专题25 正方形(学生版)备战2021年中考数学专题复习精讲精练
- 格式:docx
- 大小:365.96 KB
- 文档页数:9
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题25函数与正方形存在性问题【例1】(2022•崂山区一模)如图,正方形ABCD,AB=4cm,点P在线段BC的延长线上.点P从点C出发,沿BC方向运动,速度为2cm/s;点Q从点A同时出发,沿AB方向运动,速度为1cm/s.连接PQ,PQ分别与BD,CD相交于点E,F.设运动时间为t(s)(0<t<4).解答下列问题:(1)线段CF长为多少时,点F为线段PQ中点?(2)当t为何值时,点E在对角线BD中点上?(3)当PQ中点在∠DCP平分线上时,求t的值;(4)设四边形BCFE的面积为S(cm2),求S与t的函数关系式.【例2】(2022春•孟村县期末)如图,在平面直角坐标系中.直线l:y=﹣2x+10(k≠0)经过点C(3,4),与x轴,y轴分别交于点A,B,点D的坐标为(8,4),连接OD,交直线l于点M,连接OC,CD,AD.(1)填空:点A的坐标为,点M的坐标为;(2)求证:四边形OADC是菱形;(3)直线AP:y=﹣x+5与y轴交于点P.①连接MP,则MP的长为;②已知点E在直线AP上,在平面直角坐标系中是否存在一点F,使以O,A,E,F为顶点的四边形是正方形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【例3】(2022•市中区二模)如图,直线AC与双曲线y=(k≠0)交于A(m,6),B(3,n)两点,与x轴交于点C,直线AD与x轴交于点D(﹣11,0),(1)请直接写出m,n的值;(2)若点E在x轴上,若点F在y轴上,求AF+EF+BE的最小值;(3)P是直线AD上一点,Q是双曲线上一点,是否存在点P,Q,使得四边形ACQP是正方形?若存在,求出点P,Q的坐标;若不存在,请说明理由.【例4】(2022春•渝中区校级月考)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于A、B(点A在点B的左侧),其中OA=1,tan∠ABC=.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作PQ∥AC交BC于Q,PH∥x轴交BC于H,求△PQH周长最大值及此时点P的坐标;(3)如图2,将抛物线y水平向右平移1个单位得到新抛物线y′,点G为新抛物线y′对称轴上一点,将线段AC沿着直线BC平移,平移后的线段记为A1C1,点K是平面内任意一点,在线段平移的过程中,是否存在以A1、C1、G、K为顶点且A1G为边的正方形?若存在,请直接写出点K的坐标;若不存在,请说明理由.一.解答题1.(2022春•雨花区校级期末)在平面直角坐标系xOy中,点P的坐标为(x1,y1)点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“坐标矩形”.图为点P,Q的“坐标矩形”的示意图.已知点A的坐标为(1,0).(1)若点B的坐标为(3,﹣1),求点A,B的“坐标矩形”的面积;(2)点C在y轴上,若点A,C的“坐标矩形”为正方形,求直线AC的表达式;(3)在直线y=2x+7的图象上,是否存在点D,使得点A、D的“坐标矩形”为正方形,若存在,求出点D的坐标;若不存在,请说明理由.2.(2022春•凤山县期末)如图矩形OABC的顶点A,C分别在x轴、y轴的正半轴上,OA=a,OC=b,且a,b满足+|b﹣7|=0,一次函数y=﹣x+5的图象与边OC,AB分别交于D,E两点.(1)求点B的坐标;(2)直线OB与一次函数y=﹣x+5交于点M,求点M的坐标;(3)点G在线段DE上运动,过点G作GF⊥BC,GH⊥AB垂足分别为点F,H.是否存在这样的点G,使以F,G,H,B为顶点的四边形是正方形?若存在,请求出点G的坐标;若不存在,请说明理由.3.(2022春•临西县期末)如图,在平面直角坐标系中,直线y=﹣x+3分别与x轴,y轴交于点A,B,点P(1,m)在直线y=﹣x+3上.(1)求点A,B的坐标.。
正方形中的几何综合正向思维:是一类常规性的、传统的思维形式,指的是大家按照自上而下,由近及远、从左到右、从可知到未知等一般而言的线性方向做出探究问题的思维途径。
逆向思维:是指在剖析、破解数学难题进程中,可以灵活转换思维方向,从常规思维的相反方向出发进行探索的思维方式,比如正向思维无法解决问题时可反其道而行采取逆向思维,直接证明有困难时可采用间接证明。
分类讨论思想:当问题所给的对象不能进行统一研究时,我们就需要对研究对象进行分类,然后对每一类分别进行研究,得出每一类的结论,最后综合各类的结果,得到整个问题的解答。
分类讨论的分类并非是随心所欲的,而是要遵循以下基本原则:1. 不重(互斥性)不漏(完备性);2. 按同一标准划分(同一性);3. 逐级分类(逐级性)。
一、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.二、正方形的性质1.正方形的四条边都相等,四个角都是直角;2.正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;3.正方形具有四边形、平行四边形、矩形、菱形的一切性质;4.两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.三、正方形的判定1.先判定四边形是矩形,再判定这个矩形有一组邻边相等;2.先判定四边形是菱形,再判定这个菱形有一个角为直角;3.还可以先判定四边形是平行四边形,再用1或2进行判定.【典例1】问题背景:如图1,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,∠EAF =45°,(1)求证:EF =BE +DF ;(2)迁移应用:如图2,在正方形ABCD 中,QA 、QB 交CD 于点G 、H ,若∠AQB =45°,CH =3,GH =1,求AG 的长;(3)联系拓展:如图3,在矩形ABCD 中,点E 、F 分别在边BC 、CD 上,∠EAF =45°,若DF:AD:AB =1:2:4,探究BE 与EC 的数量关系,并给出证明.(1)先判断出RtΔABE≅RtΔADP (SAS),得出AE =AP ,∠BAE =∠DAP ,再判断出△AEF≌△APF (AAS),即可得出结论;(2)先判断出ΔABM≌ΔBCH (ASA),得出CH =3=BM ,设DG =a ,则GM =a +3,CM =a +1,再根据勾股定理得出(a +3)2=42+(a +1)2,求出a =1,即可得出结论;(3)先判断出四边形AMND 是正方形,设DF =m ,得出AD =2m =DN ,再设BE =2x ,则FT =x +m ,利用勾股定理得出2x =43m ,即可得出结论.(1)证明:延长FD 到点P 使DP =BE ,连接AP ,∵正方形ABCD ,∴AB =AD ,∠ADP =∠ABE =90°,在Rt △ABE 和Rt △ADP 中,AB =AD ∠ABE =∠ADP BE =DP,∴Rt △ABE≌Rt △ADP (SAS),∴AE =AP ,∠BAE =∠DAP ,∵∠DAE +∠BAE =90°,∴∠DAE +∠DAP =90°,∵∠EAF =45°,∴∠EAF =∠FAP =45°,在△AEF 和ΔAPF 中,AE =AP ∠EAF =∠FAP AF =AF,∴△AEF≌△APF (SAS),∴EF =PF ,∵DP =BE ,∴EF =BE +DF ;(2)如图2,过点A 作AM ⊥BH 交BC 于M ,交BH 于I ,连接GM ,∴∠BAM +∠ABI =90°,∵∠ABI +∠CBH =90°,∴∠BAM =∠CBH ,∵∠ABM =∠C =90°,AB =BC,∴△ABM≌△BCH(ASA),∴CH=3=BM,∵∠Q=45°,∴∠QAM=45°,由(1)知,GM=BM+DG,设DG=a,∴GM=BM+DG=a+3,∵BC=CD=a+4,∴CM=a+4―3=a+1,在Rt△MCG中,GM2=GC2+CM2,∴(a+3)2=42+(a+1)2,∴a=2,∴DG=2,在Rt△ADG中,根据勾股定理得,AG==(3)BE=2EC,证明:如图3,分别取AB,AE的中点M,T,连接MT并延长MT交CD于N,连接TF,BE,∴MT∥BE,MT=12∴∠AMN=90°=∠DAM=∠D,∴四边形AMND是正方形,∵DF:AD:AB=1:2:4,设DF=m,∴AD=2m=DN,∴矩形AMND是正方形,∵∠EAF=45°,∴由(1)知,FT =DF +TM ,∵MT =12BE ,设BE =2x ,∴FT =DF +TM =x +m ,在Rt △FTN 中,FT 2=FN 2+TN 2,∴(x +m )2=m 2+(2m ―x )2,∴2x =43m ,∴BE =43m , ∴EC =BC ―BE =23m , ∴BE =2EC .1.(23-24九年级上·河南郑州·阶段练习)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1―2S 2―3S 3+4S 4等于( )A . 66B . 56C . 24D . 122.(23-24九年级下·湖南邵阳·阶段练习)如图,在正方形ABCD 中,E 是对角线BD 上一点,且满足BE =BC .连接CE ,并延长交AD 于点F ,连接AE ,过B 点作BG ⊥AE 于点G ,延长BG 交AD 于点H .在下列结论中:①BH 垂直平分AE ;②AH =DF ;③DF =DE ;④∠AEF =45°;⑤S 四边形EFHG =S △DEF +S △AGH ,其中正确的结论有( )个.A .2B .3C .4D .53.(23-24九年级下·江苏无锡·阶段练习)如图,在正方形ABCD中,AB=4,对角线AC上的有一动点P,以DP为边作正方形DPFG.下列结论:①在P点运动过程中,F点始终在射线BC上;②在P点运动过程中,∠CPD可能为135°;③若E是DC的中点,连接EG,则EG④△CDP为等腰三角形时,AP的值为4.其中结论正确的是()A.①②③B.①③④C.①③D.②④4.(22-23八年级下·辽宁铁岭·阶段练习)如图,E是正方形ABCD外一点,连接AE、BE、DE,AF⊥AE交DE于点F,若AE=AF=2,BF=①△AFD≌△AEB;②BE⊥DE:③四边形AEBF的面积是2+④点B到直线AE⑤AB2=16+)A.4个B.3个C.2个D.1个5.(2023·江苏南通·二模)如图,在边长为4的正方形ABCD中,点E为边BC的中点,点F为边AB上的动点,以EF为一边在EF的右上方作等边三角形FEG,当CG最小时,△ECG的周长为.6.(23-24九年级上·辽宁丹东·期末)如图,正方形ABCD,点E是射线AB上的动点,过点E作EF∥DB,交直线AD于点F,连接DE,取DE中点G,连接FG并延长交直线DB于点H,若AB=4,EB=3,则FH的长为.7.(2024·山东临沂·二模)如图,已知四边形ABCD为正方形,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC的延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.下列结论:①矩形DEFG是正方形;②CE+CG=;③CG平分∠DCF;④CE=CF.其中正确的是(填序号).8.(2024八年级下·山东·专题练习)如图,现有边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A点D重合)将正方形纸片沿EF折叠,使点B落在P处,点C落在G处,PG交DC于H,连结BP、BH,下列结论:①BP=EF;②当P为AD中点时,△PAE三边之比为3:4:5;③∠APB=∠BPH;④△PDH周长等于8.其中正确的是(写出所有正确结论的序号)9.(2024·浙江杭州·ABCD中,P是对角线BD所在直线上一点.若P在对角线BD上(如图1),连接PC,过点P作PQ⊥CP交AB于点Q.若PD=AB=6,则BQ的长为;若P在BD的延长线上(如图2),连接AP,过点P作PE⊥AP交BC延长线于点E,连接DE,若CE=8,△DPE 的面积是20,则PE的长为.10.(23-24八年级下·重庆开州·阶段练习)如图,四边形ABCD是正方形,AB=6.(1)如图1,点M在边BC上(不与端点B、C重合),点N在对角线AC上,且MN⊥AC,连接AM,点G是AM 的中点,连接DN、NG.①若BM=2,求NG的长;②求证:DN=;(2)如图2,点E、F分别为AB、BC边上的点,且BE=CF,请直接写出AF+CE的最小值.11.(23-24九年级上·广东广州·期中)已知正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D 顺时针旋转90°得到线段DG,连接EC,AG.(1)如图,当点E在正方形ABCD内部时,补全图形,判断AG与CE的关系,并写出证明过程;(2)当点B,D,G在一条直线上时,若AD=4,DG=CE的长.12.(22-23九年级下·广东汕头·期中)如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=______(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形;②试说明EF=BE+DF,若AB=6,求(BE+6)(DF+6)的值.13.(22-23八年级下·浙江台州·期末)如图1,在正方形ABCD中,点E是线段CD上任意一点(不含端点),点F在射线BE上,且CF=CB,连接DF,过点D作DH⊥DF交BE于点H,连接CH.(1)①若∠EBC=20°,求∠DFB的度数;②试判断∠DFB的度数是否变化?请说明理由;若不变,请求出它的度数;(2)若BC=5,当CH∥DF时,求CH的长度;(3)如图2,当CH⊥BF时,求证:DE=CE.14.(23-24九年级上·江苏南京·开学考试)如图,P是正方形ABCD的边CD右侧一点,CP=CD,∠PCD为锐角,连接PB,PD.(1)如图①,若PD=PC,求∠BPD的度数;(2)如图②,作CE平分∠PCD交PB于E.①∠BEC的度数是___°;②探究PD,BE,CE之间的数量关系,并证明.15.(23-24九年级上·湖北武汉·阶段练习)如图1,正方形ABCD中,点E、F分别是边BC、CD上的点,∠BAD=2∠EAF,(1)请你直接写出BE、DF、EF之间的数量关系:___________.(2)如图2,在四边形ABCD中,AB=AD,∠BAD与∠BCD互补,点E、F分别是边BC、CD上的点,∠BAD=2∠EAF,请问:(1)中结论是否成立?若成立,请证明结论;若不成立,请说明理由;(3)在(1)的条件下,若E、F分别在直线BC和直线CD上,若BE=2,AB=5,则EF=___________.16.(2023·辽宁营口·一模)如图1,在正方形ABCD的BC边的延长线上取点G,以CG为边作正方形CGFE,连接AF,取AF的中点M,连接DM,EM.(1)请说明线段DM,EM的关系,不必说理;(2)如图2,把正方形CGFE绕点C顺时针旋转,当点G在BC上时,(1)中结论是否仍然成立?若成立,请说明理由;(3)在旋转过程中,当D,E,F三点在一条直线上时,若AB=13,CE=5,请直接写出MF的长.17.(22-23八年级下·湖北武汉·期中)已知正方形ABCD中,等腰直角△BEG绕着点B旋转.(1)如图1,若E点落在边AD上,BG交DC于H,直接写出AE,CH,EH的数量关系;(2)如图2,连DG,取DG中点F,连EF、CF,试探究EF与CF的关系:(3)若E点落在直线DC上,且CE:DE=1:2,连接CG,AG,直接写出CG:AG=______.18.(22-23八年级下·重庆铜梁·期末)在正方形ABCD中,E为直线AB上一点.(1)如图1,E在AB延长线上,F为对角线BD上一点,连接EF,AF,CF,若EF=CF,求∠EFC度数;(2)如图2,E在AB边上,连接DE,点H在BC边上且BH=2AE,过点H作HQ⊥DE,垂足为Q,延长HQ交AD于点G,连接AQ.求证:EQ+GQ=;(3)如图3,E在AB边上运动,连接DE,取DE中点M.点N在CD边上运动,连接BN,将△BCN沿着BN 翻折到同一平面内得到△BC′N.当点M与点C′重合时,直接写出CN的值.AE19.(23-24八年级下·江苏盐城·阶段练习)正方形ABCD中,点E在边BC、CD上运动(不与正方形顶点重合),作射线AE,将射线AE绕点A逆时针旋转45°,交射线CD于点F.(1)如图,当点E在边BC上时,①若BE=DF,则图中与线段AE相等的线段是________.②过点E作EG⊥AF,垂足为G,连接DG,求∠GDC的度数.③求证:在②的条件下,AB+BE=.(2)当点E在边CD上,点F在边CD延长线上时,仍过点E作EG⊥AF于点G,再过点G作GN⊥EF于点N,连的值.接DG,若DF=DG,求ENGN20.(23-24八年级下·江苏宿迁·期中)问题提出:(1)如图1,在正方形ABCD中,E为边BC上一点(不与点B,C重合),垂直于AE的一条直线MN分别交AB,AE,CD于点M,P,N.判断线段DN,MB,EC之间的数量关系,并说明理由;问题探究:(2)在(1)的基础上,解答下列问题:①如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ并延长,交边AD于点F,求∠AEF的度数;②如图③,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P′处.若正方形ABCD的边长为4,AD的中点为S,求P′S的最小值.。
2021-2022学年冀教版九年级数学上册《第25章图形的相似》解答题专题训练(附答案)1.如图,△ABC中,DE∥BC,G是AE上一点,连接BG交DE于F,作GH∥AB交DE 于点H.(1)如图1,与△GHE相似的三角形是(直接写出答案);(2)如图1,若AD=3BD,BF=FG,求的值;(3)如图2,连接CH并延长交AB于P点,交BG于Q,连接PF,则一定有PF∥CE,请说明理由.2.如图,平行四边形ABCD,AE⊥BC交点E,连接DE,F为DE上一点,且∠AFE=∠B =60°.(1)求证:△ADF∽△DEC;(2)若AE=3,AD=4,求EF的长.3.如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.5.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:=;(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论.6.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求BC的长度.7.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB 上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.8.已知:▱ABCD,点G在边DC上,直线AG交对角线BD于点F、交DC延长线于点E.(1)如图(1),求证:△ABG∽△EDA;(2)如图(2),若∠GCE=2∠ADB,AF:FE=1:2,写图中所有与AD相等的线段.9.已知,如图在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB 方向向终点点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向终点点C匀速移动,速度为2cm/s.如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止.几秒后,以Q,B,P为顶点的三角形与△ABC相似?10.如图,△ABC中,BC=30,高AD=18,作矩形PQRS,使得P、S分别落在AB、AC 边上,Q、R落在BC边上.(1)求证:△APS∽△ABC;(2)如矩形PQRS是正方形,求它的边长;(3)如AP:PB=1:2,求矩形PQRS的面积.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F.(1)求证:;(2)若,求的值.12.如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯BC下的影长为2m,已知小明身高1.8m,路灯BC高9m.小明在路灯BC下的影子顶部恰好位于路灯DA的正下方,小亮在路灯AD下的影子顶部恰好位于路灯BC的正下方.①计算小亮在路灯AD下的影长;②计算AD的高.13.如图正方形ABCD的顶点E,F是AD和CD上的动点,与AC交于P、Q两点,AB=1.(1)当AB=AQ=CP时,①求∠EBF的度数;②求以BQ为边长的正方形面积;(2)当E,F在AD,CD上运动时,始终保持∠EBF=45°,连接EF,则△BEF面积的最小值为(直接写出答案).14.如图,已知平行四边形ABCD,过点A作BC的垂线,垂足为点E,且满足AE=EC,过点C作AB的垂线,垂足为点F,交AE于点G,连接BG.(1)如图1,若BG=2,AB=6,求AC的长度;(2)如图2,取BE的中点M,在EC上取一点N,使EN=BE,连接AN,过点M作AN的垂线,交AC于点H,求证:BG=2CH.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.16.如图,平台AB上有一棵直立的大树CD,平台的边缘B处有一棵直立的小树BE,平台边缘B外有一个向下的斜坡BG.小明想利用数学课上学习的知识测量大树CD的高度.一天,他发现大树的影子一部分落在平台CB上,一部分落在斜坡上,而且大树的顶端D 与小树顶端E的影子恰好重合,且都落在斜坡上的F处,经测量,CB长5米,BF长2米,小树BE高1.8米,斜坡BG与平台AB所成的∠ABG=150°.请你帮小明求出大树CD的高度(结果保留一位小数).17.已知,如图,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF =FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)求▱DEFG对角线DF的长;(2)求▱DEFG周长的最小值;(3)当▱DEFG为矩形时,连接BG,交EF,CD于点P,Q,求BP:QG的值.18.如图,正方形ABCD的边长为1.对角线AC、BD相交于点O,P是BC延长线上的一点,AP交BD于点E,交CD于点H,OP交CD于点F,且EF与AC平行.(1)求证:EF⊥BD.(2)求证:四边形ACPD为平行四边形.(3)求OF的长度.19.如图,在正方形ABCD中,边长为4,∠MDN=90°,将∠MDN绕点D旋转,其中DM边分别与射线BA、直线AC交于E、Q两点,DN边与射线BC交于点F;连接EF,且EF与直线AC交于点P.(1)如图1,点E在线段AB上时,①求证:AE=CF;②求证:DP垂直平分EF;(2)当AE=1时,求PQ的长.20.如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF 交AD于点G.(1)求证:AD2=AB•AE;(2)若AB=3,AE=2,求的值.参考答案1.(1)解:如图1中,∵GH∥AD,∴△GHE∽△ADE,∵DE∥BC,∴△ADE∽△ABC,∴△GHE∽△ADE∽△ABC,故答案为△ADE,△ABC.(2)解:∵GH∥BD,∴∠FGH∠DBF,∵BF=FG,∠DFB=∠GFH,∴△BFD≌△GFH(ASA),∴BD=GH,∵GH∥AD,∴===,∴=.(3)证明:如图2中,∵GH∥BD,∴=,∵GH∥P A,∴=,∵DH∥BC,∴=,∴=,∴=,∴=,∴PF∥AG,即PF∥AC.2.(1)证明:∵四边形ABCD为平行四边形,∠AFE=∠B=60°,∴∠AFD=∠C=120°,AD∥BC,∴∠ADF=∠DEC,∴△ADF∽△DEC.(2)解:∵AE=3,∠B=60°,∴BE=,CE=4﹣.在Rt△ADE中,AE=3,AD=4,∴DE==5.∵△ADF∽△DEC,∴=,即=,∴DF=,∴EF=DE﹣DF=.3.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A,∠ADC=90°.∵E是AC的中点,∴DE=AE=CE,∴∠ADE=∠A,∴∠BCD=∠ADE.又∠ADE=∠FDB,∴∠FCD=∠FDB.∵∠CFD=∠DFB,∴△CFD∽△DFB,∴DF2=BF•CF.(2)∵AE•AC=AG•AD,∴=.∵∠A=∠A,∴△AEG∽△ADC,∴EG∥BC,∴△EGD∽△FBD,∴=.由(1)知:△CFD∽△DFB,∴=,∴=,∴EG•CF=ED•DF.4.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF A;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EF A,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.5.(1)证明:如图(1),∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴;(2)当∠B+∠EGC=180°时,=成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∴△DFG∽△DEA,∴,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴=,∴,∴=即当∠B+∠EGC=180°时,=成立.6.(1)证明:∵四边形ABCD是矩形,∴∠FDC=90°,∴∠FDE+∠CDE=90°,∵CF⊥BD,∴∠FDE+∠DFE=90°,∴∠CDE=∠DFE,又∴∠DEC=∠CDF=90°,∴△DEC∽△FDC;(2)解:∵四边形ABCD是矩形,∴DF∥BC,∴==,∵△DEC∽△FDC,∴CE•CF=CD2=12,∴CF=3,∴DF==,∴BC=AD=2.7.证明:(1)∵CG2=GE•GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC.∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC.∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE.∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC.∴.∴FE•CG=EG•CB.8.(1)证明:∵四边形ABCD是平行四边形,∴∠ABG=∠EDA,AB∥DE,∴∠BAG=∠DEA,∴△ABG∽△EDA(2)解:∵四边形ABCD是平行四边形,∴AD=BC,∴∠ADB=∠DBC,∵∠GCE=2∠ADB=2∠DBC,∵∠GCE=∠DBC+∠BDC,∴∠DBC=∠BDC,∴BC=CD,∴四边形ABCD是菱形,∴AB=BC=CD=AD,∵AD∥BC,∴△ADF∽△BFE,∴=,∴AD=BE,∴BC=CE,∴与AD相等的线段有AB、BC、CD、CE.9.解:设t秒后,以Q,B,P为顶点的三角形与△ABC相似;则PB=(6﹣t)cm,BQ=2tcm,∵∠B=90°,∴分两种情况:①当时,即,解得:t=2.4;②当时,即,解得:t=;综上所述:2.4秒或秒时,以Q,B,P为顶点的三角形与△ABC相似.10.(1)证明:∵四边形PQRS是矩形,∴PS∥QR,即PS∥BC,∴△APS∽△ABC;(2)解:∵四边形PQRS是正方形,∴PS=PQ=SR,PS∥QR,∵AD是△ABC得高,即AD⊥BC,∴AM⊥PS,即AM是△APS的高,∵△APS∽△ABC,∴,设PS=x,∵BC=30,高AD=18,∴AM=18﹣x,∴,解得:x=,∴它的边长为:;(3)解:∵四边形PSRQ是矩形,∴PQ⊥QR,∵AD是△ABC的高,∴AD⊥BC,∴PQ∥AD,∴△PBQ∽△ABD,∴PQ:AD=BP:BA,∵AP:PB=1:2,∴PQ=AD=×18=12,∵△APS∽△ABC,∴PS:BC=AP:AB=1:3,∴PS=BC=10,∴矩形PQRS的面积为:PS•PQ=10×12=120.11.(1)证明:∵CD⊥AB,∴∠ADC=90°,∵E是AC的中点,∴DE=EC,∴∠EDC=∠ECD,∵∠ACB=90°,∠BDC=90°∴∠ECD+∠DCB=90°,∠DCB+∠B=90°,∴∠ECD=∠B,∴∠FDC=∠B,∵∠F=∠F,∴△FBD∽△FDC,∴=.(2)解:∵,∴,∴,∵△FBD∽△FDC,∴,∴=.12.解:①∵EP⊥AB,CB⊥AB,∴∠EP A=∠CBA=90°∵∠EAP=∠CAB,∴△EAP∽△CAB∴∴∴AB=10BQ=10﹣2﹣6.5=1.5;②∵FQ⊥AB,DA⊥AB,∴∠FQB=∠DAB=90°∵∠FBQ=∠DBA,∴△BFQ∽△BDA∴=∴∴DA=12.13.解:(1)①在正方形ABCD中,∠ABC=90°,BC=AB=AQ,∠BAC=45°,∴∠AQB==67.5°,同理∠CPB=67.5°,∴∠EBF=180°﹣∠AQB﹣∠CPB=45°,②∵AB=BC=AQ=CP=1,∠ABC=90°,∴AC=,∴PQ=AQ+CP﹣AC=2﹣,又∵∠BAP=∠PBQ=45°,∠AQB=∠BQP,∴△ABQ∽△BPQ,∴=,即BQ2=AQ•PQ=2﹣,故以BQ为边的正方形面积为2﹣;(2)如图,延长DC至点G,使CG=AE,连接BG,在△ABE与△CBG中,,∴△ABE≌△CBG(SAS),∴BE=BG,∠ABE=∠CBG,∴∠GBF=∠CBG+∠CBF=∠ABE+∠CBF=90°﹣∠EBF=45°=∠EBF,在△BEF与△BGF中,,∴△BEF≌△BGF(SAS),∴EF=GF,在Rt△EDF中,EF2=DE2+DF2≥2DE•DF,当且仅当DE=DF时等号成立,此时EF2最小值=2DE•DF,不妨设此时DE=DF=a,则AE=CF=1﹣a,EF=GF=CF+CG=CF+AE=2(1﹣a),由EF2=DE2+DF2得:a+a2+[2(1﹣a)]2,即a2﹣4a+2=0,解得a=2﹣或a=2+(舍去),∴EF2最小值=2a2,∴EF最小值=a∴△BEF面积的最小值=△BCF面积的最小值=BC•GF=EF最小值=﹣1,故答案为:﹣1.14.解:(1)∵AE⊥BC,AE=EC,∵AB⊥CF,∴∠ABE+∠BAE=∠ABE+∠BCF=90°,∴∠BAE=∠BCF,在△AEB和△CEG中,∴△AEB≌△CEG(ASA),∴BE=GE,∴△BEG是等腰直角三角形,∴BE=BG=2,在Rt△AEB中,∵AB=6,∴AE==4,∴AC=AE=8;(2)解法一:证明:取GE的中点K,连接KM,KC,∴GK=KE,∵点M和点E为BN的三等分点,∴ME=EN=BM,∴KM为△BEG的中位线,∴KM∥BG,KM=BG,由(1)知△AEB≌△CEG,∴BE=GE,∴KE=EN,∴∠KME=∠GBE=∠ACE=45°,在△AEN和△CEK中,∴△AEN≌△CEK(SAS),∴∠EAN=∠ECK,∵AN⊥HM,∴∠EAN=∠HME,∴∠MCK=∠HNE,在△MKC和△CHN中,∴△MKC≌△CHN(ASA),∴KM=CH,∴BG=2CH.解法二:过H作HK⊥BC于K,则△CHK是等腰直角三角形,∴CK=HK,设AE=EC=a,EM=EN=b,HK=KC=x,∵AN⊥NH,∴∠EAN+∠ANE=∠ANE+∠KMH=90°,∴∠EAN=∠HMN,∴△AEN∽△MKH,∴=,∴=,∴x=b,∴BE=2EM=2HK,BG=2CH.15.(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.16.解:延长CB交EF于点H,过点F作FM⊥EB的延长线于点M∵∠ABG=150°,BE⊥CB∴∠MBF=150°﹣90°=60°∴∠MFB=30°∵BF的长为2米,∴BM=1米,MF=米∵BE⊥CB,MF⊥BE∴BH∥MF∴△EBH∽△EMF∴=又∵EB=1.8米∴=∴BH=∵BE∥CD∴△HBE∽△HCD∴=∵CB=5∴=∴CD=15.8米∴大树CD的高度为15.8米.17.解:(1)如图1所示:连接DF,∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;故▱DEFG对角线DF的长.(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l▱DEFG=2(NF+DF)=6;(3)设AE=x,则BE=3﹣x,∵▱DEFG为矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF(AA)∴,∴,解得:x=1,或x=2①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵▱DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中有,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF∽△FHB,∴,HF=,在△BPH和△GPF中有:,∴△BPH∽△GPF(AA),∴∴PF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴.②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED===2,EF===,∴∠ADE=45°,又∵四边形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∴△HGQ∽△BCQ(AA),∴,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,综合所述,BP:QG的值为或.18.(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵EF∥AC,∴EF⊥BD;(2)证明:∵EF∥AC,∴=,=,∵四边形ABCD是正方形,∴AD∥CP,OA=OC,∴=,即=,∴AO∥DP,∵AD∥CP,∴四边形ACPD为平行四边形;(3)解:由勾股定理得:AC=BD==,∵四边形ACPD为平行四边形,∴CP=AD=BC,∴=,∵AD∥BP,∴==,∴DE=BD=,OE=OD﹣DE=﹣=,∵DO=BD=,∵∠DEF=∠DOC=90°﹣∠EDF=45°,∴∠DFE=45°,∴EF=DE=,在Rt△OEF中,由勾股定理得:OF===.19.(1)①证明:∵四边形ABCD是正方形,∴DA=DC,∠ADC=∠DAE=∠DCF=90°,∴∠ADC=∠MDN=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴AE=CF.②∵△ADE≌△CDF(ASA),∴DE=DF,∵∠MDN=90°,∴∠DEF=45°,∵∠DAC=45°,∴∠DAQ=∠PEQ,∵∠AQD=∠EQP,∴△AQD∽△EQP,∴=,∴=,∵∠AQE=∠PQD,∴△AQE∽△DQP,∴∠QDP=∠QAE=45°,∴∠DPE=90°,∴DP⊥EF,∵DE=DF,∴PE=PF,∴DP垂直平分线段EF.(2)解:①当点E在线段AB上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=AH=AG,设QH=x,∵×4×x+×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.②当点E在BA的延长线上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=AH=AG,设QH=x,∵×4×x﹣×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.综上所述,PQ的长为或.20.(1)证明:∵AD⊥BC于D,作DE⊥AC于E,∴∠ADC=∠AED=90°,∵∠DAE=∠DAC,∴△DAE∽△CAD,∴=,∴AD2=AC•AE,∵AC=AB,∴AD2=AB•AE.解法二:可以直接证明△DAE∽△BAD,得出结论.(2)解:如图,连接DF.∵AB=3,∠ADB=90°,BF=AF,∴DF=AB=,∵AB=AC,AD⊥BC,∴BD=DC,∴DF∥AC,∴===,∴=.。
2021届新中考数学必考精点考点专题专题25 正方形问题1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:一是先证它是矩形,再证有一组邻边相等。
即有一组邻边相等的矩形是正方形。
二是先证它是菱形,再证有一个角是直角。
即有一个角是直角的菱形是正方形。
4.正方形的面积:设正方形边长为a,对角线长为b ,S=【例题1】(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)【答案】a+b.【解析】如图,连接DK,DN,证明S四边形DMNT=S△DKN a即可解决问题.如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN a,∴正方形ABCD的面积=4a+b=a+b.【对点练习】(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.【答案】6﹣2.【解析】作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,∵正方形ABCD的边长为4,点E是CD的中点,∴DE=2,∴AE==2,∵△ADE绕点A顺时针旋转90°得△ABG,∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,而∠ABC=90°,∴点G在CB的延长线上,∵AF平分∠BAE交BC于点F,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即FA平分∠GAD,∴FN=FM=4,∵AB•GF=FN•AG,∴GF==2,∴CF=CG﹣GF=4+2﹣2=6﹣2.故答案为6﹣2.【例题2】(2020•青岛)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.【答案】.【解析】根据正方形的性质得到AO=DO,∠ADC=90°,求得∠ADE=90°,根据直角三角形的性质得到DF=AF=EF AE,根据三角形中位线定理得到FG DE=1,求得AD=CD=4,过A作AH⊥DF于H,根据相似三角形的性质和勾股定理即可得到结论.∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF AE,∴OF垂直平分AD,∴AG=DG,∴FG DE=1,∵OF=2,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△AED,∴,∴AE2,∴,∴AH,即点A到DF的距离为【对点练习】(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD 上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1 D.【答案】C【解析】∵四边形ABCD是正方形,∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF,∵∠EAF=60°,∴∠BAE+∠DAF=30°,∴∠DAF=15°,在AD上取一点G,使∠GFA=∠DAF=15°,如图所示:∴AG=FG,∠DGF=30°,∴DF=FG=AG,DG=DF,设DF=x,则DG=x,AG=FG=2x,∵AG+DG=AD,∴2x+x=1,解得:x=2﹣,∴DF=2﹣,∴CF=CD﹣DF=1﹣(2﹣)=﹣1;故选:C.【例题3】(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.【答案】见解析。
【全国通用】初中几何正方形解答题专题突破练习(1)1.如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO 的数量关系是 ,位置关系是 ;(2)问题探究:如图①,①AO 'E 是将图①中的①AOB 绕点A 按顺时针方向旋转45°得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断①PQB 的形状,并证明你的结论;(3)拓展延伸:如图①,①AO 'E 是将图①中的①AOB 绕点A 按逆时针方向旋转45°得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求①PQB 的面积.2.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为()6,6-.点P 从点A 个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线相交于点D ,BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)写出PBD ∠的度数和点D 的坐标(点D 的坐标用t 表示).(2)探索POE △周长是否随时间t 的变化而变化,若变化,说明理由;若不变,试求这个定值.(3)当何值时,PBE △为等腰三角形?3.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由; (3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.4.如图,已知正方形ABCD 的边长为3,E 、F 分别是边BC 、CD 上的点,①EAF=45° (1)求证:BE+DF=EF (2)当BE=1时,求EF 的长5.已知边长为2的正方形ABCD 中,P 是对角线AC 上的一个动点(与点A 、C 不重合),过点P 作PE①PB ,PE 交DC 于点E ,过点E 作EF①AC ,垂足为点F .(1)求证:PB=PE ;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,写出解答过程;若变化,试说明理由;6.如图,已知正方形ABCD..(1)如图1,E是AD上一点,过BE上一点O作BE的垂线交AB于点G,交CD于点H,求证:BE GH (2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD,BC于点E,F,交AB,CD于点G,H,EF与GH相等吗?请写出你的结论.(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m,n,m与AD,BC的延长线分别交于点E,F,n与AB,DC的延长线分别交于点G,H,试就该图形对你的结论加以证明.7.如图,点E是正方形ABCD的边DC上一点,把①ADE绕点A顺时针旋转到①ABF的位置,接EF.(1)求证:①AEF是等腰直角三角形;(2)若四边形AECF的面积为25,DE=2,求AE的长.AC BD相交于点O,连接AP,分别交8.如图,点P是正方形ABCD中BC延长线上一点,对角线,,于点,E F,过点B作AP的垂线,垂足为点G,交线段AC于H.BD CD(1)若20P ∠=,求GBE ∠的大小.(2)求证:2AE EF EP =.(3)若正方形ABCD 的边长为1,1CP =,求HG 的长.9.已知,如图,在Rt①ABC 中,①BAC =90°,①ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连接CF ,当点D 在线段BC 的反向延长线上,且点A ,F 分别在直线BC 的两侧时.(1)求证:①ABD ①①ACF ;(2)若正方形ADEF 的边长为AE ,DF 相交于点O ,连接OC ,求OC 的长度.10.四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90,BEF BE EF ∠=︒=,连接DF ,G 为DF 的中点,连接,,EG CG EC .(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及ECGC的值.(2)将图1中的BEF ∆绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)将图1中的BEF ∆绕点B 顺时针旋转3(060)a a ︒<<︒,若2,BE AB ==,,E F D 三点共线时,请直接写出GC 的长.11.已知:正方形ABCD ,等腰直角三角板的直角顶点落在正方形的顶点D 处,使三角板绕点D 旋转.(1)当三角板旋转到图1的位置时,猜想CE 与AF 的数量关系,并加以证明;(2)在(1)的条件下,若::1:DE AE CE =,求AED ∠的度数;(3)若4BC =,点M 是边AB 的中点,连结DM ,DM 与AC 交于点O ,当三角板的边DF 与边DM重合时(如图2),若3OF =,求DN 的长. 12.(1)如图1,正方形ABCD 中,E 为边CD 上一点,连接AE ,过点A 作AF①AE 交CB 的延长线于F ,猜想AE 与AF 的数量关系,并说明理由;(2)如图2,在(1)的条件下,连接AC,过点A作AM①AC交CB的延长线于M,观察并猜想CE与MF的数量关系,并说明理由;(3)解决问题:王师傅有一块如图所示的板材余料,其中①A=①C=90°,AB=AD.王师傅想切一刀后把它拼成正方形.请你帮王师傅在图3中画出剪拼的示意图.13.已知正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.(1)如图1,DE①FG,求证:BF=AE+AG;(2)如图2,DE①DF,P为EF中点,求证:BE;(3)如图3,EH交FG于O,①GOH=45°,若CD=4,BF=DG=1,则线段EH的长为.14.已知正方形ABCD中AC与BD交于点O,点M在线段BD上,作直线AM交直线DC于点E,过D作DH①AE于H,设直线DH交AC于点N.(1)如图1,当M在线段BO上时,求证:OM=ON;(2)如图2,当M在线段OD上,连接NE和MN,当EN//BD时,求证:四边形DENM是菱形;(3)在(2)的条件下,若正方形边长为4,求EC的长.15.如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.(1)求证AE=MN;(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求①AEF的度数;(3)如图3,若该正方形ABCD边长为10,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG①MN,垂足分别为G,若AG=6,请直接写出AC′的长________.16.(1)如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB 于点M,交线段CD于点N,证明:AP=MN;(2)如图2,正方形ABCD中,点P为线段BC上一动点,若线段MN垂直平分线段AP,分别交AB,AP,BD,DC于点M,E,F,N.求证:EF=ME+FN;(3)若正方形ABCD的边长为2,求线段EF的最大值与最小值.17.如图,在正方形ABCD中,E、F是对角线BD上两点,且①EAF=45°,将①ADF绕点A顺时针旋转90°后,得到①ABQ,连接EQ.(1)求证:EA是①QED的平分线;(2)已知BE =1,DF =3,求EF 的长.18.如图1,已知正方形ABCD 和正方形CEGF ,点,,F C B 在同一直线上,连接BE ,DF ,DF 与EG 相交于点M .(1)求证:BE FD =.(2)如图2,N 是BC 边上的一点,连接AN 交BE 于点H ,且BN GMBC GE=. ①求证:BN EC =; ①若2CE DE =,直接写出BNAB的值. 19.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .(1)若30θ=︒时,求点A 的坐标;(2)设MBN △的周长为P ,在旋转正方形OABC 的过程中,P 值是否有变化?请证明你的结论; 20.如图,在正方形ABCD 中,点E 、F 分别在边AB 、BC 上,AF 与DE 相交于点M ,且BAF ADE ∠=∠.(1)如图1,求证:AF DE ⊥.图1(2)如图2,AC 与BD 相交于点O ,AC 交DE 于点G ,BD 交AF 于点H ,连接GH ,试探究直线GH 与AB 的位置关系,并说明理由.图2(3)在(1)(2)的基础上,若AF 平分BAC ∠,且BDE ∆的面积为4+,求正方形ABCD 的面积. 21.在ABC 中,①BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的右侧作正方形ADEF ,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时, ①BC 与CF 的位置关系为: ;①BC ,CD ,CF 之间的数量关系为: .(将结论直接写在横线上) (2)数学思考如图2,当点D 在线段CB 的延长线上时,结论①①是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明, (3)拓展延伸如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若AB =,CD =1,请求出GE 的长.22.如图1,E 是正方形ABCD 中CD 边上的一点,以点A 为中心,把ADE 顺时针旋转α后,得到ABG . (1)求α的值;(2)当点F 在BC 上,且①EAF=45°,连接EF (如图2),求证:BF+DE=EF ;(3)在(2)的前提下,连接BD ,分别交AE ,AF 于M ,N 两点(如图3),试判断线段BN ,MN ,DM 三者的关系式,请给出证明.23.探究证明:(1)如图1,正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM①BN .求证:BN=AM ;(2)如图2,矩形ABCD 中,点M 在BC 上,EF①AM ,EF 分别交AB 、CD 于点E 、F .求证:EF BCAM AB=; (3)如图3,四边形ABCD 中,①ABC=90°,AB=AD=10,BC=CD=5,AM①DN ,点M 、N 分别在边BC 、AB 上,求DNAM的值. 24.已知:四边形ABCD 为正方形,AMN ∆是等腰Rt ∆,90AMN ∠=︒.(1)如图:当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 相交于点E 、F ,连接EF ,试证明:EF DF BE =+.(2)如图,当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 的延长线相交于点E 、F ,连接EF .①试写出此时三线段EF 、DF 、BE 的数量关系并加以证明.①若6CE =,2DF =,求:正方形ABCD 的边长以及AEF ∆中AE 边上的高.25.如图1,已知点G 在正方形ABCD 的对角线AC 上,GE BC ⊥,垂足为点E ,GF CD ⊥,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形;①推断:AG BE的值为:_______(直接写出答案).图1(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角()045α︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由.图2(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若6AG=,GH=,求BC的长.图3。
2021中考数学专题训练正方形综合一、选择题1. 下列条件不能判断▱ABCD是正方形的是()A.∠ABC=90°且AB=ADB.AB=BC且AC⊥BDC.AC⊥BD且AC=BDD.AC=BD且AB=BC2. 下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形又是中心对称图形3. 小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次4. 如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.25. 如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为()A. 2B. 2 2C. 2+1D. 22+16. (2020·威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形7. (2020·温州)如图,在R t△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为A.14 B.15 C.83D.658. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)10. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且E,A,B三点共线,AB=4,则阴影部分的面积是.11. 如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.12. 如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQ S正方形AEFG的值等于________.13. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC 的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.14. 如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是________.三、解答题15. 【问题解决】一节数学课上,老师提出了这样一个问题:如图①,点P是正方形ABCD内一点,P A=1,PB=2,PC=3,你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△PBC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图②,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.16. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C 作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.17. (2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.18. 如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.点E、F同时从点P出发,分别沿P A、PB以每秒1个单位长度的速度向点A、B 匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B 时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH 与△ABC重叠部分的面积为S.(1)当t=1时,正方形EFGH的边长是________;当t=3时,正方形EFGH 的边长是________;(2)当1<t≤2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?2021中考数学专题训练正方形综合-答案一、选择题1. 【答案】B[解析]A.▱ABCD中,若∠ABC=90°,则▱ABCD是矩形,再由AB=AD 可得是正方形,故此选项错误;B.▱ABCD中,若AB=BC,则▱ABCD是菱形,再由AC⊥BD仍可得是菱形,不能判定为正方形,故此选项正确;C.▱ABCD中,若AC⊥BD,则▱ABCD是菱形,再由AC=BD可得是正方形,故此选项错误;D.▱ABCD中,若AC=BD,则▱ABCD是矩形,再由AB=BC可得是正方形,故此选项错误.故选B.2. 【答案】B3. 【答案】B4. 【答案】D[解析]由旋转的性质可知,∴BF=DE=1,∴FC=6,∵CE=4,∴EF===2.故选:D.5. 【答案】B【解析】∵正方形ABCD的面积为1,∴BC=CD=1,∵E、F是边的中点,∴CE=CF=12,∴EF=(12)2+(12)2=22,则正方形EFGH的周长为4×22=2 2.6. 【答案】:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴,又∵,∴,∵∠DAE=∠BAD,∴AED =∠ADB =90°. 故B 选项结论正确, ∵AB =10,AE =5, ∴BE =5, 又∵∠ADB =90°, ∴DEAB =5,∴DE =BE ,∴四边形DEBF 为菱形. 故C 选项结论正确,∵AE =3.6时,四边形DEBF 为矩形,AE =5时,四边形DEBF 为菱形, ∴AE =4.8时,四边形DEBF 不可能是正方形. 故D 不正确. 故选:D .7. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP ∽△CBQ ,所以CDDPCB BQ =,即2CD CD PECB CB PE-=-,解得:BC =2CD ,所以CQ =2CP ,则CP =5,CQ =10,由于PQ ∥AB ,所以∠CBA =∠BCQ =∠DCP ,则tan ∠BCQ =tan ∠DCP =tan ∠CBA =12,不妨设DP =x ,则DC =2x ,在R t △DCP 中,22(2)25x x +=,解得x =5.∴DC =25,BC =45,所以AB =10,△ABC 的斜边上的高=2545410AC BC AB ⋅⨯==,所以CR =14,所以因此本题选A .8. 【答案】⎝⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题9. 【答案】-1 [解析]∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF-CD=-1.故答案为-1.10. 【答案】8[解析]∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠CAE+∠BAF=90°,又∠CAE+∠ECA=90°,∴∠ECA=∠BAF,则在△ACE和△F AB中,∵∴△ACE≌△F AB(AAS),∴AB=CE=4,∴阴影部分的面积=AB·CE=×4×4=8.11. 【答案】8[解析]如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF 为平行四边形,且BD ⊥EF , ∴四边形BEDF 为菱形, ∴DE=DF=BE=BF , ∵AC=BD=8,OE=OF==2,∴由勾股定理得:DE===2,∴四边形BEDF 的周长=4DE=4×2=8,故答案为:8.12. 【答案】89 【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM =MB ,∴正方形MNPQ 的边长为a ,正方形AEFG的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a2=89.13. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.14. 【答案】62≤a ≤3-3 【解析】∵ABCD 是正方形,∴AB =a =22AC ,∴a的取值范围与AC 的长度直接相关.如解图①,当A ,C 两点恰好是正六边形一组对边中点时,a的值最小,∵正六边形的边长为1,∴AC=3,∴AB=a=22AC=62;如解图②,连接MN,延长AE,BF交于点G,∵正六边形和正方形ABCD,∴△MNG、△ABG、△EFG为正三角形,设AE=BF=x,则AM=BN =1-x,AG=BG=AB=1+x=a,∵GM=MN=2,∠BNM=60°,∴sin∠BNM=sin60°=BC2BN=a21-x,∴3()1-x=a,∴3()2-a=a,解得,a=233+1=3- 3.∴正方形边长a的取值范围是62≤a≤3- 3.三、解答题15. 【答案】[解析]将△PBC绕点B逆时针旋转90°得到△P'BA,连接PP',得到等腰直角三角形BP'P,从而得到PP'=2,∠BPP'=45°,又AP'=CP=3,AP=1,∴AP2+P'P2=1+8=9=P'A2,∴根据勾股定理的逆定理得∠APP'=90°,从而求出∠APB=45°+90°=135°.将△PBC绕点B逆时针旋转90°,得到△P'BA,连接PP',方法和上述类似,求出∠APB=45°.解:【问题解决】如图①,将△PBC绕点B逆时针旋转90°,得到△P'BA,连接PP'.①∵P'B=PB=2,∠P'BP=90°,∴PP'=2,∠BPP'=45°.又AP'=CP=3,AP=1,∴AP2+P'P2=1+8=9=P'A2,∴∠APP'=90°,∴∠APB=45°+90°=135°.【类比探究】如图②,将△PBC绕点B逆时针旋转90°,得到△P'BA,连接PP'.②∵P'B=PB=1,∠P'BP=90°,∴PP'=,∠BPP'=45°.又AP'=CP=,AP=3,∴AP2+P'P2=9+2=11=P'A2,∴∠APP'=90°,∴∠APB=90°-45°=45°.16. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF.(2)∵AB是☉O的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE+∠ECF=90°,∠D+∠EFC=90°.由(1)得∠ECF=∠CFE,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF.即点E为线段DF的中点.①四边形ECFG为菱形时,CF=CE.∵CE=EF,∴CE=CF=EF.∴△CEF为等边三角形.∴∠CFE=60°.∴∠D=30°.故填30°.②四边形ECOG为正方形时,△ECO为等腰直角三角形.∴∠CEF=45°.∵∠CEF=∠D+∠DCE,∴∠D=∠DCE=22.5°.故填22.5°.17. 【答案】解:(1)(2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠AB′B=90°∵∠B′AD=a-90°,AD=AB′,∴∠AB′D=135∴∠EB′D=∠AB′D-∠AB′B=45°.∵DE⊥BB′,∴∠EDB′=∠EB′D=45°,∴△DEB′是等腰直角三角形,∵四边形ABCD BDC=45°.∵∠EDB′=∠BDC,∴∠EDB′+∠EDB=∠BDC+∠EDB,即∠BDB′=∠CDE.∴△B′DB∽△EDC,∴2BB BD CE CD′;②3或1.思路提示:分两种情况.情形一,如图,当点B′在BE 上时,由BB CE′=2,设BB′=2m ,CE=2m . ∵CE ∥B′D ,CE=B′D ,∴B′D=2m ,在等腰直角三角形DEB′中,斜边B′D=2m , ∴B′E=DE=m ,于是得到BE B E ′2=3m mm.情形二,如图,当点B′在BE 延长线上时,由BB CE′=2,设BB′=2m ,CE=2m .∵CE ∥B′D ,CE=B′D ,∴B′D=2m ,在等腰直角三角形DEB′中,斜边B′D=2m ,∴B′E=DE=m 。
绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。
2.试卷满分150分,考试时间100分钟。
3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。
4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.方程230x -+=根的情况( ) A. 有两个不相等的实数根 B. 有一个实数根; C. 无实数根D. 有两个相等的实数根2.若m n >,下列不等式不一定成立的是( ) A .33m n +>+B .33m n -<-C .33m n> D .22m n >3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内,y 随着x 的增大而增大,那么它的图像的两个分支分别在( ) A. 第一、三象限 B. 第二、四象限 C. 第一、二象限D. 第三、四象限4.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是( )A .该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是25.顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 等腰梯形6.已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,√3为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是()A.内切B.外切C.相交D.外离二.填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.若2a b=+,则代数式222a ab b-+的值为.8.化简:113a a-=______.9.若一个数的平方等于5,则这个数等于.10.0=的解是_____________.11.晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.13.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为__________;14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;.5B天;.6C天;.7D天),则扇形统计图B部分所对应的圆心角的度数是.15.已知在梯形ABCD中,AD∥BC,∠ABC = 90°,对角线AC、BD相交于点O,且AC⊥BD,如果AD︰BC = 2︰3,那么DB︰AC =______.16.如图,在ABC中,90C∠=︒,30A∠=︒,BD是ABC∠的平分线,如果AC x=,那么CD =(用x表示).17.如图,在ABC∆中,30B∠=︒,2AC=,3cos5C=.则AB边的长为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是____.三.解答题(共7小题,满分78分)19.(本题满分10分)计算:1327﹣(12)﹣2+|3.20.(本题满分10分)解不等式组:1076713x xxx>+⎧⎪+⎨-<⎪⎩21.(本题满分10分)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.22.(本题满分10分)两栋居民楼之间的距离30CD m =,楼AC 和BD 均为10层,每层楼高为3m .上午某时刻,太阳光线GB 与水平面的夹角为30︒,此刻楼BD 的影子会遮挡到楼AC 的第几层?(参考数1.7≈ 1.4)≈23.已知:如图,AB 、AC 是⊙O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E ,联结CD 并延长交⊙O 于点F. (1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.24.如图6,在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =--<与x 轴交于A B、两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k b 、用含a 的式子表示) (2)点E 是直线l 上方的抛物线上的动点,若ACE ∆的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A D P Q 、、、为顶点的四边形为矩形时,请直接写出点P 的坐标.25.已知:如图,在菱形ABCD 中,2AC =,60B ∠=︒.点E 为边BC 上的一个动点(与点B 、C 不重合),60EAF ∠=︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE x =,EG y =.(1)求证:AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG EO 时,求x 的值.绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种根本作图1.画一条线段等于线段会用尺规作图法完成五种根本作图,了解五种根本作图的理由,会使用精练、准确的作图语言表达画图过程.2.画一个角等于角3.画线段的垂直平分线4.过点画直线的垂线5.画角平分线会利用根本作图画较简单的图形.1.画三角形会利用根本作图画三角形较简单的图形.2.画圆会利用根本作图画圆.☞2年中考【2021年题组】1.〔2021深圳〕如图,△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,那么以下选项正确的选项是〔〕A.B.C.D.【答案】D.考点:作图—复杂作图.2.〔2021三明〕如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长〔大于12AB〕为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,以下结论错误的选项是〔〕A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.应选D.考点:1.作图—根本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.3.〔2021福州〕如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为〔〕A.80°B.90°C.100°D.105°【答案】B.【解析】试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.应选B.考点:1.等腰三角形的性质;2.作图—根本作图.4.〔2021潍坊〕如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.假设BD=6,AF=4,CD=3,那么BE的长是〔〕A.2 B.4 C.6 D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—根本作图.5.〔2021嘉兴〕数学活动课上,四位同学围绕作图问题:“如图,直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.〞分别作出了以下四个图形.其中作法错误的选项是〔〕A.B.C.D.【答案】A.考点:作图—根本作图. 6.〔2021衢州〕数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如下图,你认为这种作法中判断∠ACB 是直角的依据是〔 〕A .勾股定理B .直径所对的圆心角是直角C .勾股定理的逆定理D .90°的圆周角所对的弦是直径 【答案】B . 【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.应选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理. 7.〔2021自贡〕如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保存作图痕迹.〔备注:此题只是找点不是证明,∴只需连接一对角线就行〕【答案】作图见试题解析.考点:作图—应用与设计作图.8.〔2021北京市〕阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.〞请答复:小芸的作图依据是.【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.考点:1.作图—根本作图;2.作图题.9.〔2021百色〕⊙O为△ABC的外接圆,圆心O在AB上.〔1〕在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D〔保存作图痕迹,不写作法与证明〕;〔2〕如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC 于F.①求证:OD⊥BC;②求EF的长.【答案】〔1〕作图见试题解析;〔2〕①证明见试题解析;②321 7.【解析】试题分析:〔1〕按照作角平分线的方法作出即可;〔2〕①由AD是∠BAC的平分线,得到CD BD=,再由垂径定理推论可得到结论;②由勾股定理求得CF的长,然后根据平行线分线段成比例定理求得34EF FDCE AC==,即可求得37EFCF=,继而求得EF的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.10.〔2021南京〕如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.〔要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3〕【答案】答案见试题解析.【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如下图:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题.11.〔2021镇江〕图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.〔1〕如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH〔不写作法,保存作图痕迹〕;〔2〕在〔1〕的前提下,连接OD ,OA=5,假设扇形OAD 〔∠AOD <180°〕是一个圆锥的侧面,那么这个圆锥底面圆的半径等于 .【答案】〔1〕作图见试题解析;〔2〕158.【解析】 试题分析:〔1〕作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;〔2〕由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论. 试题解析:〔1〕如下图,八边形ABCDEFGH 即为所求;〔2〕∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R ,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图. 12.〔2021广安〕手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在以下四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积〔注:不同的分法,面积可以相等〕【答案】答案见试题解析.〔2〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔3〕正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔4〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:.考点:1.作图—应用与设计作图;2.操作型.13.〔2021孝感〕如图,一条公路的转弯处是一段圆弧〔AB〕.〔1〕用直尺和圆规作出AB所在圆的圆心O;〔要求保存作图痕迹,不写作法〕〔2〕假设AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】〔1〕作图见试题解析;〔2〕50m .试题解析:〔1〕如图1,点O 为所求;〔2〕连接OA ,OC ,OC 交AB 于D ,如图2,∵C 为AB 的中点,∴OC ⊥AB ,∴AD=BD=12AB=40,设⊙O 的半径为r ,那么OA=r ,OD=OD ﹣CD=r ﹣20,在Rt △OAD 中,∵222OA OD BD =+,∴222(20)40r r =-+,解得r=50,即AB 所在圆的半径是50m .考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题.14.〔2021宜昌〕如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.〔1〕求证:AB=AE;〔2〕假设∠A=100°,求∠EBC的度数.【答案】〔1〕证明见试题解析;〔2〕40°.考点:1.作图—根本作图;2.等腰三角形的判定与性质.15.〔2021随州〕如图,射线PA切⊙O于点A,连接PO.〔1〕在PO的上方作射线PC,使∠OPC=∠OPA〔用尺规在原图中作,保存痕迹,不写作法〕,并证明PC是⊙O的切线;〔2〕在〔1〕的条件下,假设PC切⊙O于点B,AB=AP=4,求AB的长.【答案】〔1〕作图见试题解析,证明见试题解析;〔2839.【解析】试题分析:〔1〕按照作一个角等于角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;〔2〕先证明△PAB是等边三角形,那么∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.试题解析:〔1〕作图如右图,连接OA,过O作OB⊥PC,∵PA切⊙O于点A,∴OA⊥PA,又∵∠OPC=∠OPA ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;〔2〕∵PA 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△PAB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°=4OA ,∴OA=433,∴431203180AB l π⨯⨯==839π.考点:1.切线的判定与性质;2.弧长的计算;3.作图—根本作图.16.〔2021广州〕如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.〔1〕利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD 〔保存作图痕迹,不写作法〕;〔2〕在〔1〕所作的图形中,求△ABE 与△CDE 的面积之比.【答案】〔1〕作图见试题解析;〔2〕12.试题解析:〔1〕如下图;考点:1.作图—复杂作图;2.圆周角定理.17.〔2021吉林省〕图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按以下要求画图:〔1〕在图①中,以格点为顶点,AB为一边画一个等腰三角形;〔2〕在图②中,以格点为顶点,AB为一边画一个正方形;〔3〕在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析;〔3〕作图见试题解析.【解析】试题分析:〔1〕根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;〔2〕根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;〔3〕根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:〔1〕如图①,符合条件的C点有5个:;〔3〕如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.18.〔2021哈尔滨〕图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.〔1〕在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;〔2〕在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于〔1〕中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余〔画出一种即可〕.【答案】〔1〕答案见试题解析;〔2〕答案见试题解析.试题解析:〔1〕如图1所示;〔2〕如图2、3所示;考点:作图—应用与设计作图.19.〔2021六盘水〕如图,Rt △ACB 中,∠C =90°,∠BAC =45°.〔1〕〔4分〕用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD 〔不写作法,保存作图痕迹〕;〔2〕〔4分〕求∠BDC 的度数;〔3〕〔4分〕定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ,根据定义,利用图形求cot22.5°的值.【答案】〔1〕答案见试题解析;〔2〕22.5°;〔321+.试题解析:〔1〕如图,〔2〕∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°=22.5°,即∠BDC 的度数为22.5°;〔3〕设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx +=21+,即cot22.5°=21+.考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题.20.〔2021山西省〕如图,△ABC 是直角三角形,∠ACB=90°.〔1〕尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保存作图痕迹,不写作法,请标明字母;〔2〕在你按〔1〕中要求所作的图中,假设BC=3,∠A=30°,求DE 的长.【答案】〔1〕作图见试题解析;〔232.试题解析:〔1〕如图,⊙C为所求;〔2〕∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=CDBC ,∴CD=3cos30°=332,∴DE的长=33602180π⋅=32π.考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题.21.〔2021济宁〕如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母〔保存作图痕迹,不写作法〕〔1〕作∠DAC的平分线AM;〔2〕作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜测并判断四边形AECF的形状并加以证明.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析,四边形AECF的形状为菱形.【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定.22.〔2021宁波〕在边长为1的小正方形组成的方格纸中,假设多边形的各顶点都在方格纸的格点〔横竖格子线的交错点〕上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.〔1〕在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形〔非菱形〕、菱形;〔2〕利用〔1〕中的格点多边形确定m ,n 的值.【答案】〔1〕答案见试题解析;〔2〕112m n =⎧⎪⎨=⎪⎩.〔2〕∵格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,那么38165416m n m n +-=⎧⎨+-=⎩,解得:112m n =⎧⎪⎨=⎪⎩.考点:作图—应用与设计作图.23.〔2021杭州〕“综合与实践〞学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.〔1〕用记号〔a ,b ,c 〕〔a≤b≤c 〕表示一个满足条件的三角形,如〔2,3,3〕表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.〔2〕用直尺和圆规作出三边满足a <b <c 的三角形〔用给定的单位长度,不写作法,保存作图痕迹〕.【答案】〔1〕共9种:〔2,2,2〕,〔2,2,3〕,〔2,3,3〕,〔2,3,4〕,〔2,4,4〕,〔3,3,3〕,〔3,3,4〕,〔3,4,4〕,〔4,4,4〕;〔2〕答案见试题解析.【解析】试题分析:〔1〕应用列举法,根据三角形三边关系列举出所有满足条件的三角形;〔2〕首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .那么△ABC 即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系.24.〔2021温州〕各顶点都在方格纸格点〔横竖格子线的交错点〕上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克〔G•Pick ,1859~1942年〕证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-⨯+=S . 〔1〕请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.〔2〕请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.〔注:图甲、图乙在答题纸上〕【答案】.【解析】试题分析:〔1〕根据皮克公式画图计算即可;〔2〕根据题意可知a=3,b=3,画出满足题意的图形即可.试题解析:〔1〕方法不唯一,如图①或图②所示:〔2〕方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.25.〔2021青岛〕【问题提出】用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】〔1〕用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.〔2〕用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.〔3〕用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和3根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和1根木棒,那么能搭成一种等腰三角形.所以,当n=5时,m=1.〔4〕用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和4根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和2根木棒,那么能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①n 3 4 5 6m 1 0 1 1【探究二】〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?〔仿照上述探究方法,写出解答过程,并将结果填在表②中〕〔2〕用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?〔只需把结果填在表②中〕表②n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔设n 分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中〕表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用2021根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔写出解答过程〕,其中面积最大的等腰三角形每腰用了根木棒.〔只填结果〕【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.试题解析:〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,那么能搭成一种等腰三角形用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成3根木棒、3根木棒和4根木棒,那么能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,那么能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2021÷4=504,504﹣1=503,当三角形是等边三角形时,面积最大,2021÷3=672,∴用2021根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题.【2021年题组】1.〔2021·安顺〕用直尺和圆规作一个角等于角,如图,能得出∠A′O′B′=∠AOB的依据是〔〕A.SAS B.SSS C.ASA D.AAS【答案】B.考点:作图—根本作图;全等三角形的判定与性质.2.〔2021涉县一模〕如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的垂直平分线,交⊙O于B,C两点.②连接AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断〔〕A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【答案】A.【解析】试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,应选A考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.3.〔2021·玉林〕如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O〔保存作图痕迹,不写作法,注意最后用墨水笔加黑〕,并直接写出旋转角度是.【答案】90°.【解析】试题分析:如下图:旋转角度是90°.考点:作图-旋转变换.4.〔2021•河南〕如图,在△ABC中,按以下步骤作图:①分别以B,C 为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,假设CD=AC,∠B=25°,那么∠ACB的度数为【答案】105°.考点:作图—根本作图;线段垂直平分线的性质.5.〔2021•梅州〕如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,那么:〔1〕∠ADE= ;〔2〕AE EC;〔填“=〞“>〞或“<〞〕〔3〕当AB=3,AC=5时,△ABE的周长=【答案】〔1〕90°;〔2〕=;〔3〕7.考点:线段垂直平分线的性质;勾股定理的应用.☞考点归纳归纳1:作三角形根底知识归纳:利用根本作图作三角形〔1〕三边作三角形;〔2〕两边及其夹角作三角形;〔3〕两角及其夹边作三角形;〔4〕底边及底边上的高作等腰三角形;〔5〕一直角边和斜边作直角三角形.注意问题归纳:用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.【例1】:线段a、c和∠β〔如图〕,利用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠β.〔不写作法,保存作图痕迹〕.【答案】作图见解析.考点:作图—根本作图.归纳2:用角平分线、线段的垂直平分线性质画图根底知识归纳:角平分线的性质:角的平分线上的点到角的两边的距离相等.线段垂直平分线的性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.根本做图如图:【例2】两个城镇A,B与两条公路ME,MF位置如下图,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.【答案】作图见解析.考点:作图—应用与设计作图.归纳3:与圆有关的尺规作图根底知识归纳:〔1〕过不在同一直线上的三点作圆〔即三角形的外接圆〕;〔2〕作三角形的内切圆;〔3〕作圆的内接正方形和正六边形.注意问题归纳:关键是找准圆周心作出圆.【例3】如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A,D两点作⊙O〔用尺规作图,不写作法,保存作图痕迹,并把作图痕迹用黑色签字笔加黑〕【答案】考点:作图—复杂作图.☞1年模拟1.〔2021届山东省胶南市校级模拟〕:用直尺和圆规作图,〔不写作法,保存作图痕迹,〕如图,在∠AOB内,求作点P,使P点到OA,OB的距离相等,并且P点到M,N的距离也相等.【答案】作图见解析.【解析】试题分析:点P到M、N两点的距离相等即作MN的垂直平分线;点P到OA、OB的距离也相等.即作角平分线,两线的交点就是点P的位置.试题解析:如下图:考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质.2.〔2021届广东省黄冈中学校级模拟〕△ABC中,∠C=90°,请利用尺规作出△ABC的内切圆O〔不写作法,请保存作图痕迹〕【答案】作图见解析.考点:1.三角形的内切圆与内心;2.作图—复杂作图.3.〔2021届湖北省宜昌市兴山县模拟考试〕如图:在△ABC中,AD⊥BC,垂足是D.〔1〕作△ABC的外接圆O,作直径AE〔尺规作图〕;〔2〕假设AB=8,AC=6,AD=5,求△ABC的外接圆直径AE的长.【答案】〔1〕作图见解析;〔2〕9.6.试题解析:〔1〕如图:〔2〕证明:由作图可知AE为⊙O的直径,∴∠ABE=90°,〔直径所对的圆周角是直角〕∵AD⊥BC,∴∠ADC=90°,∴∠ABE=∠ADC,∵AB AB=∴∠E=∠C,∴△ABE∽△ADC,∴AC ADAE AB=,即658AB=,∴AE=9.6.考点:1.三角形的外接圆与外心;2.作图—复杂作图.4.〔2021届江苏省盐城模拟考试〕实践操作:如图,在Rt△ABC中,∠ABC=90°,利用直尺和圆规按以下要求作图,并在图中标明相应的字母〔保存作图痕迹,不写作法〕〔1〕作∠BCA的角平分线,交AB于点O;〔2〕以O为圆心,OB为半径作圆.综合运用:在你所作的图中,〔1〕AC与⊙O的位置关系是〔直接写出答案〕〔2〕假设BC=6,AB=8,求⊙O的半径.【答案】实践操作:画图见解析;综合运用:〔1〕相切;〔2〕3.试题解析:实践操作:〔1〕如下图:CO即为所求;〔2〕如下图:⊙O即为所求;综合运用:〔1〕AC与⊙O的位置关系是:相切;考点:1.作图—复杂作图;2.直线与圆的位置关系.。
GF EDCBA M 证明题1.如图,△ABC 中,∠BAC=90°,AB=AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC . 〔1〕求证:BE=CF ;〔2〕在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME ⊥BC ;②DE=DN .2.如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。
求证:〔1〕AF =CG ;〔2〕CF =2DE3.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于O 点,且BE=BF ,∠BEF=2∠BAC 。
〔1〕求证:OE=OF ;〔2〕假设BC=23,求AB 的长。
4.,如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2.〔1〕假设CF=2,AE=3,求BE 的长; 〔2〕求证:∠CEG=∠AGE .5.如图1,在△ABC 中,∠ACB=90°,∠BAC=60°,点E 角平分线上一点,过点E 作AE 的垂线,过点A 作AB 的线段,两垂线交于点D ,连接DB ,点F 是BD 的中点,DH ⊥AC ,垂足为H ,连接EF ,HF 。
〔1〕如图1,假设点H 是AC 的中点,AC=23,求AB ,BD 的长。
〔2〕如图1,求证:HF=EF 。
〔3〕如图2,连接CF ,CE ,猜测:△CEF 是否是等边三角形?假设是,请证明;假设不是,请说明理由。
6.如图1,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连结BE . 〔1〕假设AF 是△ABE 的中线,且AF =5,AE =6,连结DF ,求DF 的长; 〔2〕假设AF 是△ABE 的高,延长AF 交BC 于点G .①如图2,假设点E 是AC 边的中点,连结EG ,求证:AG +EG =BE ;②如图3,假设点E 是AC 边上的动点,连结DF .当点E 在AC 边上(不含端点)运动时,∠DFG 的大小是否改变,如果不变,请求出∠DFG 的度数;如果要变,请说明理由.7.在△ABC 中,AB=AC ,∠A=60°,点D 是线段BC 的中点,∠EDF=120°,DE 与线段AB 相交于点E ,DF 与线段AC 〔或AC 的延长线〕相交于点F.〔1〕如图1,假设DF ⊥AC ,垂足为F ,AB=4,求BE 的长;〔2〕如图2,将〔1〕中的∠EDF 绕点D 顺时针旋转一定的角度,DF 扔与线段AC 相交于点F.求证:1CF 2BE AB +=; 〔3〕如图3,将〔2〕中的∠EDF 继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交与点F ,作DN ⊥AC 于点N ,假设DN=FN ,求证:3()BE CF BE CF +=-.ABF DCE 25题图1 BAF DCEG25题图2 ABF DCEG25题图38.在四边形ABCD中,180ABC ADC∠+∠=︒,AB=BC.〔1〕如图1,假设90BAD∠=︒,AD=2,求CD的长度;〔2〕如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:1902PBQ ADC∠=︒-∠;〔3〕如图3,假设点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,那么〔2〕中的结论是否成立?假设成立,请给出证明过程,假设不成立,请写出PBQ∠与ADC∠的数量关系,并给出证明过程.9.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.〔1〕如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;〔2〕如图2,当点E不是线段AC的中点时,求证:BE=EF;〔3〕如图3,当点E是线段AC延长线上的任意一点时,〔2〕中的结论是否成立?假设成立,请给予证明;假设不成立,请说明理由.10.如图1,在菱形ABCD中,∠ABC=60°,假设点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.〔1〕过D作DH⊥AB,垂足为H,假设DH=BE=14AB,求DG的长;〔2〕连接CP,求证:CP⊥FP;〔3〕如图2,在菱形ABCD中,∠ABC=60°,假设点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第〔2〕问的结论成立吗?假设成立,求出PFCP的值;假设不成立,请说明理由.图1DABCADBCPQ图2ADBCPQ图3G11.如图1,ABC ∆中,BE AC ⊥于点E ,AD BC ⊥于点D ,连接DE . 〔1〕假设AB BC =,1DE =,3BE =,求ABC ∆的周长;〔2〕如图2,假设AB BC =,AD BD =,ADB ∠的角平分线DF 交BE 于点F ,求证:2BF DE =;〔3〕如图3,假设AB BC ≠,AD BD =,将ADC ∆沿着AC 翻折得到AGC ∆,连接DG 、EG ,请猜测线段AE 、BE 、DG 之间的数量关系,并证明你的结论。
专题25 难度大的必考动点问题强化练(共9道小题)1.(2019山东青岛)已知:如图,在四边形A8CD中,AB//CD,∠ACB=90°,A8=10cm,BC=8cm OD垂直平分AC,点P从点B出发,沿BA方向匀速运动,速度为lcm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG,设运动时间为t(s)(0<t<5),解答下列问题:(1)当为何值时,点E在∠BAC“的平分线上?(2)设四边形PECO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出的t值:若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.【答案】见解析【解析】(1)在Rt ABC∆中,90ACB∠=︒,10AB cm=,8BC cm=,6()AC cm∴==,OD垂直平分线段AC,3()OC OA cm∴==,90DOC∠=︒,//CD AB,BAC DCO∴∠=∠,DOC ACB∠=∠,DOC BCA∴∆∆∽,∴AC AB BC OC CD OD==,∴61083CD OD==, 5()CD cm ∴=,4()OD cm =, PB t =,PE AB ⊥, 易知:34PE t =,54BE t =,当点E 在BAC ∠的平分线上时,EP AB ⊥,EC AC ⊥,PE EC ∴=,∴35844t t =-, 4t ∴=.∴当t 为4秒时,点E 在BAC ∠的平分线上.(2)如图,连接OE ,PC .()OEG OPE OEG OPC PCE OEC OPEG S S S S S S S ∆∆∆∆∆∆=+=++-四边形141415315(4)3[3(8)(8)3(8)]252524524t t t t t =⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- 23156(05)88t t t =-++<<. (3)存在.235267()(05)8232S t t =--+<<,52t ∴=时,四边形OPEG 的面积最大,最大值为26732. (4)存在.如图,连接OQ . OE OQ ⊥,90EOC QOC ∴∠+∠=︒, 90QOC QOG ∠+∠=︒,EOC QOG ∴∠=∠,tan tan EOC QOG ∴∠=∠,∴EC GQOC OG=, ∴358544345t tt -=-, 整理得:25611600t t -+=,解得t =5t =>(舍弃)∴当t =OE OQ ⊥. 2. (2020四川成都)如图,在矩形ABCD 中,4AB =,3BC =,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH PQ ⊥于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为_________,线段DH 长度的最小值为_________.【答案】 (1). 【解析】连接EF ,则EF ⊥AB ,过点P 作PG ⊥CD 于点G ,如图1,由于222PQ PG QG =+,而PG=3,所以当GQ 最大时PQ 最大,由题意可得当P 、A 重合时GQ 最大,据此即可求出PQ 的最大值;设EF 与PQ 交于点M ,连接BM ,取BM 的中点O ,连接HO ,如图2,易证△FQM ∽△EPM ,则根据相似三角形的性质可得EM 为定值2,于是BM 的长度可得,由∠BHM=∠BEM=90°可得B 、E 、H 、M 四点共圆,且圆心为点O ,于是当D 、H 、O 三点共线时,DH 的长度最小,最小值为DO -OH ,为此只需连接DO ,求出DO 的长即可,可过点O 作ON ⊥CD 于点N ,作OK ⊥BC 于点K ,如图3,构建Rt △DON ,利用勾股定理即可求出DO 的长,进而可得答案. 解:连接EF ,则EF ⊥AB ,过点P 作PG ⊥CD 于点G ,如图1,则PE=GF ,PG=AD=3, 设FQ=t ,则GF=PE=2t ,GQ=3t ,在Rt △PGQ 中,由勾股定理得:()2222223399PQ PG QG t t =+=+=+, ∴当t 最大即EP 最大时,PQ 最大,由题意知:当点P 、A 重合时,EP 最大,此时EP=2,则t=1,∴PQ 的最大值=设EF 与PQ 交于点M ,连接BM ,取BM 的中点O ,连接HO ,如图2,∵FQ ∥PE ,∴△FQM ∽△EPM , ∴12FM FQ EM PE ==, ∵EF=3, ∴FM=1,ME=2,∴BM ==,∵∠BHM=∠BEM=90°,∴B 、E 、H 、M 四点共圆,且圆心为点O ,∴12OH OB BM === ∴当D 、H 、O 三点共线时,DH 的长度最小,连接DO ,过点O 作ON ⊥CD 于点N ,作OK ⊥BC 于点K ,如图3,则OK=BK=1, ∴NO=2,CN=1,∴DN=3,则在Rt △DON 中,DO ==∴DH 的最小值=DO -故答案为:-【点睛】本题考查了矩形的性质、勾股定理、相似三角形的判定和性质、四点共圆以及线段的最值等知识,涉及的知识点多、综合性强、具有相当的难度,属于中考压轴题,正确添加辅助线、熟练掌握上述知识是解题的关键.3.(2020•凉山州)如图,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 、点Q 以相同的速度,同时从点A 、点B 出发.(1)如图1,连接AQ 、CP .求证:△ABQ ≌△CAP ;(2)如图1,当点P 、Q 分别在AB 、BC 边上运动时,AQ 、CP 相交于点M ,∠QMC 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.【答案】见解析。
天津市和平区普通中学2021届初三数学中考复习矩形、菱形和正方形专项复习练习1.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 32.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④3. 关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形4. 如图,在菱形ABCD中,过点D做DE⊥AB于点E,做DF⊥BC于点F,连结EF. 求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.5. 如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500 m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100 m,求小聪行走的路程.6. 如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.7. 如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB,外角∠ACD的平分线于点E,F.(1)若CE =8,CF =6,求OC 的长;(2)连结AE ,AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.8. 如图,在▱ABCD 中,BC =2AB =4,点E ,F 分别是BC ,AD 的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF 为菱形时,求出该菱形的面积.9. 已知菱形的周长为45,两条对角线的和为6,求菱形的面积.10. 如图,已知E ,F ,G ,H 分别为菱形ABCD 四边的中点,AB =6 cm ,∠ABC =60°.(1)试判断四边形EFGH 的类型,并证明你的结论;(2)求四边形EFGH 的面积.11. 如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF⊥DE,垂足为F ,BF 分别交AC 于H ,交CD 于G.(1)求证:BG =DE ;(2)若点G 为CD 的中点,求HG GF的值. 12. 已知正方形的对角线AC ,BD 相交于点O .(1)如图1,E ,G 分别是OB ,OC 上的点,CE 与DG 的延长线相交于点F .若DF ⊥CE ,求证:OE =OG ;(2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH ,交CE 于点F ,交OC 于点G .若OE =OG .①求证:∠ODG =∠OCE ;②当AB =1时,求HC 的长.答案与解析:1. A2. B【解析】当▱ABCD 的面积最大时,四边形ABCD 为矩形,得出∠A =∠B =∠C =∠D =90°,AC =BD ,根据勾股定理求出AC =32+42=5,①正确,②正确,④正确;③不正确;故选B.3. C4. 解:(1) ∵四边形ABCD 是菱形,∴AD =CD ,∠A =∠C ,∵DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =90°,∴△ADE ≌△CDF(2) ∵四边形ABCD 是菱形,∴AB =CB ,∵△ADE ≌△CDF ,∴AE =CF ,∴BE =BF ,∴∠BEF =∠BFE5. 解:小敏走的路程为AB +AG +GE =1500+(AG +GE)=3100,则AG +GE =1600 m ,小聪走的路程为BA +AD +DE +EF =3000+(DE +EF).连结CG ,在正方形ABCD 中,∠ADG =∠CDG=45°,AD =CD ,在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG,DG =DG ,∴△ADG ≌△CDG ,∴AG =CG.又∵GE⊥CD,GF⊥BC,∠BCD =90°,∴四边形GECF 是矩形,∴CG =EF.又∵∠CDG=45°,∴DE =GE ,∴小聪走的路程为BA +AD +DE +EF =3000+(GE +AG)=3000+1600=4600 m6. 解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC,∴∠ABC +∠BAD =180°,∵∠ABC ∶∠BAD =1∶2,∴∠ABC =60°,∴∠DBC =12∠ABC=30°,则tan ∠DBC =tan30°=33(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形【解析】(1)由四边形ABCD 是菱形,得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠DBC 的度数;(2)由四边形ABCD 是菱形,得到对角线互相垂直,即∠BOC =90°,利用有一个角为直角的平行四边形是矩形即可得证.7. 解:(1)∵EF 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠OCE =∠BCE,∠OCF =∠DCF,∵EF ∥BC ,∴∠OEC =∠BCE,∠OFC =∠DCF,∴∠OEC =∠OCE,∠OFC =∠OCF,∴OE =OC ,OF =OC ,∴OE =OF ;∵∠OCE+∠BCE +∠OCF+∠DCF=180°,∴∠ECF =90°,在Rt △CEF 中,由勾股定理得:EF =CE 2+CF 2=10,∴OC =OE =12EF =5 (2)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下:连结AE ,AF ,当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形【解析】(1)根据平行线的性质以及角平分线的性质得出∠OEC =∠OCE ,∠OFC =∠OCF ,证出OE =OC =OF ,∠ECF =90°,由勾股定理求出EF ,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.8. 解:(1)∵▱ABCD ,∴AB =CD ,BC =AD ,∠ABC =∠CDA.又∵BE=EC =12BC ,AF =DF =12AD ,∴BE =DF.∴△ABE ≌△CDF (2)∵四边形AECF 为菱形,∴AE =EC.又∵点E 是边BC 的中点,∴BE =EC ,即BE =AE.又BC =2AB =4,∴AB =12BC =BE ,∴AB =BE =AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高为2×sin60°=3,∴菱形AECF 的面积为2 39. 解:四边形ABCD 是菱形,AC +BD =6,∴AB =5,AC ⊥BD ,AO =12AC ,BO =12BD ,∴AO +BO =3,∴AO 2+BO 2=AB 2,(AO +BO)2=9,即AO 2+BO 2=5,AO 2+2AO ·BO+BO 2=9,∴2AO ·BO =4,∴菱形的面积是12AC·BD=2AO·BO=4 【解析】根据菱形对角线互相垂直,利用勾股定理转化为两条对角线的关系式求解.10. 解:(1)连结AC ,BD ,相交于点O ,∵E ,F ,G ,H 分别是菱形四边上的中点,∴EH =12BD =FG ,EH ∥BD ∥FG ,EF =12AC =HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD ,∴EF ⊥EH ,∴四边形EFGH 是矩形 (2)∵四边形ABCD是菱形,∠ABC =60°,∴∠ABO =30°,∵AC ⊥BD ,∴∠AOB =90°,∴AO =12AB =3,∴AC =6,在Rt △AOB 中,由勾股定理得OB =AB 2-OA 2=33,∴BD =63,∵EH =12BD ,EF =12AC ,∴EH =33,EF =3,∴矩形EFGH 的面积=EF·FG=9 3 cm 211. 解:(1)∵BF⊥DE,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF,∴∠CBG =∠CDE,在△BCG 与△DCE 中,∵∠CBG =∠CDE,BC =CD ,∠BCG =∠DCE,∴△BCG ≌△DCE(ASA),∴BG =DE(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG≌△DCE(ASA),∴CG =CE =1,∴由勾股定理可知:DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH ,∴AB CG =BH HG =21,∴BH =253,GH =53,∴HG GF =53【解析】(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG =DE ;(2)设CG =1,从而知CG =CE =1,由勾股定理可知:DE =BG =5,易证△ABH∽△CGH,所以BH HG=2,从而可求出HG 的长度,进而求出HG GF的值. 12. 解:(1) ∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE =90°,∴∠OEC +∠OCE =90°.∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE.∴△ODG ≌△OCE(ASA),∴OE =OG(2)①∵OD =OC ,∠DOG =∠COE=90°,又OE =OG ,∴DOG ≌COE(SAS),∴∠ODG =∠OCE②设CH =x ,∵四边形ABCD 是正方形,AB =1,∴BH =1-x ,∠DBC =∠BDC=∠ACB =45°,∵EH⊥BC,∴∠BEH =∠EBH=45°.∴EH =BH =1-x.∵∠ODG=∠OCE,∴∠BDC -∠ODG=∠ACB-∠OCE.∴∠HDC=∠ECH.∵EH⊥BC,∴∠EHC =∠HCD=90°.∴△CHE ∽△DCH.∴EH HC =HC CD. ∴HC 2=EH·CD,得x 2+x -1=0.解得x 1=5-12,x 2=-5-12(舍去).∴HC=5-12。
专题25 正方形问题
1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2.正方形的性质:
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3.正方形的判定
判定一个四边形是正方形的主要依据是定义,途径有两种:
一是先证它是矩形,再证有一组邻边相等。
即有一组邻边相等的矩形是正方形。
二是先证它是菱形,再证有一个角是直角。
即有一个角是直角的菱形是正方形。
4.正方形的面积:设正方形边长为a ,对角线长为b ,S=22
2
b a
【例题1】(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD .则正方形ABCD 的面积为 .(用含a ,b 的代数式表示)
【对点练习】(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.
【例题2】(2020•青岛)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.
【对点练习】(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()
A.B.C.﹣1 D.
【例题3】(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.
(1)求证:△BAE≌△CDE;
(2)求∠AEB的度数.
【对点练习】(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.
(1)求证:△DOG≌△COE;
(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=1
2
,求正方形OEFG的边长.
一、选择题
1.(2020•河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()
A .(32,2)
B .(2,2)
C .(114,2)
D .(4,2)
2.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( )
A .1和1
B .1和2
C .2和1
D .2和2
3.(2020•温州)如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为( )
A .14
B .15
C .8√3
D .6√5
4.(2020•南京)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若⊙P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )
A.(9,2)B.(9,3)C.(10,2)D.(10,3)
5.(2020•天津)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()
A.(6,3)B.(3,6)C.(0,6)D.(6,6)
二、填空题
6.(2020•连云港)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为.
7.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.
8.(2020•天水)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.
9.(2020•德州)如图,在矩形ABCD中,AB=√3+2,AD=√3.把AD沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是√6−2;②弧D'D″的长度是5√3
π;③△A′AF≌△A′
12
EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是.
10.(2020•攀枝花)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:
①AF⊥DE;②DG=8
;③HD∥BG;④△ABG∽△DHF.
5
其中正确的结论有.(请填上所有正确结论的序号)
11.(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:
①△ABE∽△ECG;
②AE=EF;
③∠DAF=∠CFE;
④△CEF的面积的最大值为1.
其中正确结论的序号是.(把正确结论的序号都填上)
12.(2020•河南)如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.
三、解答题
13.(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.
(1)求证:EF=DE;
(2)当AF=2时,求GE的长.
14.(2019湖南湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF
=CE.
(1)求证:△ABF≌△CBE;
(2)若AB=4,AF=1,求四边形BEDF的面积.
15.(2020湖北仙桃模拟)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E 作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:
(1)AE⊥BF;
(2)四边形BEGF是平行四边形.
16.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.
(1)试判断AG与FG是否相等?并给出证明;
(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.
17.(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.。