航 空 发 动 机 叶 片 涂 层
- 格式:doc
- 大小:292.00 KB
- 文档页数:8
那些漂亮的航空发动机叶片必须经过这个制造技术的打磨!航空发动机零件的表面质量是评价产品的一个重要指标。
目前,一些复杂型面航空零件的边缘倒圆、机加叶片零件表面的残留刀纹去除仍未完全摆脱手工抛光方式,除了耗费大量的人力资源,也易造成产品质量不稳定,甚至影响发动机整机性能与寿命。
滚磨光整技术能有效地提高零件表面质量等级,清除毛刺、刀痕等表面缺陷,还能使零件金属表层产生微弱的塑性变形,改善表面残余应力状况。
当前在一些航空发动机零件制造中应用滚磨光整技术,已取得了较好的经济效益与社会效益。
滚磨光整加工滚磨光整加工是将工件、磨块和磨剂按一定混合比装入滚筒中,当滚筒运动时,在工件和磨块间产生强大的挤压力和强制流动力,迫使磨块对工件产生碰撞、滚压、滑擦和刻划,从而实现对工件表面的光整加工。
1滚磨光整加工的类型根据滚筒的运动方式,滚磨光整加工可分为以下几种形式:(1)回转式滚磨:滚筒作单一的回转运动,其转速n 必须小于某固定值,否则工件与磨料将紧贴在滚筒周壁,相互间不产生相对运动而无法实现表面的光整加工。
因此,这种加工方法效率低、质量差,现已逐渐被其他方法所取代。
(2)振动式滚磨:滚筒作三维的空间振动运动,工件和磨料在圆环形容器中沿螺旋轨迹运动,形成复杂的运动轨迹。
这种加工方法对细化表面质量较好,对表面物理机械性能的改善不大,不适用于较大较长的工件。
(3)离心式滚磨:滚筒既自转又公转作行星运动。
这种加工方法可以获得较高的加工质量和加工效率。
(4)主轴回转滚磨:滚筒作回转运动,夹持工件的主轴作逆向回转。
这种加工方法工件有固定的位置,当滚筒与主轴选择合适的相对转速时,便可以获得较好的加工质量和较好的加工效率。
(5)旋转振动式滚磨:滚筒兼具回转运动与空间振动运动方式。
磨料运动轨迹复杂,更易加工一些复杂型面的大型工件。
2滚磨光整的功能特点及适用范围滚磨光整主要有以下特点:(1)操作简单,生产效率高,环境污染小;(2)可实现铸锻件的去飞边、去氧化层和表面清洁处理,也可用于切削加工后零件去毛刺、棱边倒圆和细化表面,降低表面粗糙度值;(3)可适度改善表面应力分布状态;(4)对于内孔、沟槽及凹陷表面的光整加工相对较难,对易变形、易磕碰零件需在光整过程中作防护处理。
国内外旋转机械故障案例一、国内旋转机械故障案例。
1. 电厂汽轮机振动故障。
我有个朋友在电厂工作,他们那儿的汽轮机有次出了大问题。
这汽轮机就像个巨大的、爱闹脾气的大家伙。
正常的时候,它稳稳地转着发电,可那次突然开始剧烈振动。
就像一个平时很沉稳的人突然开始疯狂跳舞一样。
工程师们赶紧检查,发现是叶片断了一片。
你想啊,汽轮机的叶片就像风扇的扇叶一样,少了一片那肯定转得不平稳了。
原来是那片叶片有制造缺陷,长期运行后就扛不住压力断了。
这一断可不得了,整个汽轮机就像瘸了腿的马,不但振动得厉害,还影响发电效率。
后来费了好大劲儿才把断叶片取出来,换上新的叶片,又重新做了动平衡调试,这汽轮机才又正常工作了。
2. 工厂里的离心风机故障。
在一个生产化肥的工厂,有一台离心风机。
这风机每天呼呼地转,把生产过程中的废气排出去。
有一天,工人发现风机的声音不对劲儿,就像人感冒了喉咙里有痰一样,呼呼噜噜的。
维修师傅一检查,发现是风机的轴承磨损严重。
这轴承啊,就像风机的关节一样,关节磨损了,转起来就不顺溜了。
原来是风机长时间运行,而且工厂环境比较恶劣,有很多灰尘和小颗粒进到轴承里,就把轴承给磨坏了。
维修师傅只好把旧轴承拆下来,换上新的轴承,还对风机的密封系统进行了改进,防止灰尘再进去捣乱。
3. 水轮机的转轮故障。
有个水电站的水轮机出了故障。
这水轮机就像一个巨大的水车,靠水流的力量转动来发电。
水轮机的转轮是关键部件,就像水车的轮子一样。
这次转轮出现了裂纹。
为啥呢?因为这个水电站的水流有时候不太稳定,一会儿大一会儿小,就像人的情绪忽高忽低一样。
转轮长期受到这种不稳定水流的冲击,金属材料就疲劳了,慢慢就出现了裂纹。
要是不及时处理,这裂纹越来越大,转轮可能就会坏掉。
工程师们用了一种特殊的焊接技术,把裂纹修复了,还对水轮机的运行参数进行了调整,让它能更好地适应不稳定的水流。
二、国外旋转机械故障案例。
1. 美国某飞机发动机故障。
听说美国有架飞机的发动机出过事。
航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层:回顾与展望陈卫杰1*, 宋 鹏1, 高 栋2, 汪 超3(1.昆明理工大学 材料科学与工程学院, 昆明 650093;2.中国航发商用航空发动机有限责任公司 研发中心材料工艺部, 上海 200241;3.上海电气燃气轮机有限公司 燃气轮机研究所, 上海 200240)摘要:超音速火焰喷涂制作的金属黏结层加料浆喷涂制作的柱状晶结构陶瓷隔热层被视作新一代航空发动机和燃气轮机用热喷涂热障涂层,其中采用的M CrAlY 金属黏结层正朝着长寿命、低成本、适用于新燃料的方向发展。
本文综述近年来航空发动机和燃气轮机热端部件热障涂层用M CrAlY 金属黏结层研究进展,并对涂层的结构设计与成分设计进行探讨。
关键词:燃气轮机;热障涂层;金属黏结层;长寿命;低成本;成分设计doi :10.11868/j.issn.1005-5053.2021.000217中图分类号:TB3 文献标识码:A 文章编号:1005-5053(2022)01-0015-10热障涂层广泛用于航空发动机和工业燃气轮机的热端部件,保证热端部件能够在高温环境中持续工作,提高工作效率。
热障涂层通常被分为两大类:热喷涂热障涂层和电子束物理气相沉积热障涂层。
传统的热喷涂热障涂层为层状结构,具有相对较低的热导率,但是抵抗热循环的能力较低,通常用于不需频繁经历热循环的部件,如燃烧室的内衬和导向叶片;电子束物理气相沉积热障涂层为柱状结构,热导率相对较高,抵抗热循环的能力也较高,用于苛刻热循环环境工作的高压涡轮叶片和导向叶片。
热喷涂热障涂层因其较低的设备成本、较高的生产效率以及较低的生产成本被众多科研院所、涂层生产商、航空发动机和工业燃气轮机行业重视并大力推广。
本文简要回顾近年热喷涂热障涂层的发展趋势,着重讨论热喷涂热障涂层使用的金属黏结层技术,包括涂层工艺和成分设计,并对金属黏结层的发展方向进行探讨。
1 航空发动机和工业燃气轮机用热喷涂热障涂层的发展热喷涂M CrAlY (M = Ni/Co) + YSZ (ZrO 2 + 8%Y 2O 3) 热障涂层(TBCs )通常被用于航空发动机和工业燃气轮机的热端部件(如燃烧室和导向叶片)(表1),以提高部件的工作温度,延长部件的服役寿命。
表面技术在航天及飞机方面的的应用表面技术是指表面经过预处理后,通过表面涂覆、表面改性、表面处理及复合技术,改变固体金属材料表面或非金属材料表面的形貌、化学成分、组织结构和应力状况等,以获得所需要的表面性能的技术[2]。
在飞机结构维修过程中合理运用表面技术对飞机结构表面进行修复,不仅可以恢复飞机结构原有的功能特性,还可以使飞机结构具有比基体材料更优异的性能,如更高的耐磨性、抗腐蚀性和耐高温性。
表面技术在飞机结构修理中研究和推广,既可以有效修复飞机损伤结构表面,又可在节能、节材方面发挥巨大作用,有力地推动飞机维修技术的发展。
以整个航天领域的应用为例。
实际上表面工程技术在整个航天领域应用是非常广的。
获得的应用几乎涵盖了所有的表面工程技术,大家都知道表面工程技术一般分为三大类:表面改性技术、薄膜技术,涂镀层技术。
首先说表面改性,大家都知道,航天上用的最多是铝合金,而铝合金的阳极氧化处理最为广泛,有瓷质阳极化、有硫酸阳极化包括硫酸硬质阳极化和普通硫酸阳极化;黑色金属的发蓝处理、化学热处理方面有渗碳、渗氮等。
薄膜技术航天上也应用了很多,特别是在一些电子元器件上,PVD和CVD等都有应用。
涂镀层技术方面,首先从涂料上来说,大家都看过航天火箭发射,整个火箭表面都是有保护涂料层的;像武器系列,外表面还需要有三防或四防漆层;再有像电镀应用也非常广泛,有电镀铜、电镀镍,电铸铜工艺有重要用途,有些型号的发动机的喷管就是电铸成型的;像化学镀用的也比较多,如化学镀镍等;热喷涂的应用非常广泛,航天领域受热的地方比较多,所以热障涂层应用最多,甚至包括发动机的喷管内壁都要涂上热障涂层,还有机械动密封部位采用等离子喷涂的陶瓷耐磨密封涂层。
总之表面工程技术在航天领域应用是非常广泛的。
而且往往是表面工程最先进的技术优先用于航天领域,然后再逐渐扩展到其他民用领域。
飞机结构修理中常用的表面技术表面技术通常包括表面涂覆、表面改性和表面处理。
飞机机体结构的腐蚀与维修论文摘要:飞机作为航空运输工具,不可避免地要在各种外界环境下工作,可以说,机体结构的耐腐蚀性能仅是相对于时间而言的,而它出现腐蚀的可能性则是必然的。
由于飞机金属的腐蚀而致使飞机使用寿命大大减少。
为了减轻航空公司的开支,加大航空运营成本,节约金属资源,各航空公司都采用一系列的飞机金属腐蚀维修措施。
随着技术的不断成熟,现今的金属腐蚀维修与防治水平有了更大的提升。
主要包括:机体外部涂层防护;定期检测,更换易腐蚀部件;在易腐蚀部位加保护层与以新型复合材料代替金属作主要部件等。
并且,金属腐蚀维修因急性和地理气候不同而有差异。
论文背景:飞机作为航空运输工具,不可避免地要在各种外界环境下工作,可以说,机体结构的耐腐蚀性能仅是相对于时间而言的,而它出现腐蚀的可能性则是必然的。
由于飞机有不同的机型,其结构的防腐设计不尽相同,因而体现在具体机型上易于腐蚀的部位和构件也不尽相同。
全球每年因为金属腐蚀而造成的金属消耗高达几百万吨。
而对于高成本的航空公司而言,金属腐蚀带来的航运损失更是让航空公司深切体会到机体金属腐蚀维修工作的必要性。
关键字:腐蚀镀层正文:1.易腐蚀的部位及腐蚀成因飞机作为航空运输工具,不可避免地要在各种外界环境下工作,可以说,机体结构的耐腐蚀性能仅是相对于时间而言的,而它出现腐蚀的可能性则是必然的。
由于飞机有不同的机型,其结构的防腐设计不尽相同,因而体现在具体机型上易于腐蚀的部位和构件也不尽相同。
如:B777客舱地板梁改用复合材料,一是为了减轻重量,二就是为了防腐。
铆钉连接的蒙皮,在铆钉周围和蒙皮的边缘处会产生丝状腐蚀,这是由于埋头窝处的蒙皮与铆钉头之间有空隙,使该处的漆层破裂或剥落,湿气和污物侵入形成腐蚀源。
飞机的勤务门后蒙皮经常出现这种腐蚀。
客舱进口门处厕所和厨房区域的下部地板梁结构特别容易遭受污水等物质的侵蚀,易产生腐蚀,座椅轨道处的污物、灰尘积留在轨道上易产生腐蚀。
机身客舱门、货舱门、接近口、勤务门这些地方为保持强度,结构复杂,易构成夹缝和空腔;另外客货舱门、服务门易出现人为的结构保护层的损伤,也易积留脏物;客舱门下、货舱门槛处受雨水和污物的渗湿易发生腐蚀。
先进航空发动机热防护涂层一、研究背景燃烧室和高压涡轮:温度最高、压力最大发动机热端部件温度分布(Rolls-Royce 900发动机)一、研究背景随着推重比增加,发动机叶片表面工作温度不断升高,对叶片合金材料提出更高要求。
推重比10 12~15 1520涡轮前温度:1850~1950K 2000~2100K 21002200K叶片表面温度:>1400K >1500K >1600K一、研究背景目前最先进的单晶高温合金的极限使用温度约为1150℃,低于高推重比航空发动机叶片要求的工作温度,而且已经接近高温合金的初熔温度。
高温材料的单一使用已经难以满足高推重⒍ 杆俜⒄固岢?的迫切要求一、研究背景防护涂密封涂层层热障涂层撞击涂层密封涂磨蚀涂层层防护涂磨蚀涂层层高温防护涂层技术是燃气涡轮发动机叶片技术中与高效冷却技术、高温结构材料技术并重的三大主要技术之一。
一、研究背景国外叶片试车前后的烧损状况海洋气氛腐蚀环境工作2500h后的叶片,左:无涂层,右:涂层一、研究背景高温合金材料的温度发展史高温防护涂层技术、高效冷却技术、高温结构材料技术并重为航空发动机涡轮叶片的三大关键技术。
热障涂层TBCs:耐高温、低导热、抗腐蚀的陶瓷材料以涂层的方式与合金相复合,降低高温环境下工件表面工作温度的一种高温热防护技术。
隔热效果50120 K 涂覆了热障涂层的涡轮工作叶片高温合金陶瓷隔热层粘结层热障涂层的作用显著提高发动机推力:高温合金能承受更高的使用环境温度,提高涡轮前进口温度。
工作温度提高14-15K,推力增加100kgf(总推力增加1-2%)。
降低热端部件温度:大幅度提高发动机寿命(表面温度每降低14K,相当于提高工件寿命1倍)和可靠性。
降低气体冷却量,降低耗油量,节省燃料。
提高了热端部件耐冲刷、耐氧化腐蚀的能力,在航空航天、兵器、船舶、能源等多领域都具有广泛的应用价值。
热障涂层的应用美、俄等先进战斗机民航机Boeing 747 大推力火箭大型军用运输机美国C-17 新一代跑车热障涂层的应用美国、俄罗斯等工业发达国家在先进战斗机、大型军用运输机、大型民机、地面燃机、舰载机等用发动机上采用了TBC技术,计划在所有航空发动机上采用TBC,TBC在航空航天、航海、能源、兵器等领域有着广泛的应用前景。
发动机叶片发动机与飞机1.发动机种类1)涡轮喷气发动机(WP)WP5、WP6、WP7、……WP132)涡轮螺桨发动机(WJ)WJ5、WJ6、WJ73)涡轮风扇发动机(WS)WS9、WS10、WS114)涡轮轴发动机(WZ)WZ5、WZ6、WZ8、WZ95)活塞发动机(HS)HS5、HS6、HS92.发动机的结构与组成燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。
(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1〜5)发动机的整体结构3.发动机工作原理及热处理过程工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。
热力过程:用P-U或T-S图来表示发动机的热力过程:图1•发动机等压加热理想循环4.飞机与发动机发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。
如:1)军民用运输机、轰炸机、客机、装用WJ、WS、WP类发动机。
2)强击机、歼击机、教练机、侦察机、装用WP、WS、HS类发动机。
3)军民用直升机装用WZ类发动机。
二、叶片在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。
叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。
1.叶片为什么一定要扭在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。
航-空-发-动-机-叶-片-涂-层能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。
就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。
好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。
空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。
这一步的改进仍难满足需要,且英国发展计划将取消冷却。
二是涂层,常进行多材质多层次涂层。
PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。
二.涡轮叶片的涂层高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys动机叶片。
从图1看出:使用单晶后,蠕变和热疲劳提高9倍,但抗腐蚀性只提高4倍,增加涂层仍十分必要。
涡轮叶片的涂层的方法很多,常用的有热渗、磁控溅射、热喷涂三种,热渗法方法简单方便,成本低,也是最适合叶片内腔涂层的方法。
热渗法属于化学热处理,利用高温的方法将化学原子扩散注入到基体金属中,并在其表面沉积均匀的保护膜。
根据使用原料的状态的不同,又可分为固体粉末包埋法、气相法、液相法和浆料法,其中固体粉末包埋法、气相法用得最广。
热渗涂层原理简单,但工艺控制方法是关键,我国已有相关部门在进行这方面的研究,但从公布的图片看,仍有差距;国外对军工涂层技术也是封锁的。
下面谈GE和Siemens两家世界最大的燃气轮机生厂家的有关情况。
航空发动机叶片涂层技术
一.涡轮叶片是先进航空发动机核心关键之一
航空发动机被称为现代工业“皇冠上的明珠”,航空发动机是飞机的“心脏”,价值一般占到整架飞机的20%-25%。
目前,能独立研制、生产航空发动机的国家只有美、英、法、俄、中5个。
但是,无论“昆仑”、“秦岭”发动机、还是“太行”系列,我国航空发动机的水平距离这一领域的“珠穆朗玛”依然存在不小的差距。
美、俄、英、法四个顶级“玩家”能够自主研发先进航空发动机。
西方四国由于对未来战场与市场的担忧,在航空发动机核心技术上一直对中国实施禁运和封锁。
技术难关有很多。
本人认为涡轮叶片是先进航空发动机的核心技术之一。
随着航空航天工业的发展,对发动机的性能要求越来越高,要使发动机具有高的推重比和大的推动力,所采用的主要措施是提高涡轮进口温度。
国外在20世纪90年代,要求涡轮前燃气进口温度达1850-1950K。
美国在IHPTET计划中要求:在海平面标准大气条件下,航空燃气涡轮机的的涡轮进口温度高达2366K。
涡轮进口温度的提高要求发动机零件必须具有更高的抗热冲击、耐高温腐蚀、抗热交变和复杂应力的能力。
对于舰载机,由于在海洋高盐雾环境下长期服役,要求发动机的叶片的耐腐蚀性更高;常在沙漠上飞行的飞机,发动机的叶片要具有更好的耐磨蚀。
众所周知:镍基和钴基高温合金具有优异的高温力学和腐蚀性
能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。
就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。
好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。
空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。
这一步的改进仍难满足需要,且英国发展计划将取消冷却。
二是涂层,常进行多材质多层次涂层。
PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。
二.涡轮叶片的涂层
高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发
Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys
动机叶片。
从图1看出:使用单晶后,蠕变和热疲劳提高9倍,但抗腐蚀性只提高4倍,增加涂层仍十分必要。
涡轮叶片的涂层的方法很多,常用的有热渗、磁控溅射、热喷涂三种,热渗法方法简单方便,成本低,也是最适合叶片内腔涂层的方法。
热渗法属于化学热处理,利用高温的方法将化学原子扩散注入到基体金属中,并在其表面沉积均匀的保护膜。
根据使用原料的状态的不同,又可分为固体粉末包埋法、气相法、液相法和浆料法,其中固体粉末包埋法、气相法用得最广。
热渗涂层原理简单,但工艺控制方法是关键,我国已有相关部门在进行这方面的研究,但从公布的图片看,仍有差距;国外对军工涂层技术也是封锁的。
下面谈GE和Siemens 两家世界最大的燃气轮机生厂家的有关情况。
GE的燃气轮机不仅用于民用发电,也应用于美国军事飞机、和海军舰艇。
图2 为GE不同涂层的性能对比图。
1968年GE研发了TF39涡轮风扇发动机,并应用于C-5“银河”远程重型运输机上。
Fig.2 Comparative resistance in types of coatings
1969年GE以TF39涡轮风扇发动机的核心机为基础,研制新型L M25OO燃气轮机样机,LM2500的输出功率达到了25500马力(18755千瓦),效率达到了35.5%,首次装于31艘8040吨的“斯普鲁恩斯”级导弹驱逐舰,最大航速达到33节
M25OO燃气轮机的燃气发生器涡轮转子由一个锥形前轴、两个带叶片和护圈的涡轮盘、一个圆锥形转子隔板、一个热屏蔽和一个后轴组成,两级涡轮叶片均为长叶柄、内冷却式结构,叶根为机树形。
长叶柄叶片不但为冷却空气提供了通路,而且因为较高的阻尼作用减小了振动,轮盘外缘的温度也降低了。
叶片成对地钎焊在一起,材料为Rene80钴基合金,表面渗有抗腐蚀、抗氧化的钴铬铝钇保护层。
动力涡轮的6级工作叶片全部为带冠结构,抗振性能好,效率高,用耐腐蚀材料Rene77合金制造,前3级工作叶片表面还涂有防腐蚀涂层。
导向器叶片的前3级也是用Rene77合金制造,后3级则改为用Rene 41合金制造。
新的LM2500+型燃气轮机在1998年进行试车,功率达到了4050 0马力(29788千瓦),效率达到39.1%。
美国海军的LHD1“黄蜂”级大型两栖攻击舰的动力装置本来采用两台共7万马力(51485千瓦)的蒸汽轮机,从第8艘“马金岛”号(LHDS)起,已经改为使用两台LM25OO+燃气轮机推进。
在2005年开始对新一代LM2500+G4进行试验,最大功率达到了47370马力(34841千瓦),效率进一步提高到3 9.3%。
Seimens已成立了160多年,服务于中国已近140年,在中国有90多家营运企业。
Seimens生产的燃气轮机主要用于能源发电领域(本人暂末查在军事领域中的应用)。
华能上海燃机电厂配备了三台先进的Siemens燃气轮机,总装机容量达1200 MW,发电效率达到5 8%,是我国目前最大的联合循环电厂之一,2007年度亚洲最佳燃气电厂。
采用Seimens燃气轮机及技术的华能玉环电厂(4x1000MW)是我国高效清洁燃煤电厂建设史上的新里程碑,在机组容量、环保、高效率及节能方面居世界领先水平,整体效率高达45%。
涡轮机入口温度(TIT)从1060°C 提高到1075°C或者使用 4 1MAC 需要特殊的保护的热屏蔽涂料来适当的减少温度梯度(热气面/冷却空气面),以此充分减少叶片上的静态和动态负荷以获得相对长的使用年限。
防护涂层系统也必须保证在不那么可延展的热屏蔽薄层(TBC)和基础材料之间的最佳压焊。
为此需要特别发展的粘合层将T BC 粘合在基础材料上 (基于镍的铸件),因为这些材料的物理性质存在着极端的差别。
这些防护涂层(粘合层)也必须提供保护以防高温氧化和腐蚀。
叶片主要采用Rene合金+涂层。
三.上海晶淳新材料有限公司介绍
上海晶淳新材料有限公司是落户于上海市松江区城区,是一家专业从事金属、非金属(陶瓷)粉体材料及制品的民营高科技企业。
以“节能环保安全”为设计理念,开发生产低碳绿色环保型产品。
公司开发的粉体涂层材料主要用于燃气轮机叶片、模具和机械零部件的表面处理;公司开发的陶瓷低温烧结剂广泛应用于特种陶瓷行业;公司开发的金属粉末、粉末冶金和特种陶瓷制品广泛用于机械、冶金、化工、汽车电子等行业。
公司通过了Siemens公司的全面质量认证,是Siemens公司的燃气轮机叶片涂层材料定点生产厂家,产品质量达到并超过了原进口材料的质量水平,性能稳定可靠。
2011年已为Siemens公司生产近60吨涂层材料。
产品主要用于SGT5-4000F型燃气轮机叶片的涂层生产。
SGT5-4000F型燃气轮机,功率340MW(相当GE十台LM2500+G4型燃气轮机)。
重440t,燃气涡轮机长13m、高5m。
与火力发电和核发电相比较,燃气涡轮机的优点是效率高,有着很好的调节控制可能性。
只需15min的时间,启动后的涡轮机即可满负荷工作。
启动时,首先把发电机当作电动机使用、驱动着涡轮机的主轴旋转,多级压缩机的精密叶轮产生一定的压缩空气,点燃燃气之后,涡轮机继续旋转,直到稳定在其最高转速并带动发电机发电。
温度高达600℃的废气将被回收利用:由热交换器生产出蒸汽,并将这些蒸汽输送到燃气涡轮机后端的蒸汽涡轮机中进行发电。
已经很高的、几乎达到40%的燃气涡轮机效率也因此进一步得到了提高,整套发电机组的总效率高达6 0%。
公司粉体涂层材料现有渗铬粉和渗铝粉二种,渗铬粉型号为JC-SCR-55,主要用于叶片的外表面涂层,为粉体包埋法渗铬涂层。
图3
为渗铬涂层叶片。
Fig.3 渗铬涂层叶片
渗铝粉有JC-SA-5和JC-SA-20二个型号,主要用于叶片内腔的涂层; JC-SA-5为气态渗铝涂层,JC-SA-20为粉体包埋法渗铝涂层。
镍基高温合金涂铬厚度为60—100um。
镍基高温合金涂铝厚度为40—100um。
产品结构致密,防腐蚀性能优越。
Fig.4 涂层后金相(左为渗铬涂层,右为渗铝涂层)
四.参考文献(略)。