要】在实际的高层住宅建造及设计过程中,一个值得注意的现象是,目前工程实践中大多数剪力墙结构的布置还主要取决于设计人员的经验,设计者出于结构的安全或设计进度等方面的考虑而对结构设计采取相对保守的结构布置方案,一定程度上忽略了结构的合理性和经济性。
因此对剪力墙结构的布置进行优化显然十分必要。
本文对高层住宅中混凝土剪力墙结构优化设计进行了研究和阐述。
【关键词】高层建筑;混凝土;剪力墙结构;优化设计前言在结构设计时,高层建筑的高度一般是指从室外地面至檐口或主要屋面的距离,不包括局部突出屋面的楼电梯间、水箱间、构架等高度。
随着高层建筑高度的大幅度增加,出现了超高层建筑。
“超高层建筑”一词来源于日本,英语中原来并无超高层建筑相应的词条,欧美等西方国家一般采用tall building或highrise building 来代表高层建筑,直到1995年才出现超高层建筑对应的词条super-tall building。
即使在日本,超高层建筑也没有明确的分界线,如在70年代,指70m以上的建筑,到80年代,提高到100m。
目前,日本一般将120m以上的建筑称为超高层建筑,由此可以看出,超高层建筑完全是人为界定的,特指当时日本最高的一些建筑物;日本还将30层以上的旅馆、办公楼和20层以上的住宅规定为超高层建筑。
目前,超高层建筑一词流行广泛,但又无统一和确切的定义,一般泛指某个国家或地区内较高的一些建筑。
国际上,通常将高度超过100m或层数在30层以上的高层建筑称为超高层建筑。
本文对高层建筑物中的混凝土剪力墙的优化设计进行阐述,主要从剪力墙结构的形式以及布置方面进行优化设计。
一、高层建筑结构设计特点分析高层建筑结构可以设想成为支承在地面上的竖向悬臂构件,承受着竖向荷载和水平荷载的作用。
与多层建筑结构相比,高层建筑结构的设计具有如下特点:1、水平荷载成为设计的决定性因素对于多层建筑结构,一般是竖向荷载控制着结构的设计。
小高层建筑短肢剪力墙结构设计摘要:短肢剪力墙结构小高层住宅合理的结构选型和结构布置对工程的安全、经济性的影响是重大的,只有对结构整个体系的承载能力、性能以及对结构分体系与结构构件相互作用的关系了解透彻,才能避免只依赖规范、设计手册、计算程序的设计习惯,从而实现结构优化设计,实现安全、科学合理、经济的设计目标。
本文探讨了小高层建筑短肢剪力墙结构设计。
关键词:小高层;建筑;短肢剪力墙;结构设计abstract: short shear wall structure small high-rise residential reasonable structure selection and structure arrangement on the safety of the project, the economy’s influence is big, only to the structure of the bearing capacity of the whole system, performance, and to the structure points system and structure component interaction relationship thorough, to avoid just rely on the specification, design manual, calculation program design habits, so as to realize the structure optimization design so as to realize safe, scientific, reasonable, economical and design target. this paper discusses the small high-rise building short shear wall structure design.keywords: small high-rise; architecture; short shear wall; structure design中图分类号:s611 文献标识码:a 文章编号:近年来,随着小高层建筑的逐渐发展和为了更好地满足使用功能的要求, 短肢剪力墙结构在小高层住宅中广泛运用。
论高层建筑中大底盘大空间剪力墙结构的设计与构造要求摘要:本文从底盘大空间剪力墙结构的适用范围、转换构件的内力调整、转换层楼板等四个方面对设计与构造的要求进行了探讨,希望能够对大家有帮助。
关键词:高层建筑;剪力墙;结构设计;构造要求中图分类号: tu398+.2 文献标识码: a 文章编号:引言1.适用范围带转换层高层建筑结构属于不规则结构,在竖向荷载、风荷载或水平地震作用下受力复杂,9度抗震设计时,由于对这种结构目前缺乏研究和工程实践经验,不应采用。
转换结构构件采用梁、桁架、空腹桁架、箱形结构的高层建筑结构适用于非抗震设计和6度、7度及8度抗震设防区。
转换构件采用厚板的高层建筑结构适用于非抗震设计和6度抗震设防地区,但对于大空间地下室,因周围有约束作用,地震反应不明显,故7度、8度抗震设计的地下室的转换构件可采用厚板转换层。
a级、b级高度的首层或底部两层框支剪力墙结构的最大适用高度应符合表一的规定。
表一首层或底部两层框支剪力墙结构的最大适用高度(m)研究表明,b级高度的底部带转换层的筒中筒结构,当外筒由剪力墙构成的壁式框架时,其转换层上下刚度和内力传递途经变化比较明显,因此,其最大适用高度比表一中规定的数值适当降低。
降低的幅度可根据抗震设防烈度、转换层位置高低等因素,具体研究确定,一般可考虑降低10%~20%。
2.转换构件的内力调整带转换层高层建筑,转换层上部楼层的部分竖向构件不能连续贯通至下部楼层,因此转换层是薄弱楼层,为保证转换构件的设计安全度并具有良好的抗震性能,底部带转换层结构的薄弱层的地震剪力应乘以1. 15的增大系数。
对转换层的转换构件水平地震作用产生的计算内力需要调整增大:特一级、一级、二级转换构件在水平地震作用下的计算内力应分别乘以增大系数1.8,、1. 5、1. 25。
8度抗震设计时,转换构件除考虑竖向荷载、风荷载或水平地震作用外,还应考虑竖向地震作用的影响。
转换构件的竖向地震作用,可采用反应谱法或动力时程分析方法。
高层建筑局部剪力墙结构设计分析【摘要】本文根据设计实例,就高层建筑的结构设计方案进行研究分析总结,并提出采用局部框支建立结构体系的结构设计方案,从而提高设计方案的可行性以及高层建筑的安全性。
【关键词】高层建筑;结构设计;平面布置;剪力墙结构1 工程概况某高层建筑项目,地上32层,地下1层,框架-剪力墙结构,转换层位于4层,部分采用框支结构,建筑物总高度为98.5m,总建筑面积为58600m2。
地下室为停车库,1~4层为商业及管理用房,5层以上为公寓,本工程建设场地属ⅱ类场地,抗震设防烈度按7度设防,房屋安全等级为二级,设计使用年限为50年。
地下结构总长145m,属于超长结构,在地面上设两道温度伸缩缝,把结构分为三单元,每单元长度不超过60m,对超过50m长的结构单元,在中间设一道后浇带,温度伸缩缝同时兼作防震缝,使得每结构单元的体型简单,有利于抗震。
地下室部分因建筑使用要求,不允许设缝,故在地下室设计时,同时考虑了垂直荷载、风荷载、土压力、水反力及温度应力的共同作用。
该工程基础采用大直径人工挖孔扩底灌注桩,桩端持力层为强风化泥岩,桩径为φ900~1600mm,单桩竖向承载力特征值为4600kn~12100kn。
2 高层建筑设计分析2.1 竖向承重及抗侧力构件设计分析框支剪力墙体系在其转换层的上、下位置因竖向受力构件类型的转换造成建筑物竖向刚度的突变,地震作用时在转换层上下容易形成薄弱环节,对结构抗震不利,故在设计时采取以下几个措施原则进行优化,确保结构整体安全合理。
2.1.1 转换层的转换构件布置为了达到这一目标,本工程在满足建筑使用功能的前提下,考虑如何布置1~4层的框支柱的柱网,以实现了最短传力途径,减少转换次数。
在与建筑师充分沟通的基础上比较几个结构方案,最后确定在结构单元中间的框支剪力墙下设置了三根截面为1200×1200mm的框支柱,上部剪力墙直接通过转换粱支承在框架柱上;在结构单元端头位置,每片短剪力墙下均设置了一个600×1200mm的扁形框支柱,使得短剪力墙60%的截面直接落在扁形框支柱上,其余部分则通过转换梁直接支承在框架柱上。
浅议高层住宅剪力墙结构的合理布置摘要:伴随着高层住宅的大量出现,高层住宅剪力墙结构设计越来越受到包括开发商和业主在内的各有关方面的重视。
在保证结构安全以及使用功能完备的前提下,在不降低结构安全赘余度的情况下,对高层住宅剪力墙结构合理布置,实现材料资源的优化配置。
关键词:高层;剪力墙;结构布置中图分类号:[tu208.3]文献标识码:a 文章编号:abstract: as the high-level residence time, a lot of high-rise residential shear wall structure designs can more and more be including developers and owners, the attention of all concerned parties. in to guarantee the safety of the structure and use function complete, under the premise of not decrease in the safety of the structure more than at c, to high-level residence shear wall structure reasonable decorate, realizing the material resources disposition.key words: top-rise; shear wall; structure layout国家土地政策和住宅产业政策不断调整,加之城市居民对商品房的需求越来越大,使得各地房地产市场均向高空化方向发展,剪力墙结构体系因其经济指标在各类高层住宅结构体系中最好,因而成为高层住宅中最主要的结构形式。
1剪力墙概述1.1剪力墙的结构特点剪力墙又称为抗震墙,是一种有效的抵抗水平荷载的结构单元,可以组成完全由剪力墙抵抗侧向力的结构,也可以和框架共同组成抵抗侧向力的框—剪结构。
高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张的有效手段。
然而,高层建筑的结构设计面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和经济性。
一、高层建筑结构设计的特点高层建筑与低层建筑在结构设计上存在显著差异。
首先,高层建筑所承受的风荷载和地震作用明显增大。
随着高度的增加,风的影响愈发显著,风振效应可能导致结构的疲劳和破坏。
地震作用也会随着高度的增加而放大,对结构的抗震性能提出了更高的要求。
其次,高层建筑的竖向荷载较大。
由于层数众多,建筑物自重以及活荷载的累积效应不容忽视,这对结构的竖向承载能力和基础设计带来了考验。
再者,高层建筑的结构体系更为复杂。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
不同的结构体系在力学性能、适用高度、经济性等方面各有优劣,需要根据具体情况进行选择和优化。
二、高层建筑结构设计的主要考虑因素(一)安全性安全性是高层建筑结构设计的首要原则。
这包括结构在正常使用条件下的承载能力、稳定性,以及在极端情况下(如强烈地震、大风)的抗倒塌能力。
在设计过程中,需要依据相关的规范和标准,进行详细的力学分析和计算,确保结构能够承受各种可能的荷载组合。
(二)稳定性高层建筑的高宽比通常较大,容易产生失稳现象。
因此,在结构设计中需要通过合理的布置构件、增加抗侧力构件的刚度等措施,提高结构的整体稳定性。
(三)经济性在满足安全性和稳定性的前提下,应尽量降低工程造价。
这需要在结构选型、材料选用、构件尺寸优化等方面进行综合考虑,以达到经济合理的设计目标。
(四)使用功能高层建筑往往具有多种功能,如办公、居住、商业等。
结构设计应满足不同功能区域的使用要求,如大开间的办公区域需要采用较为灵活的结构体系,而住宅区域则更注重房间的规整和隔音效果。
(五)施工可行性设计方案应便于施工,考虑施工过程中的技术难度、施工周期和成本等因素。
高层住宅剪力墙结构设计
摘要:文章主要对高层建筑住宅剪力墙结构设计进行了相关阐述,对剪力墙结构计算的一些问题进行了详细分析,结合自身工作经验提出相关问题及看法。
关键词:剪力墙概念结构计算构造措施
0、前言
改革开放以来,随着我国国民经济的迅猛发展,建筑业已经成为我国的支柱产业。
近年来,在国家城乡一体化统筹发展思路指引下,城市化进程加快,房地产开发如火如荼,其中高层住宅小区占了很大的比例。
而现目前的钢筋混凝土高层结构住宅以剪力墙结构居多,因此,对于从事高层结构设计的工程师来说,必须能够吸收当代高层建筑结构设计的一些成功经验,并把结构的经济性、合理性与结构抗震的安全性等诸多因素加以统筹考虑,才能很好的与建筑师配合并设计出经济合理的高层建筑结构体系。
1、有关剪力墙结构的一些基本概念
(1)在现行国家和行业标准及规定的相关内容中,剪力墙结构是由钢筋混凝土剪力墙组成抗侧力体系、以弯曲变形为主的结构,剪力墙在其自身平面内的刚度较大,在水平荷载作用下侧向位移较小,结构抗震和抗风性能较好,比较容易满足承载力的要求,再加上房间内无梁、无柱,这种结构形式深受用户和建筑师的欢迎,因而在许多高层和部分多层住宅建筑中得到了广泛应用。
(2)剪力墙按受力性能分类为三类。
1)剪切型剪力墙。
在水平力作用下,以剪切变形为主,其剪切变形占总变形(弯曲变形和剪切变形之和)的10% 以上,为一种非延性的剪力墙。
它承受沿其平面作用的水平剪力和弯矩外,还承受竖向压力,在轴力、弯矩、剪力的复合状态下工作,其受水平力作用似一底部嵌固于基础的悬臂深梁。
2)弯曲型剪力墙。
在水平力作用下,剪切变形为总变形的10%或小于10% ,以弯曲变形为主。
其受力性能类似于受弯梁。
3)延性弯曲型剪力墙。
其延性系数≥3的弯曲型剪力墙为延性弯曲型剪力墙,位于地震区的高层剪力墙结构,应设计此类剪力墙。
剪力墙几何特征像板,与柱的区别主要是其长度与厚度的比值,当比值小于或等于4时可按柱设计,当墙肢长与肢宽比值略大于4时可视为异形柱,按双向受压构件设计。
墙的受力性能受剪跨比影响较大,当剪跨比较大时,则以受弯为主,为弯曲型剪力墙;当剪跨比较小时,则以受剪为主,为剪切型剪力墙。
为了避免和减少剪力墙的剪切破坏,设计时宜将墙肢设计成延性较好的以弯曲变形为主的墙肢,对较长的剪力墙宜开设洞口,将其分成抗侧刚度较为均匀的若干墙段,墙段之间宜采用弱连梁连接,(高规)2010版7.1.2提出每个墙段不宜大于8 m,因为当墙段很长时,易发生脆性破坏。
此外,受弯后产生的裂缝宽度会较大,墙体配筋容易拉断,因此其长度不宜过大。
(3)在实际的工程中,剪力墙可分为整体墙和联肢墙等。
整体墙如一般房间的端部山墙。
联肢墙是由连梁连接起来的剪力墙。
按
墙肢总高度与厚度之比可将单片剪力墙分为高墙(h/b>2)、中高墙(1≤h/b42)和矮墙(h/b<1)等三种;剪力墙按高厚比可分为一般剪力墙和短肢剪力墙,一般剪力墙指的是高厚比大于8的墙;短肢剪力墙是指高厚比为5—8的墙,截面厚度不大于300 mm的墙。
这里值得注意的是《高层建筑混凝土结构技术规程》2010版7.1.1条文说明中专门指出“本规程所指剪力墙结构是以剪力墙及因剪力墙开洞形成的连梁组成的结构,其变形特点为弯曲型变形,目前有些项目采用了大部分由跨高比较大的框架梁联系的剪力墙形成
的结构体系,这样的结构虽然剪力墙较多,但受力和变形特性接近于框架结构,当层数较多时对抗震不利宜避免。
”
2、有关剪力墙结构计算的一些问题
(1)剪力墙应进行平面内的斜截面受剪、偏心受压或偏心受拉、平面外轴心受压承载力计算。
在集中荷载作用下,墙内无暗柱时还应进行局部受压承载力计算。
剪力墙计算软件较多,可采用三维杆一系薄壁柱空间分析方法或空间杆一墙组元分方法。
在软件中,剪力墙可以按照墙肢输入,且在墙肢之间输入钢筋混凝土梁;其次,也可以按照整片墙输入,然后开洞。
同一结构按照两种方法输入的计算结果有些差别,这主要与软件的计算简化模型不同有关。
(2)连梁在竖向荷载下的弯矩占比较小,水平荷载下产生的反弯使之对剪切变形十分敏感,易出现剪切裂缝,因而在剪力墙结构模型计算中,常遇到连梁超筋的情况。
对此的处理方式一般有两种,
一种是将连梁刚度折减(折减系数不宜小于0.5)或将连梁弯矩及剪力进行塑性调幅,以降低其剪力设计值。
另一种是减小梁截面,以降低梁刚度。
连梁是一个耗能构件,通过以上两种方式让其变弱,而让与其相连接的墙变强,这样即便是在地震中连梁消耗了地震能量而发生破坏,但墙是安全的,这也符合“强柱弱梁”的延性设计要求。
(3)在计算软件中建模型计算时,一些计算的假定也应当考虑到建筑结构的实际受力情况,类似如图1所示的情况,从平面来看,结构局部突出,并且比较“狭长”,可以考虑按照全楼“弹性膜”的假定进行计算。
3、剪力墙的平面布置
(1)平面布置应尽可能的分散、对称、双向,要尽可能的布置在建筑物的外围尤其是角部,以便减少扭转效应,墙体尽量采用t 型、l型、十字型,尽量避免一字型墙体。
建筑物的四角是保证结构整体性的重要部位,在地震作用下,建筑物发生平动、扭转和弯曲变形,位于建筑四角的结构构件受力较为复杂,其安全性又直接影响建筑物角部甚至整体建筑的抗倒塌能力。
但是,近年来,在城市住宅和办公楼建筑中,为了取得最佳景观,不惜在建筑四角开角窗,这种做法削弱了结构的整体性。
在国内外的每一次地震中,包括汶川地震中,都发生了建筑四角的破坏和倒塌。
因此设计者应该重视。
(2)剪力墙的门窗洞口宜上下对齐、成列布置,形成明确的墙
肢和连梁。
一、二、三级抗震等级剪力墙底部加强部位不宜采用上下洞口不对齐的错洞墙,一、二、三级抗震等级剪力墙所有部位均不宜采用叠合错洞墙。
当采用错洞墙和叠合错洞墙时,应按有限元方法计算,并在洞口周边采取加强措施,或将叠合洞口转化为规则洞口。
(3)避免采用较多短肢剪力墙结构,当结构中有少量短肢剪力墙时,应按照相应规范对其做加强措施。
4、结构构造措施以及施工图应注意的一些问题
(1)类似“细腰”型平面的“腰”的宽度应满足国家规范和地方性建设标准,如图2所示,核心筒处在“腰”上,连接建筑上下部分,应当采取措施加强其连接作用,如图中核心筒区域(图中虚线框起来的范围)采用增加板厚(厚度可取120 mm),并双层双向配筋的方式予以加强。
(2)《高规》2010版7.1.6.5中提到的梁端钢筋满足锚固长度的问题,当设置梁头在建筑功能上使用不便时,且计算数据不是很大时,梁端可采用细钢筋(如直径14mm)来满足锚固长度,画梁图时应该注意。
5、结语
在实际工程设计中,合理的剪力墙布置以及采用合理的计算模型都至关重要,既要满足建筑的需要,又要保证结构的安全。
另外,在施工图的绘制中,应该注意一些表达,使之既满足规范要求又达到了节约工程造价的目的。
参考文献:
[1] jgj3—2010,高层建筑混凝土结构技术规程[s].
[2] gb50011-2010,建筑抗震设计规范[s].
[3] 全国民用建筑工程设计技术措施(混凝土结构)[m].北京:中国计划出版社.
[4] 孙海涛,等.某高层剪力墙住宅结构设计与应用[j].建筑技术,2011.
[5] 王承业,邸军.浅谈剪力墙设计中的问题[j].黑龙江冶金,2009.。