清华大学高等数值计算(李津)实践题目二(SVD计算及图像压缩)(包含matlab代码)
- 格式:docx
- 大小:4.29 MB
- 文档页数:21
Technology Research of Image Compression Based on S V D陈一虎 Chen Yih u(宝鸡文理学院,宝鸡 721013)(Baoji Un i versity of Arts and Sciences ,Baoji 721013,Chin a )摘 要 : 数字图像处理方法的研究源于两个主要领域:一是便于人们分解图像,对图像信息进行改进;二是使机器能自动理解图像。
后者正是我们所要研究的内容。
众所周知,在计算机中,图像是通过矩阵来表示的,一幅图像对应着一个矩阵,对图像的压缩就转换成了对矩阵的处理。
在数学中,对矩阵进行奇异值分解可以把一个矩阵分解成只用几个数来表示,而且这种分解具有很好的稳定性、唯一性和自相似性。
通过这种方法,就能用比较少的数据来表示相应的图像。
本文就是通过对图像的矩阵进行奇异值分解,将一幅图像转换成只包含几个非零值的奇异值矩阵, 实现图像压缩。
Abstr ac t : The theory about DIP (D i g i ta l Image Processing) i s used in two fi l e d. One i s the i m provement of the i nforma ti on about i ma g e , and theother i s the saving, transport and display. And the l a tter i s the object that we researched. It i s we ll known that the graph i s presented by matri x i ncomputer. So we can de a l w ith a graph by using the matrix. In m ath by using the mu l ti resolu ti on SVD, the matrix can be decomposed into just a fewnumbers, and the decompos i ti on i s very stable, un i qu e , and se l f -s i mi l a r. By this method ,we can express di g i ta l i ma g e w itn l e ss data. This paper propos es amu l ti resolu ti on form of the sin g u l a r va l u e decompos i ti o n (SVD), and shows how it may be used for si g n a l a n a l ysi s and a pprox ima ti on. D i g i ta l i ma g e i stransformed into s in g u l a r va l u e matrix that conta i n s nonzero sin g u l a r va l u e s by s in g u l a r va l u e decompos i ti on (SVD) so that the i ma ge i s compre sse d.关 键 词 : 图像压缩;矩阵;奇异值分解Key w o r d s : i ma g e depre ss ;ma tr i x ;s in g u l a r va l u e decompos i ti on文 章 编 号 :1006-4311(2011)13-0169-02中 图 分 类 号 :TP319 文 献 标 识 码 :A 存储和传输问题。
20130917题目求证:在矩阵的LU 分解中,111n n Tn ij i j j i j L I e e α-==+⎛⎫=- ⎪⎝⎭∑∑证明:在高斯消去过程中,假设0jj a ≠ ,若a=0,可以通过列变换使得前面的条件成立,这里不考虑这种情况。
对矩阵A 进行LU 分解,()()()()()1111111L M n M M M n ---=-=••-………… ,其中()1n Tn ij i j i j M j I e e α=+⎛⎫=+ ⎪⎝⎭∑ ,i e 、j e 为n 维线性空间的自然基。
()M j 是通过对单位阵进行初等变换得到,通过逆向的变换则可以得到单位阵,由此很容易得到()M j 的逆矩阵为1n T n ij i j i j I e e α=+⎛⎫- ⎪⎝⎭∑。
故111n n T n ij i j n j i j L I e e I α-==+⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭∏∑上式中的每一项均是初等变换,从右向左乘,则每乘一次相当于对右边的矩阵进行一次向下乘法叠加的初等变换。
由于最初的矩阵为单位阵,变换从右向左展开,因而每一次变换不改变已经更新的数据,既该变换是从右向左一列一列更新数据,故11nn Tn ij i j j i j L I e e α==+⎛⎫=- ⎪⎝⎭∑∑。
数学证明:1n Tij i j i j e e α=+⎛⎫ ⎪⎝⎭∑具有,000n j j A -⎛⎫ ⎪⎝⎭ 和1,1000n j n j B -+-+⎛⎫⎪⎝⎭ 的形式,且有+1,-11,10000=000n j j n j n j A B --+-+⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭而11n n T ij i j j k i j e e α-==+⎛⎫ ⎪⎝⎭∑∑具有1,1000n k n k B -+-+⎛⎫⎪⎝⎭的形式,因此: 1311111211121==n n n n n n T T T n ij i j n ij i j n ik i k j i j j i j k n i k n n T n i i n ik i i i k L I e e I e e I e e I e e I e ααααα---==+==+=-=+==+⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎝⎭⎝⎝⎭∏∑∏∑∑∑∑∑……11211n n n T Tk n ik i kk k i k e I e e α--===+⎛⎫⎛⎫=- ⎪⎪ ⎪⎭⎝⎭⎝⎭∑∑∑#20130924题目一问:能否用逐次householder 相似变换变实矩阵A 为上三角矩阵,为什么?解:不能用逐次householder 相似变换变A 为上三角矩阵,原因如下:A 记作:()12=,,n A a a a ……, ,存在householder 阵1H s.t. 1111H a e α= ,则()()()111111111111111111111,,,0T Th H AH H a A H e H A H e H A H h H A H ααα⎛⎫'''=== ⎪⎪'⎝⎭⎛⎫''=+ ⎪ ⎪⎝⎭11H A H ''第一列的元素不能保证为1e 的倍数,故无法通过householder 变换实现上三角化。
清华大学高等数值分析课程作业第二次实验 作业第一题:构造例子特征值全部在右半平面时,观察基本的Arnoldi 方法和GMRES 方法的数值性态,和相应重新启动算法的收敛性。
答:1、计算初始条件1) 矩阵A 的生成根据实Schur 分解,构造矩阵如下形式11112222/2/2/2/2n nA n n n n ⨯-⎛⎫ ⎪ ⎪ ⎪- ⎪= ⎪ ⎪ ⎪- ⎪⎪⎝⎭其中,A 由n/2个块形成,每个对角块具有如下形式,对应一对特征向量i i i αβ+ii i i A αββα-⎛⎫= ⎪⎝⎭、 这里,取n=1000,得到矩阵A 。
经过验证,A 的特征值分布均在右半平面,如下图所示50100150200250300350400450500-500-400-300-200-1000100200300400500复平面中A 的特征值分布情况实部 Im(x)虚部 R e (x )特征值2) b 的初值为 b=(1,1,1,1..1)T 3) 迭代初值为 x 0=0 4) 停机准则为 ε=10-62、基本的Arnoldi 和GMRES 方法代入前面提到的初始值A 、b 、x0,得到的收敛结果如下10020030040050060010-710-610-510-410-310-210-110两种基本算法的||r k ||收敛曲线 (阶数n=1000)迭代次数||r k ||/||b ||基本的Arnoldi 算法基本的GMRES 算法结果讨论:从图中可以看出,基本的Arnoldi 方法经过554步收敛,基本的GMRES 方法经过535步收敛。
这是由于GMRES 具有残差最优性,会略快于Arnoldi 方法,但是,由于两种方法的基本原理近似,GMRES 方法不会实质性的提速。
此外,从收敛曲线上看,由于特征值均处在右半平面,收敛曲线平滑,收敛速度(收敛因子)比较均匀。
3、重启动的GMRES 和Arnoldi 算法对上述A 、b 、x0使用重启动的Arnoldi 和GMRES 算法。
2024年考研高等数学二计算机视觉中的数学方法历年真题2024年的考研即将到来,高等数学作为计算机视觉的重要基础知识之一,在考试中占据着重要的分值。
为了帮助考生更好地应对考试,本文将通过回顾历年的真题,总结出计算机视觉中常见的数学方法,以期能为考生提供有益的参考和指导。
【前言】计算机视觉作为一门跨学科的研究领域,依赖于数学方法来实现图像的获取、处理和分析,其中高等数学是数学方法中的重要组成部分。
因此,在考研的高等数学二科目中,计算机视觉的题目涉及到的数学方法必不可少。
下面我们将具体看看历年真题中涉及到的数学方法。
【第一章:图像处理】1. 图像灰度化历年真题中,涉及到图像的处理过程,其中最常见的就是图像灰度化。
图像灰度化是将彩色图像转化为灰度图像,常用的转化方法有分量法、平均法和加权法等。
考生需要掌握这些方法,并能灵活运用于实际题目中。
2. 图像平滑和锐化为了去除图像中的噪声和增强图像的边缘特征,常常需要进行图像平滑和锐化操作。
图像平滑常用的方法有均值滤波和高斯滤波等,而图像锐化则可以通过拉普拉斯算子和梯度算子来实现。
对于考生来说,熟练掌握这些方法的原理和实现过程是十分重要的。
【第二章:模式识别】1. 特征提取模式识别中,特征提取是一个重要的环节。
特征提取的目的是从图像中提取出能够表征目标物体的特征信息,常用的特征包括边缘、角点、纹理等。
考生在备考过程中,需要熟悉各种特征提取方法,并且能够根据不同的应用场景选择合适的方法。
2. 分类器设计在模式识别中,分类器的设计是非常关键的一步。
常见的分类器包括最近邻分类器、支持向量机、决策树等。
考生需要了解各种分类器的原理和特点,并且能够根据具体的需求选择合适的分类器进行设计。
【第三章:图像分割】1. 阈值分割图像分割是指将图像分成若干个子区域,每个子区域内的像素具有一定的相似性。
在图像分割中,阈值分割是最基本且常用的方法之一。
通过设置合适的阈值,将图像中不同像素值的像素分割开来。
高等数值计算实践题目一1. 实践目的本次计算实践主要是在掌握共轭梯度法,Lanczos 算法与MINRES 算法的基础上,进一步探讨这3种算法的数值性质,主要研究特征值特征向量对算法收敛性的影响。
2. 实践过程(一)生成矩阵(1)作5个100阶对角阵i D 如下:1D 对角元:1,1,...,20,1+0.1(-20),21,...,100j j d j d j j ====2D 对角元:1,1,...,20,1+(-20),21,...,100j j d j d j j ==== 3D 对角元:,1,...,80,81,81,...,100j j d j j d j ====4D 对角元:,1,...,40,41,41,...,60,41+(60),61,...,100j j j d j j d j d j j =====-= 5D 对角元:,1,...,100j d j j ==记i D 的最大模特征值和最小模特征值分别为1iλ和in λ,则i D 特征值分布有如下特点:1D 的特征值有较多接近于i n λ,并且1/i i n λλ较小,2D 的特征值有较多接近于i n λ,并且1/i i n λλ较大, 3D 的特征值有较多接近于1i λ,并且1/i i n λλ较大,4D 的特征值有较多接近于中间模特征值,并且1/i i n λλ较大, 5D 的特征值均匀分布,并且1/i i n λλ较大(2)随机生成10个100阶矩阵j M :(100(100))j M fix rand =g并作它们的QR 分解,得j Q 和j R ,这样可得50个对称的矩阵Tij j i j A Q DQ =,其中i D 的对角元就是ij A 的特征值,若它们都大于0,则ij A 正定,j Q 的列就是相应的特征向量。
结合(1)可知,ij A 都是对称正定阵。
(二)计算结果以下计算,均选定精确解(100,1)exact x ones =,初值0(100,1)x zeros =由ij exact kA x b =计算得到k b (算法中要求解的精度为10e -)。
matlab数字图像处理图像运算+答案实验⼆:图像运算⼀、实验⽬的掌握MATLAB语⾔中图像数据的读取、显⽰与保存⽅法;掌握统计图像灰度直⽅图的⽅法理解直⽅图均衡的原理和作⽤,掌握图像直⽅图均衡化的⽅法理解图像点运算、代数运算、⼏何运算的基本定义和常见⽅法进⼀步熟悉了解MATLAB语⾔的应⽤⼆、知识要点1.数据类型及图像类型间的基本转换函数数据类转换:B = data_class_name(A);2.imhist(H);%显⽰a的直⽅图histeq(H); %将图像a进⾏直⽅图均衡化adapthisteq(H); %将图像a进⾏直⽅图均衡化3.图像的点运算点运算是通过对图像中每个像素值进⾏计算,改善图像显⽰效果的操作,也称对⽐度增强或对⽐度拉伸或灰度变换。
可以表⽰为B(x,y)=f(A(x,y)).进⾏逐点运算,输⼊映射为输出,不改变图像像素的空间关系。
Y=aX+b %线性点运算Y=X+aX(max(X)-X) %⾮线性点运算4.代数运算代数运算是指对两幅输⼊图像进⾏点对点的加、减、乘或除运算⽽得到输出图像的运算。
四种图像代数运算的数学表达式如下:C(i,j)=A(i,j)+B(i,j) C=imadd(A,B)C(i,j)=A(i,j)-B(i,j) C=imsubtract(A,B);C(i,j)=A(i,j)*B(i,j) C=immultiply(A,B)C(i,j)=A(i,j)/B(i,j) C=imdivide(A,B)5.图像加噪函数imnoise(参阅matlab help)imnoise的语法格式为J = imnoise(I,type)J = imnoise(I,type,parameters)其中J=imnoise(I,type)返回对原始图像I添加典型噪声的有噪图像J。
参数type 和parameters⽤于确定噪声的类型和相应的参数。
J = imnoise(I,'gaussian',m,v) %加⼊均值m,⽅差为v的⾼斯噪声,m默认值0,v默认值0.01J = imnoise(I,'poisson') %加⼊泊松分布的噪声J = imnoise(I,'salt & pepper',d)%加⼊密度为d的椒盐噪声,d的默认值为0.05 J = imnoise(I,'speckle',v) %加⼊均值0,⽅差为v的乘性噪声三、实验内容1、将给定的Couple.bmp图像⽂件读出并显⽰,显⽰其灰度直⽅图,分别⽤histeq、adapthiateq函数将其直⽅图均衡化,观察均衡后的图像及其直⽅图。
n a n b 5 x 2+ 3x 3 x 2+ 5x(n →∞ n - ⎪l n n nn →∞清华大学2019-2020学年第一学期《高等数学》本科测试题考试课程一元微积分(B )2020 年 10 月 25 日系名 班级姓名学号一.填空题(每空 3 分,共 15 题)(请将答案直接填写在横线上!)e tan x - e sin x1.lim x →0x - sin x= 。
2. lim sin πn →∞n 2 + n )=。
⎛ + ⎫n3. limn →∞⎝ ⎪= 。
2 ⎭n4.lim ⎛ n + ln n ⎫ln n = 。
⎝ ⎭5.当 x → 0 时, f( x ) =-x 的阶为 。
3 5 17 1 + 22n -16.已知 x n = • • • ...• 2 4 16 22 n -1 ,则lim x = 。
n →∞7. 设 x =(1+ a )(1+ a 2 )...(1+ a 2n),其中 a < 1,则lim x=。
8. 已知有整数n (n > 4)使极限 lim ⎡(x n + 7x 4+ 2)α - x ⎤ = A ≠ 0,则α=。
9.⎛ 23 -1 33 -1 43 -1 x →+∞ ⎢⎣⎥⎦ n 3 -1 ⎫ =。
lim 3 3 3... 3 ⎪ n →∞ ⎝2 +13 +14 +1 n +1 ⎭n10.lim ∑n →∞ k =1k 3 + 6k 2 +11k + 5 (k + 3)!= 。
⎛ 11. lim n →∞ ⎝ n 12 3 +12 + 22 n 3 + 22 + ...+ n 2 n 3 + n 2 ⎫ ⎪= 。
⎭ 12. lim 1!+ 2!+ ... + n != 。
n nn n!1+ x 2 2 )(α- β β 7 - 7 + 7 , 7 - 7 + 7 - 7 ,...k =113. 1 x 2+ 1- lim 2 = 。
x →0cos x - e x sin x 2n α=14. 已知limn →∞ n β- (n - 1)β =2017 ,则 。
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
20130917题目求证:在矩阵的LU 分解中,111n n Tn ij i j j i j L I e e α-==+⎛⎫=- ⎪⎝⎭∑∑证明:在高斯消去过程中,假设0jj a ≠ ,若a=0,可以通过列变换使得前面的条件成立,这里不考虑这种情况。
对矩阵A 进行LU 分解,()()()()()1111111L M n M M M n ---=-=∙∙-………… ,其中()1n Tn ij i j i j M j I e e α=+⎛⎫=+ ⎪⎝⎭∑ ,i e 、j e 为n 维线性空间的自然基。
()M j 是通过对单位阵进行初等变换得到,通过逆向的变换则可以得到单位阵,由此很容易得到()M j 的逆矩阵为1n Tn ij i j i j I e e α=+⎛⎫- ⎪⎝⎭∑。
故111n n T n ij i j n j i j L I e e I α-==+⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭∏∑上式中的每一项均是初等变换,从右向左乘,则每乘一次相当于对右边的矩阵进行一次向下乘法叠加的初等变换。
由于最初的矩阵为单位阵,变换从右向左展开,因而每一次变换不改变已经更新的数据,既该变换是从右向左一列一列更新数据,故11nn Tn ij i j j i j L I e e α==+⎛⎫=- ⎪⎝⎭∑∑。
数学证明:1nTi j i ji j ee α=+⎛⎫ ⎪⎝⎭∑具有,000n j jA -⎛⎫ ⎪⎝⎭ 和1,1000n j n j B -+-+⎛⎫⎪⎝⎭ 的形式,且有+1,-11,10000=000n j j n j n j AB --+-+⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭ 而11n n T ij i j j k i j e e α-==+⎛⎫ ⎪⎝⎭∑∑具有1,1000n k n k B -+-+⎛⎫⎪⎝⎭的形式,因此:1311111211121==n n n n n n T T T n ij i j n ij i j n ik i k j i j j i j k n i k n n T n i i n ik i i i k L I e e I e e I e e I e e I e ααααα---==+==+=-=+==+⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎝⎭⎝⎝⎭∏∑∏∑∑∑∑∑……11211n n n T Tk n ik i kk k i k e I e e α--===+⎛⎫⎛⎫=- ⎪⎪ ⎪⎭⎝⎭⎝⎭∑∑∑#20130924题目一问:能否用逐次householder 相似变换变实矩阵A 为上三角矩阵,为什么?解:不能用逐次householder 相似变换变A 为上三角矩阵,原因如下:A 记作:()12=,,n A a a a ……, ,存在householder 阵1H s.t. 1111H a e α= ,则()()()111111111111111111111,,,0T Th H AH H a A H e H A H e H A H h H A H ααα⎛⎫'''=== ⎪⎪'⎝⎭⎛⎫''=+ ⎪ ⎪⎝⎭11H A H ''第一列的元素不能保证为1e 的倍数,故无法通过householder 变换实现上三角化。