2010级研究生弹性力学及有限元试题
- 格式:doc
- 大小:148.50 KB
- 文档页数:1
卷一、简答题1. 何谓平面应变问题?举例说明。
2. 在什么情况下,平面应力问题和平面应变问题的应力分布与材料的弹性常数无关?又在什么情况下,两类平面问题具有相同的应力解? 3. 何谓逆解法?4. 简述小挠度薄板弯曲问题的基本假定。
二、试分别写出图示平面问题的边界条件:1.直角坐标时的边界条件;2.极坐标时的边界条件。
题二图 题三图三、图示矩形截面简支梁,体力不计,受均布荷载q ,由两端的反力ql 维持平衡,试构造应力函数,并求出各应力分量。
四、等截面直杆受扭矩M 作用,椭圆形横截面如图所示,椭圆边界的半轴分别为a 和b 。
试用应力函数2222(1)x y m a bΦ=+-求解各应力分量(m 是待定系数)。
五、图示矩形薄板OABC 的OA 和OC 边简支,AB 和BC 边自由,边长为a 和b ,在B 点受到垂直于薄板中面的横向集中力F 作用。
试证w mxy =能满足一切条件(m 是待定系数),并求挠度。
OA CxOA Cx卷六、简答题5. 何谓平面应力问题?举例说明。
6. 何谓轴对称问题?举例说明。
7. 何谓半逆解法?8. 何谓圣维南原理?圣维南解的价值何在?七、设Airy 应力函数为3cx =Φ,其中c 为常数。
试在图中绘出边界上的面力。
题二图 题三图八、设有矩形截面的长梁,其长度为l ,深度为h ,宽度为b ,三者之间的关系为b h l >>>>。
在两端的集中力偶M 作用下(不计体力),梁发生纯弯曲变形。
试用Airy 应力函数求解应力分量。
九、等截面直杆的椭圆形横截面如图所示,椭圆边界的半轴分别为a 和b 。
试用应力函数2222(1)x y m a bΦ=+-求解各应力分量(m 是待定系数)。
十、图示矩形薄板OABC 的OA 和OC 边简支,AB 和BC 边自由,边长为a 和b ,在B 点受到垂直于薄板中面的横向集中力F 作用。
试证w m xy =能满足一切xx 条件(m 是待定系数),并求挠度。
弹性力学与有限元分析复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
四川大学期考试试题A
(2009 ——2010 学年第 1 学期)
课程号:30620030 课序号:0 课程名称:弹性力学及有限元任课教师:张建海成绩:适用专业年级:水工03 学生人数:印题份数:学号:姓名:
注:1试题字迹务必清晰,书写工整。
本题 2 页,本页为第 1 页
2 题间不留空,一般应题卷分开教务处试题编号:
3务必用A4纸打印
学号:姓名:
2 题间不留空,一般应题卷分开教务处试题编号:
3务必用A4纸打印
四川大学期考试试题B
(2009 ——2010 学年第 1 学期)
课程号:30620030 课序号:0 课程名称:弹性力学及有限元任课教师:张建海成绩:适用专业年级:水工03 学生人数:印题份数:学号:姓名:
注:1试题字迹务必清晰,书写工整。
本题2 页,本页为第 2 页
2 题间不留空,一般应题卷分开教务处试题编号:
3务必用A4纸打印。
弹性力学及有限元10级研究生课程试题湖南工业大学研究生课程考试试题课程名称:《弹性力学及有限元》(开卷)适用专业年级:机械设计及理论、机械制造及其自动化 10级注意事项:1.答卷可采取打印或手写方式在A4打印纸上完成。
如果手写,必须字迹工整,以便老师批阅;2.下载《标准答卷模版》;3.凡有相同答案的试卷均按零分计;4.答卷于11月30日之前交机械工程学院研究生办公室,过期不交按缺考处理。
试题:本试卷共2大题,共100分。
一、撰写读书报告(60分)读书报告应包含以下内容:1、论述弹性力学研究的对象和分析问题的方法。
2、本门课程讲授了弹性力学的哪些内容?3、任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题、轴对称问题?并举例说明平面应变问题、平面应力问题和轴对称问题。
4、你学习弹性力学和有限单元法以后最大的收获是什么?学习过程中遇到的最大困难是什么?你认为自己学懂了这门课程的知识没有?二、结合你的研究课题,撰写一篇运用有限元进行仿真分析计算的报告(40分)。
分析报告要求如下:1、问题的提出;2、建立有限元模型;3、施加载荷和边界条件;4、求解,分析计算结果;5、结论。
湖南工业大学研究生课程考试《弹性力学及有限元》答卷本人承诺:本试卷确为本人独立完成,若有违反愿意接受处理。
签名:______________学号:____________________专业:__________________所在院(部):_________________优良中差评阅人签字成绩注:90~100分为优,70~89分为良,60~69分为中,0~59分为差。
2009-2010学年第一学期《弹性力学有限元》课内考试A卷授课班号年级专业学号姓名一、判断正误(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(×)9. 线性应力分析也可以得到极大的变形(√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小二、填空1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。
(3分)2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。
(3分)3.位移模式需反映刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。
(3分)4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。
(2分) 5.薄板弯曲问题每个节点有个3自由度,分别是:w 、θx 、θy ,但其中只有 一个是独立的,其余两个可以用它表示为:,x y w wy xθθ∂∂==-∂∂。
(3分) 6.用有限元程序计算分析一结构的强度须提供(4分) ① 几何信息:节点坐标,单元节点组成,板厚度,梁截面等 ② 材料信息:弹性模量,泊松比,密度等 ③ 约束信息:固定约束,对称约束等④ 载荷信息:集中力,集中力矩,分布面力,分布体力等7.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。
最新弹性力学与有限元分析复习题及其答案一、 填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
中国农业大学2010 ~2011 学年秋季学期弹性力学与有限元 课程考试试题一、填空题:(每小题4分,共48分)1. 下列三种应变状态中, 是可能的应变状态, 是不可能的应变状态。
A. Cxy Cx Cy xy y x 4,,22===γεεB. Cxy Cy Cx xy y x 4,,22===γεεC. Cxy y x C y x C xy y x 4),(),(2222=+=+=γεε2. 有限元求解空间问题的四节点四面体单元如图示,则其直角坐标的插值函数应包含多项式中的 项。
3. 空间弹性力学问题的基本方程包括 、 、 ,共 个方程。
4. 楔形体在两侧面上受有均布剪力q 作用如图所示,用极坐标解上述问题时,应力边界条件可表示为。
5. 已知物体的位移函数为0,,=+=+-=w c ax v b ay u ,则其应力为 。
6. 有限元收敛是指 ,同时满足 和 则可判定有限元收敛。
7. 在图示单元中A (-10,20)点的面积坐标为( , , )。
8. 等参单元是 插值函数与 插值函数相同的单元。
9. 用n =2的高斯数值积分法计算可得⎰-=++1111dx x x 2。
1423考生诚信承诺1. 本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行。
2. 本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信。
学院: 班级: 学号: 姓名: 10. 平面问题和三维问题的形函数需要满足的条件是: 11. 平面问题的平衡微分方程可表示为 。
12. 厚度为δ 的平面应力结构如图所示,在其一边作用有均布载荷,单元剖分如图示,则边界四个节点的等效节点载荷分别为:=1sy F ,=2sy F ,=3sy F ,=4sy F 。
二、(17分)在ξη 坐标下的5节点单元如图所示,其坐标分别为1(-1,-1)、2(1,-1)、3(1,1)、4(-1,1)和5(1,1/3),在2-3边作用线性分布的载荷如图示,试求等效节点载荷。
题一:有一种测量材料波松比的方法,利用薄壁密封圆筒,里面充有压力气体,如图所示。
在圆筒的外表面测得环向正应变εθ= 4.3 * 10-4, 轴向正应变ε z= 1.1 * 10-4。
假设此圆筒外径R是内径r的100倍,R = 100 r,E = 2.3 * 109 Pa,求此种材料的波松比。
题二:一等腰直角三角形薄板,斜边AC简支,两直角边AB和BC受滚轴约束(约束板边的转动和垂直于板边的水平移动)。
在直角顶点B处作用一横向荷载P,求板在B点的挠度。
板的直角边长为a,弯曲刚度为D。
题三:一地基梁,长度为L,两端简支,跨中作用一集中荷载P。
地基为弹性,其弹性模量为k(若梁的挠度曲线为w(x),则地基反力可近似为密度等于kw(x) 的分布力)。
假设梁的惯性矩用I表示,材料弹性模量为E求梁的变形挠度曲线。
题四:确定如图所示的4节点三角形单元的形函数,并根据形函数:(1)说明此单元如何满足边界条件(2)说明此单元如何满足刚体位移(3)说明此单元如何满足位移连续性(4)推导单元应变距阵B(5)在(1/6,1/3,1/2)处作用水平集中力F,在ki边上作用,如图所示的线形分布力,求等效单元节点荷载z题一图题二图题三图题四图试题答案题一:由于R >> t ,可以假设σz 沿厚度方向均匀分布。
设内压强为p ,则:Rtpr z 22=σ 由轴对称圆筒的应力计算公式可得:)~0(112222p p r R R -=---=ρσρ;p Rtr p rR R 2222211=-+=ρσφ由于σz ,σφ和远大于σρ,所以σρ可假设为0。
由虎克定律:()φσσεv E z z -=1;()z v Eσσεφφ-=1,再加上z σσφ2=可推导出:zzv εεεεφφ--=22=0.28题二:由对称性可知,所求的B 点挠度即为四边简直方板的中心点的挠度,方板的边长为a 2,在中心位置受到的横向集中力为4F 。
三角级数解为;()∑∑∑∑∞=∞=∞=∞=+=⎪⎪⎭⎫⎝⎛+=..5,3,1,...5,3,1222211222222224132222sin 2sin 216m n m n nmD Faa n a m n m D a Fw ππππ题三:设梁的挠度为:∑∞==1sinm m lxm B w π,此挠度曲线满足边界条件。
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。
(1)此组应力分量满足相容方程。
为了满足平衡微分方程,必须A =-F ,D =-E 。
此外还应满足应力边界条件。
(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。
上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。
《弹性力学》复习题
1. 用最小势能原理求解图示结构的结点转角,已知各杆抗弯刚度均为EI = 5.4×104 kN·m2。
2.用最小势能原理求解图示结构在均布荷载作用下的结点转角,已知抗弯刚度为EI = 5.6×104 kN·m2。
3.图示为水库大坝示意图,设其长度远大于截面尺寸,求其在静水压力作用下的应力分布。
请采用合适的弹性力学模型对其进行简化,并写出其基本方程。
4.求图示结构在所给坐标系下的整体原始刚度矩阵(各杆件抗压刚度均为EA)。
5.计算抗压刚度为EA的图示结构在引入边界条件之前的原始刚度矩阵。
6. 求图示结构引入边界条件之前的原始整体刚度矩阵和综合结点荷载列阵,设各杆抗弯刚度为EI,不考虑轴向变形和剪切影响。
7. 计算图示常应变三角形单元的单元刚度矩阵。
已知弹性模量E,厚度t,泊松比υ=0。
弹性力学及有限元试题(一) 问答题(20分)1、什么是圣维南原理?举例说明怎样把它应用于工程问题的简化中。
2、什么叫做一点的应力状态?如何表示一点的应力状态(要求具体说明或表达)。
3、何谓逆解法和半逆解法?它们的理论依据是什么?4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。
5、要保证有限元方法解答的收敛性,位移模式必须满足那些条件?(二) (10分)1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。
2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。
(三)已知,其他应力分量为零,求位移场。
(10分)(四)设有矩形截面的悬臂粱,在自由端受有集中荷载F;体力可以不计。
试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。
(五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。
提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ).(六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。
设μ=0,试取位移分量的表达式为用瑞利—里茨法求解(15分)。
(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。
(八)用刚度集成法求下图所示结构的整体刚度矩阵K。
(10分)要求:单元刚度矩阵元素用ek形式表示;单元刚度矩阵用e K形式表ij示,其中e为单元号。
一、在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假定?
二、在什么条件下平面应力问题与平面应变问题的应力分量xy y x τσσ,,是相同的?
三、体力为零的单连体应力边界问题,设下列应力分量已满足边界条件。
试考察它们是否为
正确解答,并说明原因。
0,2,2)2(===xy y x y x τσσ
四、有限单元法中,位移模式应满足什么条件? 下列位移函数 2321x a y a x a u ++= 2321y b y b x b v ++=
能否作为三角形单元的位移模式? 简要说明理由。
)(,,)1(a
y
b x q b y q a x q
xy y x +-===τσσ
题六图
七、某结构的有限元计算网格如题七图(a )所示。
网格中两种类型单元按如题七图(b )所
示的局部编号,它们单元劲度矩阵均为
⎥⎥⎤⎢⎢⎡-----25.025.0025.025.0025.025.0025.025.0005.0000
5.0。
弹性力学及有限元试题(2010级硕士研究生)
(一) 问答题 (20分)
1、试叙述弹性力学的基本假定及其意义。
2、什么是形函数? 在有限元方法中它起什么作用?
3、何谓逆解法和半逆解法?它们的理论依据是什么?
4、试分别叙述李滋法和伽辽金法的近似性。
(二)设有一刚体,具有半径为R 的圆柱型孔道,孔道内放置外半径为R 而内半径为r 的圆筒,圆筒内受压力q ,试求圆筒的压力。
(20分)
(三)如图所示的薄板为正方形,边长a=b ,厚度为一个单位,μ=0。
在x=a 的边界上受有均布压力q 的作用,试用瑞利-里茨变分法求解位移。
(20分)
(四)分别给出位移微分方程、最小势能原理和虚功方程的表达式,并说明公式的含义和三者之间的关系。
(20分)
(五)对于如图所示的四节点平面四边形单元,若取位移模式为
xy a y a x a a v xy
a y a x a a u 87654321+++≡+++≡
试考察此位移模式的收敛性条件,并列出求解其系数a 1~a 8的方程(20分)。