基于MAtlab图像压缩编码
- 格式:wps
- 大小:483.10 KB
- 文档页数:15
29982009,30(12)计算机工程与设计Computer Engineering and Design0引言虽然表示图像需要大量的数据,但图像数据是高度相关的,或者说存在冗余信息,去掉这些冗余信息后可以有效压缩图像,同时又不会损害图像的有效信息。
数字图像的冗余主要表现为以下几种形式:空间冗余、时间冗余、视觉冗余、信息熵冗余、符号冗余、结构冗余和知识冗余。
由于在图像数据中存在如此多的冗余信息,因此,这为图像压缩编码提供了依据。
经过压缩之后的图像,其容量可以大大减少,更加方便存储和传输。
我们平常所拍摄的数码图像都含有非常大的数据量,它与通信网容量的矛盾及其传输和存储的困难都极大地制约了数字图像的发展。
图像压缩编码最根本的目的就是要以尽量少的比特数来表征图像,同时要保持解压缩后图像的质量,使之符合拍摄者的要求。
与此同时,由于拍摄者的水平参差不齐,往往拍摄的图像会不尽如人意。
因此,对原始图像的二次处理也成为一个非常引人注目的课题。
传统的图像压缩方法主要是基于DCT 变换的压缩。
由于DCT 除了具有一般的正交变换性质外,它的变换阵的基向量能很好地描述人类语音信号和图像信号的相关特征。
因此,在对语音信号、图像信号的变换中,DCT 变换被认为是一种准最佳变换。
近年颁布的一系列视频压缩编码的国际标准建议中,都把DCT 作为其中的一个基本处理模块。
除此之外,DCT 还是一种可分离的变换。
现在新型的图像压缩有了这样一个趋势,即从基于DCT 变换的压缩转向基于小波信号进行压缩。
由于小波的种类繁多,利用不同的小波可以进行不同图像的压缩,而且相对于DCT 压缩,小波图像对彩色图像的压缩更加方便简单(在以后的实验将会提到)。
因此,运用小波进行图像压缩越来越广泛,最新的JEPG2000图像压缩格式就开始基于小波对图像进行压缩编码。
本文就数码图像压缩进行研究,运用Matlab 软件在DCT 域和小波域上实现图像压缩编码理论算法及其仿真实验的实现。
(1) file_name='baboon.bmp';H=imread(file_name);H=double(H);Grgb=0.2990*H(:,:,1)+0.5870*H(:,:,2)+0.1140*H(:,:,3); NbColors=255;%对矩阵进行量化编码G=wcodemat(Grgb,NbColors);%gray线性的灰阶色调map2=gray(NbColors);%建立图形窗口1figure(1);%建立图像Gimage(G);%应用调色板colormap(map2);title('原图像的灰度图');%显示workplace的变量的详细信息whos('G');%转换成为灰度级索引图像%dwt2单尺度二维离散小波变换[CA1,CH1,CV1,CD1]=dwt2(G,'bior3.7');%从分解系数中提取近似和细节% upcoef2二维系数的直接小波重构A1=upcoef2('a',CA1,'bior3.7',1);H1=upcoef2('h',CH1,'bior3.7',1);V1=upcoef2('v',CV1,'bior3.7',1);D1=upcoef2('d',CD1,'bior3.7',1);%第二幅图像%显示近似和细节figure (2);colormap(map2);subplot(2,2,1);%对矩阵进行量化编码image(wcodemat(A1,192));title('近似A1');subplot(2,2,2);image(wcodemat(H1,192));title('水平细节H1');subplot(2,2,3);image(wcodemat(V1,192));title('垂直细节V1');subplot(2,2,4);image(wcodemat(D1,192));title('对角细节D1');%对图像进行多尺度分解[C,S]=wavedec2(G,2,'bior3.7');%提取分解后的近似和细节系数%提取一维小波变换低频系数CA2=appcoef2(C,S,'bior3.7',2);%提取小波变换高频系数[CH2,CV2,CD2]=detcoef2('all',C,S,2); [CH1,CV1,CD1]=detcoef2('all',C,S,1); %从系数C重构第二层近似A2=wrcoef2('a',C,S,'bior3.7',2);H1=wrcoef2('h',C,S,'bior3.7',1);V1=wrcoef2('v',C,S,'bior3.7',1);D1=wrcoef2('d',C,S,'bior3.7',1);H2=wrcoef2('h',C,S,'bior3.7',2);V2=wrcoef2('v',C,S,'bior3.7',2);D2=wrcoef2('d',C,S,'bior3.7',2);%第三幅图像%显示多尺度分解的结果figure (3);colormap(map2);subplot(2,4,1);image(wcodemat(A1,192));title('近似A1');subplot(2,4,2);image(wcodemat(H1,192));title('水平细节H1');subplot(2,4,3);image(wcodemat(V1,192));title('垂直细节V1');subplot(2,4,4);image(wcodemat(D1,192));title('对角细节D1');subplot(2,4,5);image(wcodemat(A2,192));title('近似A2');subplot(2,4,6);image(wcodemat(H2,192));title('水平细节H2');subplot(2,4,7);image(wcodemat(V2,192));title('垂直细节V2');subplot(2,4,8);image(wcodemat(D2,192));title('对角细节D2');%第四幅图像%从多尺度分解后的系数重构原始图像并显示结果G0=waverec2(C,S,'bior3.7');%建立图形窗口4figure (4);%建立图像G0image(G0);%应用调色板colormap(map2);%绘制调色板的内容colorbar;whos('G0')(2)file_name=('bab.bmp');H=imread(file_name);H=double(H);ca=0.2990*H(:,:,1)+0.5870*H(:,:,2)+0.1140*H(:,:,3);NbColors=255;G=wcodemat(ca,NbColors);map2=gray(NbColors);figure(1);image(G);colormap(map2);title('原图像的灰度图');whos('G');%对图像进行多尺度二维小波分解[c,s]=wavedec2(G,2,'bior3.7');ca1=appcoef2(c,s,'bior3.7',1);ch1=detcoef2('h',c,s,1);cv1=detcoef2('v',c,s,1);cd1=detcoef2('d',c,s,1);%对各频率进行小波重构a1=wrcoef2('a',c,s,'bior3.7',1);h1=wrcoef2('h',c,s,'bior3.7',1);v1=wrcoef2('v',c,s,'bior3.7',1);d1=wrcoef2('d',c,s,'bior3.7',1);G1=[a1,h1;v1,d1];figure(2);image(G1);colormap(map2);axis square;title('分解后低频和高频信息') whos('G1');ca1=appcoef2(c,s,'bior3.7',1);ca1=wcodemat(ca1,440,'mat',1);ca2=0.6*ca1;figure(3);image(ca2);colormap(map2);title('低频压缩图像');whos('ca2');ca3=appcoef2(c,s,'bior3.7',2);ca3=wcodemat(ca3,440,'mat',0); ca4=0.5*ca3;figure(4);image(ca4);title('二层分解后低频压缩图像'); colormap(map2);whos('ca4');。
使用Matlab进行图像压缩的技巧引言图像是一种重要的信息表达方式,广泛应用于数字媒体、通信和计算机视觉等领域。
然而,由于图像所占用的存储空间较大,如何有效地进行图像压缩成为了一个重要的问题。
Matlab作为一种强大的数学计算和数据处理工具,可以提供多种图像压缩的技巧,本文将介绍一些常用且有效的图像压缩技巧。
一、离散余弦变换(Discrete Cosine Transformation, DCT)离散余弦变换是一种将空间域中图像转换为频域中的图像的技术。
在Matlab中,可以通过dct2函数实现离散余弦变换。
该函数将图像分块,并对每个块进行DCT变换,然后将变换后的系数进行量化。
通过调整量化步长,可以实现不同程度的压缩。
DCT在图像压缩中的应用广泛,特别是在JPEG压缩中得到了广泛的应用。
二、小波变换(Wavelet Transformation)小波变换是一种将时域信号转换为时频域信号的技术。
在图像压缩中,小波变换可以将图像表示为不同尺度和频率的小波系数。
通过对小波系数进行量化和编码,可以实现图像的有效压缩。
Matlab提供了多种小波变换函数,如wavedec2和waverec2。
这些函数可以对图像进行多尺度小波分解和重构,从而实现图像的压缩。
三、奇异值分解(Singular Value Decomposition, SVD)奇异值分解是一种将矩阵分解为三个矩阵乘积的技术。
在图像压缩中,可以将图像矩阵进行奇异值分解,并保留较大的奇异值,从而实现图像的压缩。
Matlab提供了svd函数,可以方便地实现奇异值分解。
通过调整保留的奇异值个数,可以实现不同程度的图像压缩。
四、量化(Quantization)量化是将连续数值转换为离散数值的过程。
在图像压缩中,量化用于将变换后的图像系数转换为整数值。
通过调整量化步长,可以实现不同程度的压缩。
在JPEG压缩中,量化是一个重要的步骤,通过调整量化表的参数,可以实现不同质量的压缩图像。
MATLAB中的图像压缩和编码方法图像压缩和编码是数字图像处理的重要领域,在各种图像应用中起着至关重要的作用。
在本文中,我们将探讨MATLAB中的图像压缩和编码方法,包括无损压缩和有损压缩,并介绍其中的一些经典算法和技术。
一、图像压缩和编码概述图像压缩是指通过一定的算法和技术来减少图像数据的存储量或传输带宽,以达到节约存储空间和提高传输效率的目的。
而图像编码则是将原始图像数据转换为一系列二进制编码的过程,以便存储或传输。
图像压缩和编码通常可以分为无损压缩和有损压缩两种方法。
无损压缩是指压缩后的数据可以完全还原为原始图像数据,不会引入任何失真或变化。
常见的无损压缩算法有Run-Length Encoding (RLE)、Lempel-Ziv-Welch (LZW)、Huffman编码等。
这些算法通常针对图像中的冗余数据进行编码,如重复的像素值或相似的图像区域。
有损压缩则是在保证一定程度的视觉质量下,通过舍弃或近似原始图像数据来减小存储或传输的数据量。
常见的有损压缩算法有JPEG、JPEG2000、GIF等。
这些算法通过离散余弦变换(DCT)、小波变换或颜色量化等方法,将图像数据转换为频域或颜色空间的系数,并通过量化、编码和压缩等步骤来减小数据量。
二、无损压缩方法1. Run-Length Encoding (RLE)RLE是一种简单高效的无损压缩算法,通过计算连续重复像素值的数量来减小数据量。
在MATLAB中,可以使用`rle`函数实现RLE编码和解码。
例如,对于一幅图像,可以将连续的像素值(如白色)编码为重复的个数,然后在解码时根据重复的个数恢复原始像素值。
2. Lempel-Ziv-Welch (LZW)LZW是一种字典压缩算法,通过将图像中连续的像素序列映射为一个短代码来减小数据量。
在MATLAB中,可以使用`lzwencode`和`lzwdecode`函数实现LZW 编码和解码。
例如,对于一段连续的像素序列,可以将其映射为一个短代码,然后在解码时根据代码恢复原始像素序列。
实验作业7分别用区域编码和阈值编码方法实现图像压缩,用8×8DCT变换,保留50%的大系数,并对解码图像进行比较。
要求:DCT要自己实现,不能用matlab中的DCT函数区域编码程序代码:clear;I=imread('d:\3.jpg');I=double(rgb2gray(I));figure(1);imshow(uint8(I));title('原图像');Y=zeros(8,8);for i=1:8for j=1:8if i==1Y(i,j)=sqrt(1/8);elseY(i,j)=sqrt(2/8)*cos((pi*(2*(j-1)+1)*(i-1))/16);endendends=blkproc(I,[8 8],'P1*x*P2',Y,Y'); figure(2);imshow(uint8(s));for j=1:8for i=1:8if j<=8-i+1a(i,j)=1;elsea(i,j)=0;end;end;end;s=blkproc(s,[8 8],'P1.*x',a); figure(3);imshow(uint8(s));s=blkproc(s,[8 8],'P1*x*P2',Y',Y); figure(4);imshow(uint8(s));title('经过压缩处理的图像')运行结果:阈值编码程序代码clear;I=imread('d:\3.jpg'); I=rgb2gray(I); imshow(uint8(I)); title('原图像'); I=double(I); for i=1:8 for j=1:8 if (i==1)Y(i,j)=sqrt(1/8); elseY(i,j)=sqrt(2/8)*cos((i-1)*(2*j-1)*pi/(2*8)); end; end; end; s=blkproc(I,[8 8],'P1*x*P2',Y,Y'); a=ones(8,8); b=reshape(Y,1,64); midvalue=median(b); for i=1:8 for j=1:8if(abs(Y(i,j))<midvalue) a(i,j)=0; end; end; end;s=blkproc(s,[8 8],'P1.*x',a); s=blkproc(s,[8 8],'P1*x*P2',Y',Y); figure(2); imshow(uint8(s));title('被与之编码方式压缩的图像');运行结果:心得体会:由于第八章内容上课听的不是很明白,所以作业题拿到之后不知道怎么做,重新把第八章看了一遍,可是很多地方看了好久好多次还是不明白其原理,就像这次所涉及的DCT (虽然会做作业,但是实在是不理解),区域编码,门限编码,都是不明白什么意思!后来网上搜罗资料,看了颇久,请教了同学,才慢慢知道是什么一回事,做这题目的时候,遇到过不知道怎么分块的问题,后来也是同学告诉有个blkproc 的函数可以用,才使到程序精简化。