第3章 刚体定轴转动补充习题
- 格式:pdf
- 大小:394.96 KB
- 文档页数:11
刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?[ A ](A)角速度从小到大,角加速度从大到小。
(B)角速度从小到大,角加速度从小到大。
(C)角速度从大到小,角加速度从大到小。
(D)角速度从大到小,角加速度从小到大。
3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D )它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断5、(本题3分)5028如图所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M的物体,B 滑轮受拉力F ,而且F=Mg 设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 [ C ](A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB6、(本题3分)0294刚体角动量守恒的充分而必要的条件是 [ B ](A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
刚体的定轴转动习题参考答案1. t t t 4323+-=θ,4632+-==t t dt d θω,角加速度6622-==t dtd θβ2. 根据转动定律βI M =可知:和外力矩越大,角加速度越大。
3. 细杆静止,细杆所受各力对过B 的水平轴的力矩和为零,θθsin 2cos lmg Nl =,可知2tan θmg N =。
4. 根据转动惯量的定义⎰=Vdm r I 2,可知B A I I =5. 力矩为零,角动量守恒。
质点受力不为零,动量不守恒。
6. 根据力对转轴力矩的概念,(A )正确。
7. 外力力矩为零,角动量守恒。
8. 根据角动量守恒,ωω00031I I =,可得03ωω=。
二、填空题1、j i vππ68+-=2、16-⋅S rad ,210-⋅-Srad3、质量、质量分布、转轴的位置4、R mg μ325、2mR aag - 6、232mL ,mLv 7、角动量,04ω8、122-⋅⋅Sm kg1. j i r vππω68+-=⨯=。
2. 角速度t dt d 108-==θω,角加速度10-==dtd ωβ,可得t=0.2s 时刚体的角速度为16-⋅S rad 、角加速度为210-⋅-S rad 。
3. 根据转动惯量的定义,转动惯量与质量、质量分布以及转轴的位置有关。
4. 将圆形平板看做一系列同心圆环组成的,摩擦力对转轴的力矩为:32202mgR rdr R mrgrgdm M Rf μππμμ===⎰⎰。
5. 对于m :ma T mg =-;对于定滑轮:RaII TR ==β;将两式联立可求得定滑轮转动惯量2mR aag I -=。
6. 根据转动惯量∑∆=2mr I ,232mL I =;角动量mLv I =ω。
7. 物体受力为有心力,该力对圆心的力矩为零,所以角动量守恒;根据角动量守恒定律,有ωω202)2(R m mR =,则04ωω=。
8. 由角动量定理,1221L L Mdt t t -=⎰,有122-⋅⋅=∆=∆s m kg t FL L 。
习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200 转匀加快地增添到每分钟 2700 转,求:( 1)角加快度;( 2)在此时间内,曲轴转了多少转?解:(1)40 ( / )1rad s 2 90 (rad / s)2t 1 901240 25 (rad / s 2 ) 13 .1( rad / s 2 )6匀变速转动2 2(2)2 12 780 (rad ) n3 9 0(圈)23-2 一飞轮的转动惯量为J ,在 t 0 时角速度为0 ,今后飞轮经历制动过程。
阻力矩M 的大小与角速度的平方成正比,比率系数K 0 。
求:( 1)当0 3时 ,飞轮的角加快度;( 2)从开始制动到0 3 所需要的时间。
解:(1)依题意M JK 2 K 2 K 02 (rad / s2 )J 9Jd K 2 t 0 3 Jd 2J( 2)由dt J 得dt0 K2tK 03-3 如下图,发电机的轮 A 由蒸汽机的轮 B 经过皮带带动。
两轮半径 R A=30cm, R B75cm。
当蒸汽机开动后,其角加快度B0.8πrad/s2,设轮与皮带之间没有滑动。
求( 1 )经过多少秒后发电机的转速达到n A=600rev/min?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加快度。
解:(1) AA t BB t因为轮和皮带之间没有滑动,所以A 、B 两轮边沿的线速度同样,即ARA BRB2600 (rad / s) 联立得 tARA10(s)又 A20BRB60(2) A2 300 10 (rad / s) A AA( rad / s 2 )60t63-4 一个半径为R1.0m 的圆盘,能够绕过其盘心且垂直于盘面的转轴转动。
一根轻绳绕在圆盘的边沿, 其自由端悬挂一物体。
若该物体从静止开始匀加快降落,在t = 2.0s 内降落的距离 h = 0.4m 。
求物体开始降落后第 3 秒末,盘边沿上任一点的切向加快度与法向加快度。
V刚体的定轴转动习题班级 姓名 学号 成绩一、选择题1、一刚体以每分钟60转绕z 轴沿正方向做匀速转动,设此时该刚体上一点P 的位矢k j i r543++=,单位为10-2m ,若以12s m 10--⋅为速度单位,则该时刻点P 的速度为【 】(A )k j i v0.1546.1252.94++= (B )j i v8.181.25+-=(C )j i v8.181.15+= (D )k v4.32=2、下列说法中正确的是【 】(A )作用在定轴转动刚体上的力越大,刚体转动的角速度越大 (B )作用在定轴转动刚体上的合力矩力越大,刚体转动的角速度越大 (C )作用在定轴转动刚体上的合力矩力越大,刚体转动的角加速度越大 (D )作用在定轴转动刚体上的合力矩力为零,刚体转动的加速度为零3、两个均匀圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两圆盘对通过盘心垂直于盘面的轴的转动惯量各为A J 和B J ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定4、有两个半径相同、质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的转轴的转动惯量分别为J A 和J B ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定5、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止。
杆身与竖直方向成θ角,则A 端对墙壁的压力大小为【 】(A )4)cos (θmg (B )2)tan (θmg (C )θsin mg (D )不能唯一确定 6、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于转轴作用时,它们对转轴的合力矩一定是零 (2)这两个力都垂直于转轴作用时,它们对转轴的合力矩可能是零 (3)当这两个力的合力为零时,它们对转轴的合力矩也一定是零 (4)当这两个力对转轴的合力矩为零时,它们的合力也一定是零 在上述说法中【 】(A )只有(1)是正确的 (B )(1)(2)正确,(3)(4)错误 (C )(1)(2)(3)正确,(4)错误 (D )(1)(2)(3)(4)都正确7、半径为R 、质量为m 的匀质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的O O '轴转动,摩擦力对O O '轴的力矩为【 】(A )2mgR μ (B )mgR μ (C )2mgR μ (D )0 8、一不可伸长的摆线长L ,下挂一质量为m 的小球,小球静止。
第三章 刚体的定轴转动3-1 (1)铁饼离手时的角速度为(rad/s)250125===.//R v ω(2)铁饼的角加速度为2222539.8(ra d /s )222 1.25ωβ===θ⨯π⨯(3)铁饼在手中加速的时间为t ,则t ω=β(s)628025251222..=⨯⨯==πωθt3-2 (1)初角速度为(rad/s)9206020020./=⨯=πω末角速度为(rad/s)3146030002=⨯=/πω角加速度为231420.941.9(ra d /s )t7.0ω-ω-β===(2)转过的角度为)186(rad 101717231492023圈=⨯=⨯+=+=..t ωωθ(3)切向加速度为2t a R 41.90.28.38(m /s )=β=⨯=法向加速度为)(m /s10971203142422n ⨯=⨯==..R a ω总加速度为)(m/s10971)10971(378242422n 2t ⨯=⨯+=+=...a a a总加速度与切向的夹角为9589378101.97arctanarctan4tn '︒=⨯==.a a θ3-3 (1)对轴I 的转动惯量222219)cos602(])cos60()cos60([2maa a m a a a m J =︒++︒++︒=对轴II 的转动惯量2223)sin60(4maa m J =︒=(2)对垂轴的转动惯量2222312)2()cos30(222maa m a m maJ =+︒+=3-4 (1)设垂直纸面向里的方向为正,反之为负,则该系统对O 点的力矩为mgl l mg l mg l mg l mgM438141418343430=⋅-⋅-⋅+=(2)系统对O 点的总转动惯量等于各部分对O 点的转动惯之和,即22222432104837)43()43)(43(31)4)(4(31)4(mll m l m l m l m J J J J J =+++=+++= (3)由转动定律 βJ M = 可得lg mlmglJ M37364837432===β3-5 (1)摩擦力矩恒定,则转轮作匀角加速度运动,故角加速度为0001201)-(0.8ωωωωβ.-==∆-=t第二秒末的角速度为0000260220ωωωβωω..=⨯-=+=t(2)设摩擦力矩r M 与角速度ω的比例系数为α,据题设可知αωωαω==tJMrd d 即,t Jt Jtαωωαωωωω==⎰⎰0lnd d 0据题设s 1=t 时,0180ωω.=,故可得比例系数80ln .J =α由此s 2=t 时,转轮的角速度2ω为ln0.82ln2=ωω002264080ωωω..==∴3-6 设飞轮与闸瓦间的压力为N ,如图示,则二者间摩擦力N f r μ=,此摩擦力形成阻力矩f r,由转动定律βJ R f r =其中飞轮的转动惯量2mRJ =,角加速度n t520πωωβ-=-=,故得14(N)30.25(1000/60)605252-mnRf r =⨯⨯⨯-=-=ππ见图所示,由制动杆的平衡条件可得0= )(121l N l l F '-+r f N N '==μ得制动力(N)3140.75)(0.54050314)(211=+⨯=+=..l l l f F r μ3-7 如图所示,由牛顿第二定律 对11111:a m g m T m =- 对22222:a m T g m m =- 对整个轮,由转动定律β⎪⎭⎫⎝⎛+=-22221111222121R MR M R T R T 又由运动学关系 1122a /R a /R β== 联立解以上诸式,即可得222221111122)2/()2/()(R m MR m M gR m R m +++-=β3-8 设米尺的总量为m ,则直尺对悬点的转动惯量为习题3-6图习题3-7图2211222211J m l m l 331212m 0.4m 0.635351.4m150.093m=+=⨯⨯+⨯⨯==mg 1.02152mg 522153mg 53=⨯⨯-⨯⨯=M又 1.4M J I m 15=β=2M 0.1m g 1510.5(ra d s)J 1.4m-⨯∴β===从水平位置摆到竖直位置的过程中机械能守恒(以水平位置为O 势能点)221ωJ mghc=即 25.14.1211.0ωm mg ⨯=⨯21=⇒ω3-9 m 视为质点,M 视为刚体(匀质圆盘)。
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
第三章 刚体定轴转动一、选择题3.1、刚体转动惯量只取决于[ ](A )刚体的质量 (B )刚体的大小(C )转轴的位置 (D )刚体质量对给定转轴的分布3.2、从一个半径为R 的均匀薄板上挖去一个直径为R 的圆板,所形成的圆洞中心在距原薄板中心R/2处,所剩薄板的质量为m 。
此时薄板对于通过原中心而与板面垂直的轴的转动惯量是[ ] (A )2323mR(B )23213mR(C )2243mR(D )22413mR3.3、如图所示,均匀细杆长L 质量M ,由其上端的光滑水平轴吊起而处于静止。
今有一质量为m 的子弹以v 的速率水平射入杆中而不复出,射入点在轴下d 处。
则子弹停在杆中时杆的角速度是[ ] (A )2233mdML Mvd + (B )2233mdML mvL +(C )22323mdML mvd + (D )2233mdML mvd +3.4、一质量为M 半径为R 的均匀圆盘水平放置,以角速度0ω绕过其圆心的竖直固定光滑轴匀速转动。
今有一质量为M 的人从中心沿半径走到边缘,此时人和盘的总角速度与总转动动能分别为[ ] (A )12,32020ωωMR (B ) 43,220ωωMR (C )163,22020ωωMR (D )643,42020ωωMR3.5、一根均匀米尺,在其一端处被钉在墙上,且可以在竖直平面内自由转动。
先用手使米尺保持水平,然后释放,则米尺到竖直位置时的角速度是(SI 制)[ ] (A )g (B )g 2 (C )g 3 (D )3/2g二、填空题3.6、一绕定轴转动的刚体,其转动惯量为J ,转动角速度为0ω。
现受一与转动角速度的平方成正比的阻力矩的作用,比例系数为k (k>0)。
则此刚体转动的角速度为 ;刚体从0ω到0ω/2所需的时间为 。
3.7、如图所示,两个质量分布均匀的薄圆盘叠放并内切r R r R 2321==、,质量分别为21m m 、,他们对通过大圆圆心并垂直于盘面的轴的转动惯量是 。
大学物理习题及习题解答第三章 刚体的定轴转动31 两个不同半径的皮带轮 A 、B ,由传动皮带相连,轮半径 A Br r > .当它们转动时,问: (1)两轮边缘各点的线速度大小是否相等? (2)两轮角速度的大小是否相等?(3)两轮边缘处质点的法向加速度大小是否相等? (4)两轮边缘处质点的切向加速度大小是否相等? 答:当皮带在两轮上不打滑时,(1)相等,两轮边缘各点线速度的大小都等于皮带上点的速率。
(2)不等。
由于v r w = , A B v v = ,而 A B r r > 故 A Bw w < (3)不等。
由于 2n v a r= , A B v v = 而 A B r r > ,故 nA nBa a < (4)相等。
由于 A B v v = ,而A Bdv dv dt dt= ,故 tA tB a a = 32 一飞轮以转速 1 min 1500 - × = r n 转动,受制动均匀减速,经 s t 50 = 后静止。
(1)求角加速度a 和从制动开始到静止这段时间飞轮转过的转数 N ; (2)求制动开始后 s t 25 = 时飞轮的角速度w ;(3)设飞轮的半径 , 1m r = 求在 s t 25 = 时飞轮边缘上一点的速度和加速度。
解:(1) 1 0 2 601500- × ´ =s rad p w 由 0 t t w w a -= ,且 0 t w = ,得220 15002 3.14 6050rad s rad s t w pa - =-=-´×=-× 又 2 0 11() 22 N t t w a p =+´ ,将 0t w a =- 代入得111500 50 r 625 r 2260N t w ==´´= (注意求转数时p 可消去,能减少计算误差。
Chap. 3. 刚体的定轴转动一、填空题:1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 ( )(A) 必然不会转动. (B) 转速必然不变. (C) 转速可能不变,也可能改变. (D) 转速必然改变. 2.关于刚体对轴的转动惯量,下列说法中正确的是( ) (A )取决于刚体的质量、质量的空间分布和轴的位置. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.3、关于刚体,下列说法正确的是: ( )A .刚体所受合外力为零,则刚体所受的合外力矩也为零;B .刚体所受合外力矩为零时,刚体角速度一定为零;C .刚体所受合外力矩不为零时,刚体角速度会发生变化;D .刚体平衡的条件是:它所受到的合外力为零.4.两个匀质圆盘A 和B 的半径分别为A R 和B R ,若B A R R >,但两圆盘的质量相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 ( )(A ) J B >J A . (B ) J A >J B . (C ) J A =J B . (D )J A 、J B 哪个大,不 5、如图所示,均匀木棒OA 可绕过其端点O 并与棒垂直的水平光滑 轴转动。
令棒从水平位置开始下落,在棒转到竖直位置的过程中,下 列说法中正确的是 ( )A.、角速度从小到大,角加速度从小到大;B.、角速度从小到大,角加速度从大到小;C.、角速度从大到小,角加速度从大到小;D.、角速度从大到小,角加速度从小到大6. 如图所示,A 、B 为两个相同的绕着轻绳的质量为M 的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为A α和B α,不计滑轮轴的摩擦,则有A .B A αα= B . B A αα>C .B A αα< D . 不确定7.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿顺时针方向转动,则绳中的张力 ( ) (A )处处相等. (B )左边大于右边. (C )右边大于左边. (D )哪边大无法判断.8.一力学系统由两个质点组成,两质点之间只有万有引力作用,若系统所受外力的矢量和为零,则此系统 ( )A 、动量、机械能以及对某一定轴的动量矩守恒;B 、动量、机械能守恒,但动量矩是否守恒不能确定;C 、动量守恒、但机械能和动量矩是否守恒不能确定;D 、动量和动量矩守恒、但机械能是否守恒不能确定.9.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的动量矩及其动能的瞬时值,则应有 ( ) A .L A >L B ,E KA >E kB . B . L A =L B ,E KA >E KB . C .L A =L B ,E KA <E KB . D . L A <L B ,E KA <E KB .10. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 ( )A . 动量守恒.B . 机械能守恒.C . 动量、机械能和角动量都守恒.D . 对转轴的角动量守恒.11.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0角速度为ω0,然后她将两臂收回,使转动惯量变为原来的一半,这时她转动的角速度变为 ( )A 、ω0/2;B 、2ω0;C 、(1/2)ω0;D 、2ω0.12.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有动量守恒. ( ) (B) 只有机械能守恒. (C) 只有对转轴O 的动量矩守恒. (D) 机械能、动量和动量矩均守恒. 13.刚体动量矩守恒的充分必要条件是 ( )(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 能确定.14、一质量为M 的均匀细杆,可绕光滑水平轴转动,一质量为m 的小球以速度V 0水平飞来,与杆一端作完全弹性碰撞,则小球与杆组成的系统(如图所示),满足: ( )A 、动量守恒,动量矩守恒;B 、动量不守恒,动量矩守恒;C 、动量不守恒,动量矩不守恒;D 、动量守恒,动量矩不守恒..15.如图所示,均匀木棒可绕过其中点O 的水平光滑轴在竖直平面内转动,棒初始位于水平位置,一小球沿竖直方向下落与棒的右端发生碰撞,碰撞后球粘在杆上。