初中数学综合题
- 格式:doc
- 大小:137.00 KB
- 文档页数:7
一、单项选择题(每题2分,共20分)1. 下列不属于初中数学课程目标的是()A. 培养学生的逻辑思维能力B. 培养学生的空间观念C. 培养学生的审美情趣D. 培养学生的创新能力2. 下列关于数学教学方法的说法,错误的是()A. 启发式教学B. 小组合作学习C. 传统讲授法D. 让学生自主学习3. 下列关于数学教学评价的说法,正确的是()A. 只注重学生的考试成绩B. 只注重学生的基础知识掌握情况C. 注重学生的知识、技能和情感态度价值观的发展D. 以上都不对4. 下列关于数学教学资源利用的说法,错误的是()A. 充分利用教材资源B. 广泛利用网络资源C. 忽视学生自身的学习资源D. 注重师生互动,共同学习5. 下列关于数学教师角色的说法,正确的是()A. 教师是知识的传授者B. 教师是学生的主宰C. 教师是学生的朋友和引导者D. 以上都不对6. 下列关于数学教学评价的目的,错误的是()A. 了解学生的学习情况B. 促进教师教学水平的提高C. 提高学生的学习兴趣D. 压缩学生的学习时间7. 下列关于数学教学活动的说法,正确的是()A. 教师讲,学生听B. 学生自主学习,教师辅导C. 教师提问,学生回答D. 以上都不对8. 下列关于数学教学方法的创新,错误的是()A. 采用多媒体技术辅助教学B. 开展数学实践活动C. 强化学生基础知识的学习D. 鼓励学生发挥创新思维9. 下列关于数学教师职业道德的说法,错误的是()A. 尊重学生,关爱学生B. 严谨治学,为人师表C. 追求名利,忽视教学D. 积极参加教育教学改革10. 下列关于数学教学评价的方法,错误的是()A. 课堂观察B. 作业批改C. 学生问卷调查D. 以上都不对二、多项选择题(每题3分,共15分)1. 下列属于初中数学课程目标的有()A. 培养学生的逻辑思维能力B. 培养学生的空间观念C. 培养学生的审美情趣D. 培养学生的创新能力E. 培养学生的道德品质2. 下列属于数学教学方法的创新的有()A. 采用多媒体技术辅助教学B. 开展数学实践活动C. 强化学生基础知识的学习D. 鼓励学生发挥创新思维E. 注重师生互动,共同学习3. 下列属于数学教师职业道德的有()A. 尊重学生,关爱学生B. 严谨治学,为人师表C. 追求名利,忽视教学D. 积极参加教育教学改革E. 严于律己,以身作则4. 下列属于数学教学评价的方法的有()A. 课堂观察B. 作业批改C. 学生问卷调查D. 家长访谈E. 教师自评5. 下列属于数学教学资源利用的有()A. 充分利用教材资源B. 广泛利用网络资源C. 忽视学生自身的学习资源D. 注重师生互动,共同学习E. 鼓励学生自主学习三、简答题(每题10分,共30分)1. 简述初中数学课程目标。
初中数学综合试卷及答案一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.03.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.20125.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106 6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.710.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为_________.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=_________;(2)直接写出下列各式的计算结果:①=_________;②=_________.(3)探究并计算:.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).16.(2010•高要市二模)计算:17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)219.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=_________.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.26.拓广探索七年某班师生为了解决“22012个位上的数字是_________.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=_________,所以24个位上的数字是_________;因为25=_________,所以25个位上的数字是_________;因为26=_________,所以26个位上的数字是_________;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:_________.(3)利用上述得到的规律,可知:22012个位上的数字是_________.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_________.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为_________.28.试确定62012+(﹣25)2013的末位数字是几.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)参考答案与试题解析一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|考点:非负数的性质:绝对值.分析:根据绝对值非负数的性质解答.解答:解:根据绝对值的性质,为非负实数的是|﹣a|.故选C.点评:本题主要考查了绝对值非负数的性质,是基础题,熟记绝对值非负数是解题的关键.2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.0考点:非负数的性质:绝对值.专题:存在型.分析:先根据非负数的性质求出a、b的值,进而可求出ab的值.解答:解:∵|a﹣2|+|b+1|=0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴ab=2×(﹣1)=﹣2.故选B.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.3.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣考点:非负数的性质:绝对值.分析:根据互为相反数的两个数的和等于0列式,再根据非负数的性质列式求出xy的值,然后代入代数式进行计算即可得解.解答:解:∵|x﹣3|与|2y﹣3|互为相反数,∴|x﹣3|+|2y﹣3|=0,∴x﹣3=0,2y﹣3=0,解得x=3,y=,所以,xy+x﹣y=3×+3﹣=4.5+3﹣1.5=6.故选C.点评:本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.2012考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,所以,(a﹣b)2012=(1﹣2)2012=1.故选B.点评:本题考查了平方数非负数,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.5.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.解答:解:67 500=6.75×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:∵27.39亿末尾数字9是百万位,∴27.39亿精确到百万位.故选D.点评:本题考查了近似数的确定,熟悉数位是解题的关键.9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.7考点:尾数特征.专题:压轴题.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.10.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7考点:尾数特征.分析:根据已知中尾数特征得出每2个一循环,进而得出4100+1的个位数字与第2个数字尾数相同,即可得出答案.解答:解:∵41+1=5,42+1=17,43+1=65,44+1=257,…,∴上式中尾数每42个一循环,∵100÷2=50,∴4100+1的个位数字与第2个算式尾数相同,故4100+1个位数字是7.故选:D.点评:此题主要考查了尾数特征,根据已知得出式子中尾数的变化规律是解题关键.二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为1.考点:非负数的性质:绝对值.专题:计算题;压轴题.分析:根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.解答:解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.点评:此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?考点:有理数的混合运算.专题:新定义.分析:认真观察已知给出的两个式子:110=1×22+1×21+0×20和110101=1×25+1×24+0×23+1×22+0×21+1×20,得出规律,再计算.解答:解:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.点评:此题的关键找出规律,按照规定的规律进行计算.13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.考点:有理数的混合运算.专题:压轴题;规律型.分析:(1)从材料中可看出规律是;(2)直接根据规律求算式(2)中式子的值,即展开后中间的项互相抵消为零,只剩下首项和末项,要注意的是末项的符号是负号,规律为;(3)观察它的分母,发现两个因数的差为2,若把每一项展开成差的形式,则分母是2,为了保持原式不变则需要再乘以,即得出最后结果.解答:解:(1);(2)①;②;(3)原式====点评:本题考查的是有理数的运算能力和学生的归纳总结能力.解题关键是会从材料中找到数据之间的关系,并利用数据之间的规律总结出一般结论,然后利用结论直接解题.本题中的难点是第(3)个问题,找出分母因数的差为2,把每一项展开成差的形式,则分母是2,所以为了保持原式不变需要再乘以,是解决此题的关键.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.考点:有理数的混合运算.分析:按照有理数混合运算的顺序:先乘方,再乘除,最后算加减,有括号的要先算括号里面的.注意﹣34表示4个3相乘的相反数,其结果为﹣81.解答:解:原式=﹣81+1+×36×=﹣81+1+3=﹣77.点评:本题考查的是有理数的运算能力.(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).考点:有理数的混合运算.分析:含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.解答:解:原式=4﹣7+3+1=1.点评:注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.16.(2010•高要市二模)计算:考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方再乘除后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化并都化成分数形式.解答:解:原式=×(﹣)﹣﹣÷(﹣)=﹣﹣+=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).考点:有理数的混合运算.分析:对于一般的有理数混合运算来讲,其运算顺序是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.解答:解:(1)(﹣7)×(﹣5)﹣90÷(﹣15)=35﹣(﹣6)=41.(2)==.点评:本题考查了有理数的混合运算.注意运算顺序及运算法则.18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)2考点:有理数的混合运算.分析:(1)先算乘法,再算加减;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,注意﹣32=﹣9;解答:解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣9+(﹣1)×6+25=10.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.19.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)×(﹣1)=﹣5.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=4+[6+6]÷4﹣5××=4+3﹣4=3.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:由绝对值和完全平方式的结果为非负数,且两非负数之和为0可得绝对值和完全平方式同时为0,可得ab=2且b=1,把b=1代入ab=2可求出a的值为2,把求出的a与b代入所求的式子中,利用=﹣把所求式子的各项拆项后,去括号合并即可求出值.解答:解:∵|ab﹣2|≥0,(1﹣b)2≥0,且|ab﹣2|+(1﹣b)2=0,∴ab﹣2=0,且1﹣b=0,解得ab=2,且b=1,把b=1代入ab=2中,解得a=2,则=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了有理数的混合运算,要求学生掌握两非负数之和为0时,两非负数必须同时为0,本题若直接按照运算顺序解题,运算量非常大,需利用计算技巧简化运算,根据所求式子各项的特点,利用拆项法进行化简,使拆开的一部分分数互相抵消,达到简化运算的目的.熟练运用=﹣是解本题的关键.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:规律型.分析:(1)根据=﹣,=﹣,=﹣,…则=;(2)先根据非负数的性质得出a、b的值,代入原式变形为1﹣+﹣+﹣…+﹣是解题的关键.解答:解:(1)=(2分)(2)∵|a﹣1|+(ab﹣2)2=0,∴a﹣1=0,ab﹣2=0,∴a=1,b=2(2分)原式=(2分)=.(1分)点评:考查了有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为=﹣.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?考点:有理数的混合运算.专题:应用题.分析:分别用百分数表示出每人的每段报销的金额后用加法计算.解答:解;应给花1800元医药费的农民报销的金额=500×20%+1300×30%=490(元);应给花2500元医药费的农民报销的金额=500×20%+1500×30%+500×35%=725(元);应给花6000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+1000×40%=2000(元);应给花22000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+5000×40%+12000×45%=9000(元).故给这四位农民各报销490元、725元、2000元、9000元.点评:本题利用了百分数来表示报销的金额,结合当前的农村新型农村合作医疗,做到学数学用数学,学以致用.24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).考点:有理数的混合运算.分析:按照有理数的运算顺序,先乘方,再乘除,有括号的,先算括号里的进行运算.解答:解:原式=﹣9﹣(3﹣×)×(﹣)=﹣9+×=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.考点:非负数的性质:偶次方.专题:阅读型.分析:先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x、y的值,再代入求出xy的值.解答:解:将x2+4y2﹣6x+4y+10=0,化简得x2﹣6x+9+4y2+4y+1=0,即(x﹣3)2+(2y+1)2=0.∵(x﹣3)2≥0,(2y+1)2≥0,且它们的和为0,∴x=3,y=﹣.∴xy=3×(﹣)=﹣.点评:初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.本题关键是将左边的式子写成两个完全平方的和的形式.26.拓广探索七年某班师生为了解决“22012个位上的数字是6.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:尾数每4个一循环分别为:2,4,8,6.(3)利用上述得到的规律,可知:22012个位上的数字是6.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是3.考点:尾数特征.分析:(1)根据指数运算法则直接求出各数即可;(2)①直接计算得出210个位上的数字是4;②利用(1)中所求得出尾数每4个一循环分别为:2,4,8,6;(3)利用(2)中的规律得出答案;(4)利用(2)中规律得出3的指数变化与尾数的关系.解答:解:(1)因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;故答案为:16,6;32,2;64,4;(2)①正确,理由:由(1)可得出:尾数每4个一循环,10÷4=2…2,则210个位上的数字与第2个数据相等是4;②尾数每4个一循环分别为:2,4,8,6.(3)∵2012÷4=503,∴22012个位上的数字与第4个尾数相等,则是6;故答案为:6;(4)因为31=3,所以31个位上的数字是3;因为32=9,所以32个位上的数字是9;因为33=27,所以33个位上的数字是7;因为34=81,所以34个位上的数字是1;因为35=243,所以35个位上的数字是3;…∴尾数每4个一循环,∵2013÷4=503…1,∴32013个位上的数字是3.故答案为:3.点评:此题主要考查了数字尾数特征,根据指数的变化得出位置的变化规律是解题关键.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为7.考点:尾数特征.分析:通过观察,发现3的乘方的结果上的个位数字:3,9,7,1,3,9,7,1,…4个一循环,所以根据这个规律求得答案.解答:解:∵2011÷4=502…3,∴32011的结果个位数是:7.故答案为:7.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.28.试确定62012+(﹣25)2013的末位数字是几.考点:尾数特征.分析:先根据题意得出6的2012次方的末位数字,再得出(﹣25)2013的末位数字,求出其差即可.解答:解:∵61=6,62=36,63=216,64=1296,…,∴6的任何次方的结果都是正数,且末位数字均为6,∴62012次方的末位数字是6,∵(﹣25)1=﹣25,(﹣25)2=625,(﹣25)3=﹣15625,(﹣25)4=390625,…,∴(﹣25)2013的末位数字为5,其符号为负号,∴62012+(﹣25)2013的末位数字是6﹣5=1.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?考点:尾数特征.分析:应先确定a2003的个位数字,b2004的个位数字,让其相加即可.解答:解:原式=52003+(﹣3)2004,∵3的末位数字是﹣3,9,﹣7,1依次循环,∴(﹣3)2004的个位数字为1,∴原式的末位数字是5+1=6.故a2003+b2004的末位数是6.点评:考查了尾数特征,本题的关键在于确定﹣3的个位数字,﹣3的个位数字应是﹣3,9,﹣7,1依次循环.30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)考点:科学记数法—表示较小的数.分析:(1)利用已知数据直接得出即可;(2)根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:(1)∵,,,…∴0.0001=10﹣4,0.00001=10﹣5;(2)0.000001768=1.768×10﹣6.点评:此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.。
初中数学直线射线线段综合练习题一、单选题1.下列说法正确的是( )A.画射线3cm OA =B.线段AB 和线段BA 不是同一条线段C.点A 和直线l 的位置关系有两种D.三条直线相交一定有3个交点 2.从重庆站乘火车到北京站,沿途经过5个车站方可到达北京站,那么在重庆与北京两站之间需要安排不同的车票___________种.3.若平面内有点,,A B C ,过其中任意两点画直线,则最多可以画的条数是( )A.3B.4C.5D.64.如图,点O 与射线AB 的位置关系是( )A.点O 一定在射线AB 上B.点O 一定不在射线AB 上C.点O 可能在射线AB 上,也可能不在射线AB 上D.射线AB 可能会经过点O5.下列图示中,直线表示方法正确的有( )A.①②③④B.①②C.②④D.①④6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A.7 cmB.3 cmC.7cm 或3cmD.5 cm7.如图,,C B 是线段AD 上的两点,若,2AB CD BC AC ==,那么AC 与CD 的关系为( )A.2CD AC =B.3CD AC =C.4CD AC =D.不能确定二、解答题8.如图,P 是线段AB 上任意一点,12cm,,AB C D =两点分别从,P B 同时向A 点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s ,运动的时间为s t .(1)若8cm AP =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2s,1cm t CD ==,试探索AP 的值.9.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.10.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度;(2)若3cm,1cm AC CP ==,求线段PN 的长度.11.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .12.如图,已知线段6AD =cm ,线段4AC BD ==cm,EF 分别是线段,AB CD 的中点,求线段EF 的长.13.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?14.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.15.如图,平面上有,,,A B C D 四个村庄,为了丰富人们的生活,政府准备投资修建一个文化活动中心H ,使它到四个村庄的距离之和最小,你认为文化活动中心应建在哪里?并说明理由.16.如图(1),直线AB 上有一点P ,点,M N 分别为线段,PA PB 的中点,14AB =.(1)若点P 在线段AB 上,且8PA =,求线段MN 的长度;(2)若点P 在直线AB 上运动,设,PA x PB y ==,请分别计算下面情况时MN 的长度; ①当P 在,A B 之间(含A 或B );②当P 在A 左边;③当P 在B 右边.你发现了什么规律?(3)如图(2),若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA PB PC-的值不变;②PA PB PC +的值不变.请选择一个正确的结论并求其值. 三、填空题17.给出下列说法:①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点.其中正确说法的序号为___________.18.平面内有3条直线,它们的交点个数是_________.19.如图,画的是一条直线和两个点的位置关系,现有4种叙述:①直线AB 在点C 上;②点C 在直线AB 上;③点O 不经过直线AB ;④直线a 经过点C .其中叙述正确的有(填序号):__________.参考答案1.答案:C解析:射线没有长度,故A 错误;线段AB 和线段BA 是同条线段,故B 错误;点A 和直线l 的位置关系有两种:点A 在直线上或在直线外,故C 正确;三条直线相交可能有1个或2个或3个交点,故D 错误.2.答案:42解析:因为共有(52)+个车站,把它们看作直线上的7个点,则直线上线段的条数为7(71)212⨯-=(条),而每条线段对应两种不同的车票,故需要安排不同的车票共42种. 3.答案:A解析:平面内有点,,A B C ,过其中任意两点画直线,最多可以画的直线条数是3.4.答案:B解析:射线AB 是有方向的,是从“A ”到“B ”的方向,图中的射线AB 是向右无限延伸的,向左到端点A 终止,故点O 一定不在射线AB 上.5.答案:D解析:用两个点表示直线时,这两个点必须是大写字母,故②③错误,①正确;用一个字母表示直线时,这个字母必须是小写的,且不能在直线上标点,④正确.6.答案:D解析:当点C 在线段AB 上时,则1115cm 222MN AC BC AB =+==;当点C 在线段AB 的延长线上时,则11725(cm)22MN AC BC =-=-=.综合上述情况,线段MN 的长度是5cm . 7.答案:B解析:因为AB CD =,所以AC BC BC BD +=+,即AC BD =.又因为2BC AC =,所以2BC BD =.所以33CD BD AC ==.8.答案:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=.因为8cm,12cm AP AB ==,所以1284(cm)PB AB AP =-=-=.所以2433(cm)CD CP PB DB =+-=+--.②因为8cm,12cm AP AB ==,所以1284(cm),(82)(cm)PB AC AP CP t =-==-=-.所以(43)(cm)DP PB DB t =-=-.所以243(4)(cm)CD CP DP t t t =+=+-=-.因为822(4)t t -=-,所以2AC CD =.(2)当2s t =时,224(cm),326(cm)CP DB =⨯==⨯=.当点D 在C 的右边时,如图所示:由于1cm CD =,所以167(cm)CB CD DB =+=+=.所以1275(cm)AC AB CB =-=-=,所以549(cm)AP AC CP =+=+=.当点D 在C 的左边时,如图所示;1266(cm)AD AB DB =-=-=.所以61411(cm)AP AD CD CP =++=++=.综上所述,9cm AP =或11cm .解析:9.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===.所以10cm AD AB BC CD =++=.因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=.因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=.1010220(cm)AD x ==⨯-.解析:10.答案:(1)因为,M N 分别是,AC BC 的中点,所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=.因为P 是线段AB 的中点,所以28cm AB AP ==.所以5cm CB AB AC =-=.因为N 是线段CB 的中点,1 2.5cm 2CN CB ==. 所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 11.答案:解:(1)若以B 为原点,则C 表示1,A 表示-2,所以1021p =+-=-.若以C 为原点,则A 表示-3,B 表示一I ,所以3104p =--+=-.(2)若原点O 在图中数轴上点C 的右边,28CO =,则C 表示-28,B 表示-29,A 表示-31, 所以31292888p =---=-.解析:12.答案:解:因为2AB AD BD =-=cm,2CD AD AC =-=cm , 所以112EB AB ==cm ,112CF CD == cm 所以6222BC AD AB CD =--=--=(cm ),所以1214EF EB BC CF =++=++= (cm).解析:13.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=,因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==. (3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN的长度始终等于线段AB的一半,与C点的位置无关.解析:14.答案:【解】第一种情况:若为图(1)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以2cmMN MB NB=-=.第二种情况:若为图(2)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以8cmMN MB BN=+=.解析:15.答案:【解】文化活动中心应建在,AC BD连线的交点处.理由如下:若把文化活动中心建在,AC BD连线的交点处,则中心到四个村庄的距离之和等于,AC BD两条线段的长度之和,而两点之间,线段最短,故这个位置符合要求.解析:16.答案:(1)因为8PA=,所以6BP AB PA=-=.因为点M是AP中点,所以142PM AP==.又因为点N是PB中点,所以132PN PB==.所以7MN PM PN=+=.(2)①当点P在,A B之间时,17222x yMN AB=+==;②当点P在BA的延长线上,11()72222y xMN PN PM y x AB =-=-=-==;③当点P在AB的延长线上时,11()72222x yMN PM PN x y AB =-=-=-==.规律:不管P在什么位置,MN的长度不变,都为7. (3)选择②.设PB x =.由题意,知7AC BC ==, ①1477PA PB AB PC x x -==++(在变化); ②21427PA PB x PC x ++==+(定值). 解析:(1)根据线段中点的定义及线段的和差,可求得结果.(2)根据线段中点的定义可求得,MP NP ,再根据线段的和差,可求得结果.(3)根据线段的和差可得,PA PB PA PC +-,进而可得所求的结论.17.答案:②③④解析:①错误,因为两条不同的直线不能重合,若两直线有两个或两个以上公共点,这两直线就是同一条直线;而两条不同的射线、两条不同的线段、一条直线和一条线段都可以有部分重合,因此它们都可以有无数个公共点,故②③④正确.18.答案:0或1或2或3解析:如图,若平面内有3条直线,则它们的交点个数有如下四种情况:19.答案:②④解析:只能说点在(或不在)直线上,而不能说直线在(或不在)点上,故①错;只能说直线经过(或不经过)点,而不能说点经过(或不经过)直线,故③错,②④正确.。
圆相关的最值问题1.(2016年二中广雅周练)如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =3,以C 为圆心,半径为1 作⊙C ,点D 在边AB 上运动,过点D 作⊙C 的切线DE ,切点为E ,则线段DE 的最小值为___________.2.(2017年武昌七校期中)如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为 (-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 的面积的最小 值是( )B .1C .2D .2 3.(2016年新洲区月考)如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在B 上,点Q 在 ⊙O 上,且OP ⊥PQ .当点P 在BC 上移动时,PQ 长的最大值是____________.4.(2016年梅苑中学周练)如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B .连接P A ,设P A =x ,PB =y ,则(x -y )的最大值是__________.5.(2017年硚口区、汉阳区期中改)如图,在平面直角坐标系中,已知A (2,0),B (5,0),点P 为 线段AB 外一动点,且P A =2,以PB 为边作等边△PBM ,则线段AM 的最大值为____________.6.(2018-2019九上洪山区期中)如图,AB =2,BC =4,点A 是⊙B 上任一点,点C 为⊙B 外一点, △ACD 为等边三角形,则△BCD 的面积的最大值为( )A .4B .C .8D .ACDEB A DA7.(2015年七一华源月考)如图,两同心圆半径分别为3、3,点A 、B 分别为同心圆上的动点,以AB为边作正方形ABCD ,则OD 长的最大值为____________.8.(2018-2019九上梅苑期中)已知,点A (8,0)、B (6,0).将线段OB 绕着原点O 逆时针方向旋转角度α到OC ,连接AC .将AC 绕着点A 顺时针方向旋转角度β至AD ,连接OD . (1)当α=30°,β=60°时,求OD 的长;(2)当α=60°,β=120°时,求OD 的长; (3)已知E (10,0),当β=90°时,改变 的大小,求ED 的最大值.9.(2018-2019九上汉阳区期中)如图,⊙O 的半径为1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连接OC ,则OC 的最大值为__________.10.(2018年武汉元调)在⊙O 中,AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =_______°时,线段BD 最长.11.(2018-2019九上青山区期中)如图,在等腰△ABC 中,∠BAC =120°,AB =AC=D 在边 BC 上,CDCD 绕点C 逆时针旋转α°(其中0<α≤360)到CE ,连接AE ,以AB ,AE 为边作□ABFE ,连接DF .则DF 的最大值为( ) ABC. D图1图2图3OACDBFDCBA【补充】1.(2017年新洲区期中)如图,在平面直角坐标系中,⊙M交x轴于A(-1,0)、B(3,0)两点,交y 轴于C、D(0,3),点S是BD上一动点,N是OS的中点,则线段DN的最小值是____________.2.(2016年武昌C组月考)在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的小值为____________.3.(2016年二中广雅月考)如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,在线段AC上有一动点P (P不与C重合),以PC为直径作⊙O交PB于Q点,连AQ,则AQ的最小值为____________.4.(2017年武珞路期中)如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE、CF相交于点P.将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°的过程中,线段OP的最小值为___________.5.(2017年东湖高新期中)如图,等边△ABC的边长为1,D、E两点分别在边AB、AC上,CE=DE,则线段CE的最小值为()A.2B.3C.12DABCE FPO6.(2018-2019九上江汉区期中)如图,点C 是半圆AB 上一动点,以BC 为边作正方形BCDE (使BC 在正方形内),连OE .若AB =4cm ,则OE 的最大值为___________cm .7.(2018-2019九上武昌七校期中)如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC = 120°,P 为⊙O 上的动点,连接AP ,取AP 的中点Q ,连接CQ ,则线段CQ 的最大值为( )A .3 B.C.D.8.(2017年洪山区期中)如图,在等腰Rt △ABC 中,斜边AB =8,点P 在以AC 为直径的半圆上,M 为 PB 的中点,当点P 沿半圆从点A 运动至点C 时,点M 运动的路径长是( )A .πBC .2πD .9.(2017年外校期中模拟)如图,边长为2的正方形ABCD 的对角线交于点O ,把边BA 、CD 分别绕点 B 、C 以相同速度同时逆时针旋转一周,四边形ABCD 的形状也随之发生改变,那么在旋转的过程中, AO ′的最大值为____________.10.(2016年武汉外校期中)将边长为4正方形ABCD 向右倾斜,边长不变,∠ABC 逐渐变小.顶点A ,D 及对角线BD 的中点N 分别运动到A ′,D ′和N ′的位置.若∠A ′BC =30°,则点N 到点N ′的运动路径长为_____________.OEDC BAOO′D′A′DC B A11.如图,⊙O 的直径AB 与弦CD 互相垂直,垂足为E ,AB =4,CD =23,动点P 从B 点出发,沿劣 弧BD 运动到D 点,AF ⊥CP 于F ,则线段AF 的中点M 所经过的路径长为__________.12.如图,正方形ABCD 的顶点A 为线段EF 的中点,连接BE 、DF 交于点P ,EF =4,AB =2,若将正方 形ABCD 绕点A 从AB 与AF 重合的位置开始逆时针旋转90°后停止,则在此过程中,点P 的运动路 径长度为____________.13.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂 足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从 点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为____________.14.如图,AB 为⊙O 的直径,△CDE 内接于⊙O ,AB ∥CD ,4AB =,CD =E 从点A 顺时针 运动到点B 的过程中,△CDE 的内心I 所经过的路径长度为____________.15.(2015-2016新洲区部分学校九上期中)如图,∠AOB =60°,点P 是半径为2的弧AB 上一动点,点M 、N 分别在半径OA 、OB 上,则△PMN 的周长最小值是().A .2B.C .4D .34DPCB AFE16.(2017-2018年九上二初12月)如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1,E 是⊙C 上的一动点,则△ABE 面积的最大值为( )A.(4B .(3C .(3D .(217.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为( )A .π32B .πC .2D .3218.( 2016~2017二中九上月考一)已知⊙O ,AB 是直径,AB =4,弦CD ⊥AB 且过OB 的中点,P 是劣弧BC 上一动点,DF 垂直AP 于F ,则P 从C 运动到B 的过程中,F 运动的路径长度( )A .π33 B .3C .π32D .219.( 2016~2017三初九上12月考)在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y=kx ﹣3k+4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为( ).A .12B .24C .32D .32420.(2017-2018年九上六中12月) 如图,已知扇形AOB 中,OA =3,∠AOB =120°,C 是在弧AB 上的动点,以BC 为边作正方形BCDE .当点C 从点A 移动至点B 时,点D 经过的路径长是___________.21.(2016-2017上学期武昌12月考)在Rt △ABC 中,∠C =90°,AC =10,BC =12,点D 为线段BC 上一动点.以CD 为⊙O 直径,作AD 交⊙O 于点E ,连BE ,则BE 的最小值为 .22.( 2016-2017武汉一初九上周测 16)在⊙O 中,直径AB =8,∠ABC =30°,点H 在弦BC 上,弦PQ ⊥OH 于点H .当点H 在BC 上移动时,PQ 长的最大值为____________.23.( 2016-2017武汉一初九上周测17)半圆⊙O 中,AB 为直径,C 、D 为半圆上任意两点,将沿直线CD 翻折使AB 与相切,已知AB=8,求CD的最大值.24.( 2016~2017二中数学练习二)如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =3,以C 为圆心,半径为1作⊙C ,点D 在边AB 上运动,过点D 作⊙C 的切线DE ,切点为E ,则线段DE 的最小值为___________AB25.(2015—2016武昌七校九上期中)如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 .26.(2015-2016东湖高新区九上期中)如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是____________.27.(2015-2016新洲区部分学校九上期中)如图,在O 中,直径AB=6,BC 是弦,030ABC ∠=,点P 在BC 上,点Q 在O 上,且OP ⊥PQ 。
一、选择题1. 答案:B解析:由题意可知,平行四边形ABCD中,∠B=90°,所以ABCD是矩形。
又因为矩形的对角线相等,所以AC=BD。
所以选B。
2. 答案:C解析:根据勾股定理,在直角三角形中,直角边的平方和等于斜边的平方。
所以3²+4²=5²,故选C。
3. 答案:D解析:根据有理数的乘法法则,负数乘以负数等于正数。
所以-3×-4=12。
故选D。
4. 答案:A解析:由题意可知,圆的半径为2cm,圆心角为60°,所以弧长为2π×2×(60°/360°)=π。
故选A。
5. 答案:B解析:根据一元一次方程的解法,将方程两边的x合并,得到2x-3=7,解得x=5。
故选B。
二、填空题6. 答案:-1/2解析:由题意可知,a²-b²=(a+b)(a-b),所以(a-b)(a+b)=a²-b²=1/2。
解得a-b=±√(1/2)。
故答案为-1/2。
7. 答案:-3/2解析:由题意可知,(a+b)²=a²+2ab+b²,所以(a-b)²=a²-2ab+b²。
将a=2,b=-1代入,得到(2-(-1))²=2²-2×2×(-1)+(-1)²=9。
所以a-b=±3。
故答案为-3/2。
8. 答案:4解析:由题意可知,三角形ABC中,∠A=90°,∠B=30°,∠C=60°。
所以AC=BC/√3。
将BC=4代入,得到AC=4/√3。
故答案为4。
9. 答案:12解析:由题意可知,等差数列{an}中,a1=2,d=3,n=5。
所以an=a1+(n-1)d=2+(5-1)×3=14。
故答案为12。
10. 答案:0解析:由题意可知,函数f(x)=x²-4x+4。
中考数学综合压轴题100题(附答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.3.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.4.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.5.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.6.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.7.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.8.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∴∠DBA=∠A=60°∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.9.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.10.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.11.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.13.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.14.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.15.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.16.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.17.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°∠B3==×(30°+60°+60°)=75°;(3)B n∁n把圆周2n等分,则弧BnD的度数是:,则∠B n AD=,在直角△AB n D中,.【点评】本题是把求圆周角的度数的问题转化为求弧的度数的问题,依据是圆周角等于所对弧的度数的一半.18.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.19.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而推出所得结论.【解答】解:抛物线开口向下,a<0,图象过点(0,1),c=1,图象过点(1,0),a+b+c=0,∴b=﹣(a+c)=﹣(a+1).由题意知,当x=﹣1时,应有y>0,∴a﹣b+c>0,∴a+(a+1)+1>0,∴a>﹣1,∴实数a的取值范围是﹣1<a<0.【点评】根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=﹣1时,应有y>0.20.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.21.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?【分析】(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.【解答】解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.【点评】本题把相似三角形与求二次函数解析式联系起来,在解题过程中,充分运用相似三角形对应边的比相等,建立函数关系式.22.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有=2566,∠A使得方程x2﹣x•sin A+sin A﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.【分析】(1)由题意可知:2a2b=2566,则2a2b=248,则a2b=48.化简9a2﹣24ab+16b2=0得:(3a﹣4b)2=0,则3a﹣4b=0,即3a=4b,则根据,可求得a与b的值;(2)要求BC的长需求出BD和CD的长,知BD、CD分别是直角三角形BDE和直角三角形CDF中的斜边.又知在△ABC中,AB=AC,则∠B=∠C,则根据三角函数只要知道∠B或∠C的读数即可,要求∠B或∠C的读数需求的∠A的读数,根据判别式可以求得∠A的读数.【解答】解:(1)由条件有,解得;(2)又由关于x的方程的判别式△=sin2A﹣sin A+=(sin A﹣)2=0,则sin A=,而∠A为三角形的一个内角,所以∠A1=60°或∠A2=120° 2分当∠A=60°时,△ABC为正三角形,∠B=∠C=60°于是分别在Rt△BDE和Rt△CDF中有BD=,CD=所以BC=BD+DC=.当∠A=120°时,△ABC为等腰三角形,∠B=∠C=30°同上方法可得BC=14. 3分所以线段BC的长应为或14.【点评】考查了解直角三角形以及判别式的应用.23.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)【分析】(1)根据“新建商品房的面积与年新房销售面积相等”作为相等关系求x的值即可;(2)分别求算出市场新房均价上涨1千元后的新建商品房面积P,年新房销售面积Q再来求算其变化的量和积压的情况.【解答】解:(1)根据题意得:25x=﹣10,解得x1=2,x2=﹣(舍去),则Q=﹣10=50万平方米,所以市场新房均价为2千元.则年新房销售总额为2000×500000=10亿元.。
一、选择题(每题2分,共20分)1. 下列数中,是负数的是()A. -3.5B. 0C. 2.5D. -0.12. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形3. 一个长方形的长是8cm,宽是5cm,它的周长是()A. 26cmB. 27cmC. 28cmD. 29cm4. 在数轴上,点A表示的数是-2,点B表示的数是3,那么点A和点B之间的距离是()A. 1B. 2C. 5D. 65. 如果一个数的2倍加上3等于7,那么这个数是()A. 1B. 2C. 3D. 46. 下列分数中,最大的是()A. $\frac{1}{3}$B. $\frac{1}{4}$C. $\frac{1}{5}$D. $\frac{1}{6}$7. 如果一个三角形的一个内角是60°,那么它的另外两个内角的和是()A. 120°B. 150°C. 180°D. 210°8. 一个正方体的棱长是2cm,它的体积是()A. 4cm³B. 8cm³C. 12cm³D. 16cm³9. 下列方程中,正确的是()A. 2x + 3 = 5B. 2x - 3 = 5C. 2x + 3 = 8D. 2x - 3 = 810. 一个数的倒数是$\frac{1}{5}$,那么这个数是()A. 5B. $\frac{1}{5}$C. 0D. 5或0二、填空题(每题2分,共20分)11. $\frac{2}{3}$乘以$\frac{3}{4}$等于__________。
12. 5米减去3米等于__________米。
13. 一个数的3倍是18,这个数是__________。
14. 下列图形中,是平行四边形的是__________。
15. 在数轴上,点A表示的数是-4,那么它的相反数是__________。
16. 一个等腰三角形的底边长是6cm,腰长是8cm,它的周长是__________cm。
初一数学初中数学综合库试题答案及解析1.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠EFC的度数(▲ )A.60°B.70°C.80°D.90°【答案】C【解析】略2.如右图,一个正方形由四个相同的小长方形组成,如果每个小长方形的周长为,那么正方形的面积为_______.【答案】【解析】略3.如图所示的直角坐标系中,四边形的四个顶点坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7),求这个四边形的面积.【答案】S四边形ABCD =42【解析】略4.请认真观察下面各组中的两个图形,哪些是形状相同的图形,哪些是形状不同的图形.【答案】(3)、(5)组中的图形形状相同(1)、(2)、(4)、(6)组中的图形形状不同【解析】略5.计算:【答案】【解析】略6.下列说法正确的是()A.整数和负数统称为有理数B.0是最小的有理数C.互为相反数的两数之和为零D.负数就是有负号的数【答案】C【解析】因为整数和分数统称为有理数,所以选项A错误;因为0是绝对值最小的有理数,所以选项B错误;因为互为相反数的两个数之和为零,所以选项C正确;因为带有负号的数不一定是负数,如:﹣(﹣2)=2是正数,所以选项D错误.故选:C.【考点】1.有理数;2.相反数.7.某种超级计算机完成一次基本运算的时间约为0.00000000000011秒,用科学记数法表示这个数为()A.1.1×10﹣12B.1.1×10﹣13C.11×10﹣12D.11×10﹣13【答案】B.【解析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.这里a=1.1,n=13,所以0.00000000000011=1.1×10﹣13,故答案选B.【考点】科学记数法表示较小的数.8.若方程组的解x、y互为相反数,则a= .【答案】8.【解析】∵x、y互为相反数,∴x=-y.解方程组把③分别代入①、②可得解得a=8,【考点】二元一次方程组的解.9.如果有理数满足∣-2∣+(1-b)2=0试求+…+的值。
初一数学初中数学综合库试题1.请你认真观察和分析图中数字变化的规律,由此得到图中所缺的数字应为 ( )A.32B.29C.25D.23【答案】B【解析】略2.在方程组中若未知数x、y满足x+y≥0,则m的取值范围在数轴上表示应是()【答案】D【解析】略3.五个有理数的积为负数,其中负因数的个数一定不可能是()A.1个B.3个C.4个D.5个【答案】C【解析】略4.已知点P的坐标为(6,-8),则点P到轴的距离为【答案】8【解析】略5.下列不是有理数的是()A.0B.3.14C.D.π【答案】D【解析】根据有理数的定义选出正确答案,有理数:有理数是整数和分数的统称,一切有理数都可以化成分数的形式.解:A、0是有理数,正确;B、-3.14是分数,是有理数,故本选项正确;C、是分数,是有理数,故本选项正确;D、是无理数,不是有理数,故本选项错误.故选D【考点】有理数.6.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和-3分,则第一位学生的实际得分为___________分.【答案】94.【解析】根据正数的实际意义,+9分表示比85分高9分,则这位同学的成绩为85+9=94分.故答案为:94.【考点】正数和负数.7.设计一个商标图案(如图阴影部分),其中O为半圆的圆心,AB=a,BC=b,(1)用关于a,b的代数式表示商标图案的面积S;(2)求当a=6cm,b=4cm时S的值.(本题结果都保留π)【答案】(1);(2)【解析】(1)根据图形可得:商标图案的面积S=半圆的面积+三角形ACD的面积,然后代入数值化简即可;(2)把a=6cm,b=4cm代入(1)中的结果,计算即可.试题解析:(1)根据图形可得:商标图案的面积S=半圆的面积+三角形ACD的面积=;(2)当a=6cm,b=4cm时,=.【考点】列代数式、求代数式的值.8.少儿图书馆上周借书记录(超过100册的部分记为正,少于100册的部分记为负)如下表:(1)上星期五借出多少册书?(2)上个星期借书最多的一天比借书最少的一天多多少?(3)上星期平均每天借出多少册书?【答案】(1)100;(2)39;(3)107;【解析】(1)根据表格中星期五对应的数字为0,由题意即可得到借出的册数;(2)根据题意求出6天借出的册数,即可求出结果;(3)用6天借出的总数除以6求出平均每天借出的册数即可.试题解析:解:(1)根据题意得:100+0=100(册),则星期五借出100册;(2)每天借出的册数分别为:118;94;115;88;100;127,最多的比最少的多127-88=39(册);(3)根据题意得:(118+94+115+88+100+127)÷6=107(册).【考点】有理数的加减运算9.若则 .【答案】.【解析】一个数的绝对值表示这个数离开原点的距离,正数的绝对值有2个,它们互为相反数. 若则.【考点】绝对值.10.(2014秋•常熟市期末)下列合并同类项的结果正确的是()A.a+3a=3a2B.3a﹣a=2C.3a+b=3ab D.a2﹣3a2=﹣2a2【答案】D【解析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,几个常数项也是同类项;合并同类项时系数相加减,字母与字母的指数不变.解:A、a+3a=3a;B、3a﹣a=2a;C、不是同类项,不能合并;D、正确.故选D.11.表示的意义是()A.6个—5相乘的积B.-5乘以6的积C.5个—6相乘的积D.6个—5相加的和【答案】A.【解析】根据乘方的定义可知,表示6个-5相乘的积.故选A.【考点】有理数的乘方.12.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= .【答案】(4m﹣n)n=﹣1.【解析】根据同类项的定义(所含字母相同且相同字母的指数也相同的项是同类项)可得方程:2m+3=4,n=3,解方程求得m的值,再代入(4m﹣n)n即可.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣1.【考点】同类项;解一元一次方程.13.已知:线段AB=6厘米,点C是AB的中点,点D在AC的中点,求线段BD的长.【答案】4.5厘米.【解析】由已知条件可知,因为C是AB的中点,则AC=AB,又因为点D在AC的中点,则DC=AC,故BD=BC+CD可求.解:∵AB=6厘米,C是AB的中点,∴AC=3厘米,∵点D在AC的中点,∴DC=1.5厘米,∴BD=BC+CD=4.5厘米.【考点】比较线段的长短.14.小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:“如果(x﹣2)x+3=1,求x的值”,她解答出来的结果为x=﹣3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?【答案】3、-3、1【解析】根据1的任何次幂都为1,-1的偶数次幂为1,任何不为零的数的零次幂为1三种情况分别求出x的值.试题解析:第一种情况:当x﹣2=1时,x=3第二种情况:当x﹣2=﹣1时,x=1而x+3=4满足题意.第三种情况:当x=﹣3,而x﹣2=﹣5≠0满足题意∴x=3,﹣3,1时(x﹣2)x+3=1【考点】幂的性质15.下列图形中为三棱柱的表面展开图的是()A.B.C.D.【答案】B【解析】利用棱柱及其表面展开图的特点解题.解:A、C、D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故不能围成三棱柱;B、中间三个长方形能围成三棱柱的侧面,左、右两个三角形围成三棱柱的上、下两底面,故能围成三棱柱,是三棱柱的表面展开图.故选B.【考点】几何体的展开图.16.如图把一张长方形线条ABCD 沿AF 折叠,使D落在D′处使∠ABD=20°,A D′//DB则∠DAF的度数为()A.60°B.55°C.45°D.30°【答案】B【解析】根据∠ABD=20°可得:∠ADB=70°,根据平行线的性质可得:∠DAD′=180°-70°=110°,根据折叠图形的性质可得:∠DAF=110°÷2=55°.【考点】(1)、平行线的性质;(2)、折叠图形的性质17.已知,则代数式的值为()A.B.C.D.【答案】D【解析】∵3x2+x=1∴∴故选D18.已知等腰三角形的两边长分别为2、5,则三角形的周长为______.【答案】12.【解析】试题解析:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.【考点】1.等腰三角形的性质;2.三角形三边关系.19.(5分)在数轴上表示下列各数:,,,0,-(-3.5),并用“<”号把这些数连接起来。
初三数学综合题压轴题100题(含答案解析)一、中考压轴题1.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数量;(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.2.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.3.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.【分析】(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x1﹣x2|可知d2=(x1﹣x2)2=(x1+x2)2﹣4 x1•x2=p2,再由(1)中x1+x2=﹣p,x1•x2=q即可得出结论.【解答】证明:(1)∵a=1,b=p,c=q∴△=p2﹣4q∴x=即x1=,x2=∴x1+x2=+=﹣p,x1•x2=•=q;(2)把(﹣1,﹣1)代入y=x2+px+q得1﹣p+q=﹣1,所以,q=p﹣2,设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)∵d=|x1﹣x2|,∴d2=(x1﹣x2)2=(x1+x2)2﹣4x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4当p=2时,d2的最小值是4.【点评】本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q =0的两根时,x1+x2=﹣p,x1x2=q是解答此题的关键.4.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.5.如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0).点列P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称…对称中心分别是A,B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2,P7,P100的坐标.【分析】通过作图可知6个点一个循环,那么P7的坐标和P1的坐标相同,P100的坐标与P4的坐标一样,通过图中的点可很快求出.【解答】解:P2的坐标是(1,﹣1),P7的坐标是(1,1),P100的坐标是(1,﹣3).理由:作P1关于A点的对称点,即可得到P2(1,﹣1),分析题意,知6个点一个循环,故P7的坐标与P1的坐标一样,P100的坐标与P4的坐标一样,所以P7的坐标等同于P1的坐标为(1,1),P100的坐标等同于P4的坐标为(1,﹣3).【点评】解决本题的关键是读懂题意,画出图形,仔细观察,分析,得到相应的规律.6.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.7.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.8.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.9.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y=2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.10.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.11.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.12.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.13.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.14.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.15.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.16.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.20.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°。
初二数学初中数学综合库试题答案及解析1.(本题9分)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM="CN,直线BN与AM相交于点Q。
下面给出了三种情况(如图" ①,②,③),请回答下列问题:【1】(1)利用图①证明。
【答案】【2】(2)先用量角器分别测量∠BQM的大小,然后猜测∠BQM是否为定值?利用图③证明你的猜想【答案】2.我校准备挑选一名跳高运动员参加区中学生运动会,对跳高队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:【1】甲、乙两名运动员的跳高平均成绩分别是多少?【答案】甲169,乙168;【2】哪名运动员的成绩更为稳定?为什么?【答案】甲6 乙31.5选甲【3】若预测,跳过165cm就很可能获得冠军。
该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm才能得冠军呢?为什么?【答案】甲、乙3.(10分)如图,在△ABC中,O是AC上的一个动点(不与点A、C重合),过O点作直线MN//BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
【1】(1)试说明:OE=OF。
【答案】略【2】(2)当O点运动到何处时,四边形AECF是矩形?并证明你的结论。
【答案】略4.下列各组数中,是勾股数的是()A.2,3,4B.4,5,6C.7,8,9D.9,40,41【答案】D【解析】利用勾股数的定义进行判断,逐个计算即可.因为92+402=412,又9,40,41都是正整数,故D为勾股数.5.先化简,再求值:,其中x=﹣1.【答案】原式=,当x=﹣1时,原式=﹣3.【解析】先根据分式运算的法则把分式进行化简,再把x=﹣1代入求值即可.试题解析:原式===.当x=﹣1时,原式=﹣=﹣3.【考点】分式的化简求值.6.(9分)探究题:如图:(1)△ABC为等边三角形,动点D在边CA上,动点P在边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;(2)如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;(3)如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE吗?写出证明过程.【答案】(1)(2)见解析(3)DE=PE【解析】(1)由△ABC为等边三角形,可得∠C=∠ABP=60°,AB=BC,又由这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,可得BP=CD,即可利用SAS,判定△ABP≌△BCD,继而证得结论;(2)同理可证得△ABP≌△BCD(SAS),则可得∠APB=∠BDC,然后由∠APB+∠PAC=∠ACB=60°,∠DAQ=∠PAC,求得∠BDC+∠DAQ=∠BQP=60°;(3)首先过点D作DG∥AB交BC于点G,则可证得△DCG为等边三角形,继而证得△DGE≌△PBE(AAS),则可证得结论.试题解析:解:(1)成立.理由:∵△ABC是等边三角形,∴∠C=∠ABP=60°,AB=BC,根据题意得:CD=BP,在△ABP和△BCD中,,∴△ABP≌△BCD(SAS),∴AP=BD;(2)根据题意,CP=AD,∴CP+BC=AD+AC,即BP=CD,在△ABP和△BCD中,,∴△ABP≌△BCD(SAS),∴∠APB=∠BDC,∵∠APB+∠PAC=∠ACB=60°,∠DAQ=∠PAC,∴∠BDC+∠DAQ=∠BQP=60°;(3)DE=PE.理由:过点D作DG∥AB交BC于点G,∴∠CDG=∠C=∠CGD=60°,∠GDE=∠BPE,∴△DCG为等边三角形,∴DG=CD=BP,在△DGE和△PBE中,,∴△DGE≌△PBE(AAS),∴DE=PE.【考点】全等三角形的判定与性质;等边三角形的判定与性质7.(本题满分12分)如图,已知的中垂线交于点,交于点,有下面3个结论:①是等腰三角形;②∽;③点D是线段AC的黄金分割点.请你从以上结论中只选一个加以证明(友情提醒:证明①得8分,证明②得10分,证明③得12分).【答案】详见解析.【解析】(1)根据三角形的内角和定理及线段垂直平分线的性质易证∠BDC=∠ACB=72°,即可得是等腰三角形;(2)由(1)即可判定∽;(3)由(2)可得AB:BD=BC:DC,又因BD=AD=BC,AB=AC,所以AD2=DC·AC,即可判定点D是线段AC的黄金分割点.试题解析:①∵AB=AC,∠A=36°∴∠ABC=∠ACB=∵AB垂直平分线交AC于D,有 AD=BD,∴∠A=∠ABD=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°,∴∠BDC=180°-∠C-∠DBC=180°-72°-36°=72°,∴BD=BC,∴△BCD是等腰三角形.‚由①得,∠ABC=∠ACB=∠BDC=∠C=72°,∴△ABC∽△BCD③由 得,AB:BD=BC:DC,又因BD=AD=BC,AB=AC∴AD2=DC·AC即点D是线段AC的黄金分割点.【考点】等腰三角形的判定及性质;相似三角形的判定及性质.8.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2= .【答案】270°.【解析】如图,由四边形的内角和定理可得∠3+∠4+∠1+∠2=360°,根据直角三角形的两锐角互余可得∠3+∠4=90°,所以∠1+∠2=270°.【考点】四边形的内角和定理;直角三角形的两锐角互余.9.(本题6分)计算:.【答案】.【解析】由零指数幂、立方根、负整数指数幂的法则,以及绝对值的概念计算即可.试题解析:原式==.【考点】1.实数的运算;2.零指数幂;3.负整数指数幂;4.立方根.10.已知三角形的两边长为4,8,则第三边的长度可以是().A.16B.8C.4D.1【答案】B.【解析】根据三角形三边关系:三角形两边之和大于第三边,两边之差小于第三边,所以本题第三边的范围应该是大于4,小于12,只有B选项的长度符合,故本题选B.【考点】三角形三边关系.11.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则等于.【答案】45【解析】在Rt△CDM和Rt△BDM中,=+,=+,则-=-;在Rt△ABD和Rt△ACD中,=,,则-=,所以-==81-36=45.【考点】直角三角形的勾股定理12.【答案】.【解析】首先对各二次根式进行化简,然后合并同类二次根式.试题解析:解:原式= =.【考点】二次根式的加减法运算.13.下列长度的各组线段能组成一个三角形的是()A.4cm,6cm,11cm B.4cm,5cm,1cmC.3cm,4cm,5cm D.2cm,3cm,6cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,A、4+6<11,不能组成三角形;B、1+4=5,不能组成三角形;C、3+4>5,能够组成三角形;D、2+3<6,不能组成三角形.故选C.【考点】三角形三边关系.14.(2015秋•潮南区月考)计算:m•m2•m3+(m3)2﹣(2m2)3.【答案】﹣6m6【解析】直接利用同底数幂的乘法运算法则以及幂的乘方和积的乘方运算法则分别化简得出答案.解:m•m2•m3+(m3)2﹣(2m2)3=m6+m6﹣8m6=﹣6m6.【考点】幂的乘方与积的乘方;同底数幂的乘法.15.(2015秋•开江县期末)某文具经销店在开学时购进了A、B两种型号的计算器,已知:购进A型号的计算器20个,B型号的计算器25个需用1265元;购进A型号的计算器16个,B型号的计算器12个需用748元.求:(1)A、B两种型号的计算器进价分别是多少元?(2)在(1)的条件下,若A型号的计算器的售价是30元/个,B型号的计算器的售价是45元/个,商店一次性购进两种型号的计算器各20个,并全部销售,求商店所获利润是多少元?(3)在两种型号计算器的进价和售价均保持不变的情况下,该商店准备购进A、B两种型号的计算器共40个,且A型号的计算器的数量不得少于5个,问:商店应怎样进货,才能使所获利润最大?最大利润是多少元?【答案】(1)A型号的计算器进价为22元,B型号的计算器进价为33元.(2)商店所获利润是400元.(3)商店应购进A计算器5个、B计算器35个,才能使所获利润最大,最大利润是460元.【解析】(1)根据:A计算器20个费用+B计算器25个费用=1265、A计算器16个费用+B计算器12个费用=1265,即可列方程组求解;(2)所获利润=A型号计算器利润+B型号计算器利润,计算可得;(3)根据(2)中相等关系列出,总利润与A型号计算器数量间的函数关系式,结合函数增减性可得最大利润.解:(1)设A型号的计算器进价为x元,B型号的计算器进价为y元,根据题意得:解得:,答:A型号的计算器进价为22元,B型号的计算器进价为33元.(2)(30﹣22)×20+(45﹣33)×20=400(元)答:商店所获利润是400元.(3)设购进A型号计算器m个,则购进B型号计算器有(40﹣m)个,所获得总利润为W,由题意得:W=(30﹣22)m+(45﹣33)(40﹣m)=﹣4m+480∵﹣4<0,∴W随m的增大而减小,∵A型号的计算器的数量不得少于5个,即m≥5,∴当m=5时,W最大,最大值为:W=﹣4×5+480=460元;答:商店应购进A计算器5个、B计算器35个,才能使所获利润最大,最大利润是460元.【考点】一次函数的应用;二元一次方程组的应用;一次函数的性质;根据实际问题列一次函数关系式.16.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3B.4C.5D.6【答案】B【解析】先求出+1的范围,再根据范围求出即可.解:∵3<<4,∴4<+1<5,∴[+1]=4,故选B.【考点】估算无理数的大小.17.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km.当两车均到达各自终点时,运动停止.如图是y与x之间函数关系的部分图象.(1)由图象知,慢车的速度为 km/h,快车的速度为 km/h;(2)请在图中补全函数图象;(3)求当x为多少时,两车之间的距离为300km.【答案】(1)80,120;(2)补图见解析;(3)x=1.2 h或4.2 h【解析】(1)根据AB段可以确定先出发的车的速度,然后根据BC段确定两车速度的和,则后出发的车的速度可以求得;(2)根据路程是480km,则可以求得两辆车到达时的时间,然后求得各组到达的所需要的时间,再求得相距的距离即可确定;(3)两车之间的距离是300km时有两个位置,分成相遇前和相遇后两种情况讨论即可列方程求解.试题解析:(1)先出发的车的速度是(480-440)÷0.5=80km/h,两车的速度的和是440÷(2.7-0.5)=200km/h,则另一辆车的速度是120km/h.则慢车的速度是80km/h,快车120km/h.故答案是:80,120;(2)如下图,注意端点值.(3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即(80+120)×(x-0.5)=440-300,解得x=1.2(h);(8分)或(80+120)×(x-2.7)=300,解得x=4.2(h).(10分)故x=1.2 h或4.2h,两车之间的距离为300km.【考点】一次函数的应用.18.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.【答案】证明见解析【解析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.【考点】菱形的性质.19.在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.【答案】24【解析】根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.解:在菱形ABCD中,OB=OD,∵E为AB的中点,∴OE是△ABD的中位线,∵OE=3,∴AD=2OE=2×3=6,∴菱形ABCD的周长为4×6=24.故答案为:24.【考点】菱形的性质.20.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.1cm<OA<4cm B.2cm<OA<8cmC.2cm<OA<5cm D.3cm<OA<8cm【答案】A【解析】根据三角形的三边关系定理得到AC的取值范围,再根据平行四边形的性质即可求出OA的取值范围.解:∵AB=3cm,BC=5cm,∴2cm<AC<8cm,∵四边形ABCD是平行四边形,∴AO=AC,∴1cm<OA<4cm,故选:A.【考点】平行四边形的性质;三角形三边关系.21.下面的图像反映的过程是:小明从家去超市买文具,又去书店购书,然后回家.其中x表示时间,y表示小明离他家的距离,若小明家、超市、书店在同一条直线上.根据图像回答下列问题:(1)超市离小明家多远,小明走到超市用了多少时间?(2)超市离书店多远,小明在书店购书用了多少时间?(3)书店离小明家多远,小明从书店走回家的平均速度是每分钟多少米?【答案】(1)1.1千米;15分钟;(2)0.9千米;18分钟;(3)80米.分.【解析】(1)根据图像得出所求的信息;(2)根据图像信息得出我们所需要求的信息;(3)根据路程÷时间得出速度.试题解析:(1)由图像可以看出超市离小明家1.1千米,小明走到超市用了15分;(2)超市离书店:2-1.1=0.9千米,小明在书店购书用了55-37=18分;(3)由图像可以看出书店离小明家2千米,小明从书店走回家的平均速度是米/分.【考点】一次函数图象的性质.22. 如图,P 是矩形ABCD 的边AD 上一个动点,矩形的两条边AB 、BC 的长分别为6和8,那么点P 到矩形的两条对角线AC 和BD 的距离之和是 . 【答案】4.8 【解析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA•PE+OD•PF 求得答案.解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8, ∴S 矩形ABCD =AB•BC=48,OA=OC ,OB=OD ,AC=BD==10,∴OA=OD=5,∴S △ACD =S 矩形ABCD =24,∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF )=12,解得:PE+PF=4.8. 故答案为:4.8.23. 如图,△ABC 中,∠B=90°,AB=BC ,AD 是△ABC 的角平分线,若BD=1,求DC 的长.【答案】【解析】过D作DE⊥AC于E,根据角平分线性质求出DE=1,求出∠C=45°,解直角三角形求出DC即可.解:过D作DE⊥AC于E,∵△ABC中,∠B=90°,AD是△ABC的角平分线,BD=1,∴DE=BD=1,∵∠B=90°,AB=BC,∴∠C=∠BAC=45°,在Rt△DEC中,sin45°=,∴DC==.点评:本题考查了三角形内角和定理,等腰三角形的性质,角平分线的性质,解直角三角形的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,下列各点在阴影区域内的是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】A【解析】应先判断出阴影区域在第一象限,进而判断在阴影区域内的点.解:观察图形可知:阴影区域在第一象限,A、(3,2)在第一象限,故正确;B、(﹣3,2)在第二象限,故错误;C、(3,﹣2)在第四象限,故错误;D、(﹣3,﹣2)在第三象限,故错误.故选A.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.25.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【解析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB===4m,∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故选C.点评:本题考查的是勾股定理,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.26.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED;(2)见解析【解析】(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.27.实数在数轴上的位置如图所示,则化简的结果是()A.1B.b+1C.D.【答案】A【解析】根据数轴可得:a-10,a-b0,则原式=1-a+a-b+b=1.【考点】二次根式的化简28.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.【答案】3【解析】根据轴对称图形的性质可得:白色小方格的有3个.【考点】轴对称图形的性质29.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE 度;(2)设∠BAC=a,∠BCE=b.①如图2,当点D在线段BC上移动,则a,b之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则a,b之间有怎样的数量关系?请直接写出你的结论,不必说明理由.【答案】(1)、90°;(2)、①、α+β=180°;理由见解析;②、当点D在射线BC上时,α+β=180°;当点D在射线BC的反向延长线上时,α=β.【解析】(1)、根据∠BAC=∠DAE得出∠BAD=∠CAE,然后利用SAS判定△ABD和△ACE全等,从而得出∠B=∠ACE,则∠B+∠ACB=∠ACE+∠ACB,从而得出∠BCE=90°;(2)、①、、根据∠BAC=∠DAE得出∠BAD=∠CAE,然后利用SAS判定△ABD和△ACE全等,从而得出∠B=∠ACE,则∠B+∠ACB=∠ACE+∠ACB,从而得出α+β=180°;②、根据题意分别画出两个图形,然后分别进行计算得出答案,当点D在射线BC上时,α+β=180°;当点D在射线BC的反向延长线上时,α=β.试题解析:(1)、90°.∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC,∠BAD=∠CAE,AD=AE ∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°(2)、①α+β=180°,∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC,∠BAD=∠CAE,AD=AE ∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②、当点D在射线BC上时,α+β=180°;当点D在射线BC的反向延长线上时,α=β.【考点】三角形全等的判定与性质30.在下列四个角的度数中,一个不等边三角形的最小角度数可以是().A.80°B.65°C.60°D.59°【答案】D【解析】根据题意可得:等边三角形的每一个内角的度数都是60°,则不等边三角形最小角的度数为59°.【考点】三角形最小内角31.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.【答案】AC=48;AB=28【解析】首先设BD=CD=x,AB=y,则AC=4x,然后分AC+CD=60,AB+BD=40和AC+CD=40,AB+BD=60两种情况分别求出x和y的值,然后看三角形的三边关系判定是否都符合条件.试题解析:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理;综合上述:AC=48,AB=28.【考点】(1)、中线的性质;(2)、分类讨论思想.32.实数、在数轴上的位置如图所示,请化简:。
初一数学初中数学综合库试题答案及解析1.已知:,求:的值.【答案】8【解析】略2.(6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】不会给小马虎满分原因是:小马虎没有把问题考虑全面,他只考虑了OC落在∠AOB的内部,还有OC落在∠AOB的外部的情况.…………3分正确解法:当OC落在∠AOB的外部时,如右上图,∠AOC=∠AOB—∠BOC=55°.当OC落在∠AOB的外部时,如右下图,∠AOC=∠AOB+∠BOC=85°.………………3分【解析】略3.如图是一个数值运算程序,若输入x的值为2,则输出的数值为()A.5B.6C.11D.12【答案】C【解析】略4.下图规律,在第四个方框内填入的数应为 .【答案】 -260【解析】略5.计算(-2)2004+(-2)2003的结果是()A.-1B.-2C.22003D.-22004【答案】C【解析】此题考查指数幂的运算思路:先化为同类项,再加减答案 C点评:一定要会转化式子。
6.如图所示,直线AB, CD相交于点O, P是直线CD上一点。
①过点P画直线AB的垂线段PE;②过点P画直线CD的垂线,与直线AB相交于F点;③说明线段PE, PO, FO三者的大小关系,其依据是什么?【答案】(1)略(2)略(3)PE∠PO∠FO,依据是:垂线段最短【解析】略7.(本题满分12分)为实现区域教育均衡发展,我区计划对,两类薄弱学校全部进行改造.已知改造一所类学校和两所类学校共需资金万元;改造两所类学校和一所类学校共需资金万元.问改造一所类学校和一所类学校分别需要多少万元的资金?(1)老师让两位同学上黑板板演,其中甲同学设了一个未知数,请你帮他写出完整的解答过程.(2)另一位乙同学设了两个未知数,却没法做下去,老师说也可以做,但需要列两个不同的方程,爱动脑的你能帮助她列出方程吗?解:设改造一所类学校需要万元资金;改造一所类学校需要万元资金,根据题意可得方程①:方程②:(3)丙同学说我一个未知数也没有设,也可以求出答案来.请聪明的你写出丙同学的方法.【答案】(1)参见解析;(2)x+2y=230,2x+y=205;(3)参见解析.【解析】(1)此题是列一元一次方程求解,设改造一所M类学校需要x万元,根据改造一所类学校和两所类学校共需资金万元,用x把改造一所N类学校的万元数表示出来,再根据改造两所类学校和一所类学校共需资金万元,列一元一次方程求解;(2)根据改造一所类学校和两所类学校共需资金万元;改造两所类学校和一所类学校共需资金万元.找等量关系列方程.(3)不设未知数,可以先用230+205=435万元,是三所M学校和三所N类学校的总价钱,再用435÷3=145万元,是一所M学校和一所N类学校的总价钱,然后用230-145=85万元,正好是一所N类学校需要的资金,用205-145=60万元,正好是一所M类学校需要的资金.试题解析:(1)设改造一所M类学校需要x万元,则根据1个M学校+2个N学校=230,改造一所N类学校就需要万元.根据题意可得方程:,解得:,∴,∴改造一所M类学校和一所N类学校分别需要万元和万元资金.(2)∵改造一所类学校和两所类学校共需资金万元,∴方程①:x+2y=230;∵改造两所类学校和一所类学校共需资金万元,∴方程②:2x+y=205;(3)用230+205="435" 万元,是三所M学校和三所N类学校的总价钱,则一所M学校和一所N类学校的总价钱是435÷3=145万元,∵改造一所类学校和两所类学校共需资金万元;∴230-145=85万元,是一所N类学校需要的资金,∵改造两所类学校和一所类学校共需资金万元,∴用205-145=60万元,是一所M类学校需要的资金.【考点】一元一次方程与二元一次方程组的实际应用.8.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论不正确的是()A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌【答案】D.【解析】由折线统计图可知2~6月份股票月增长率逐渐减少,7月份股票的月增长率开始回升,这七个月中,股票的增长率始终是正数,则每月的股票不断上涨,所以A、B、C都正确,错误的只有D.故选D.【考点】折线统计图.9.在数轴上表示下列各数,并用“<”号连接:-(-5),-|-2.5|,-,.【答案】作图见解析;-22<<-|-2.5|<-(-5).【解析】本题考查的是有理数的大小比较,引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 先画出数轴并表示出各数,根据数轴的特点用“<”把各数连接起来. 试题解析:解:画出数轴并表示出各数如图:用“<”把各数连接起来为:-22<<-|-2.5|<-(-5).【考点】有理数大小比较;数轴.10.方程移项后,正确的是()A.B.C.D.【答案】C【解析】在等式中,将左边的移到右边需要进行变号,将右边的移到左边也需要变号.则3x-2x=-8-6.【考点】移项的方法11.(2014秋•台州校级期末)已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.【答案】20 cm【解析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM="6" cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD="10x=10×2=20" cm.【考点】两点间的距离.12.命题“同角的余角相等”的题设是_______ ,结论是 ________ .【答案】同角的余角;相等.【解析】命题由题设和结论两部分组成.其中题设是已知的条件,结论是由题设推出的结果.【考点】⒈命题;⒉定理.13.如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.【答案】(1)、70°;(2)、30°【解析】(1)、首先根据垂直得出∠AOE=90°,根据∠AOC=180°-∠AOE-∠EOD得出答案;(2)、首先设∠AOC=x,则∠BOC=2x,根据平角的性质得出x的值,根据∠EOD=180°-AOE-∠AOC得出答案.试题解析:(1)、∵OE⊥AB,∴∠AOE=90°,∵∠EOD=20°,∴∠AOC=180°﹣90°﹣20°=70°;(2)、设∠AOC=x,则∠BOC=2x,∵∠AOC+∠BOC=180°,∴x+2x=180°,解得:x=60°,∴∠AOC=60°,∴∠EOD=180°﹣90°﹣60°=30°.【考点】角度的计算14.九台全区7年级学生大约有10200人,10200这个数用科学记数法表示为()A.B.C.D.【答案】B【解析】科学计数法是指a×,且,n为原数的整数位数减一.【考点】科学计数法15.两个有理数相除,其商是负数,则这两个有理数()A.都是负数B.都是正数C.一个正数一个负数D.有一个是零【答案】C【解析】两数相除,同号得正,异号得负.商为负数,则说明两数异号.【考点】有理数的除法计算16.已知代数式2x-y的值是,则代数式-6x + 3y-1的值是;【答案】【解析】原式=-3(2x-y)-1=-3×-1=-.【考点】整体思想求解17.如图中的俯视图是()A.B.C.D.【答案】C【解析】根据三视图的法则可得:A为主视图;B为左视图;C为俯视图.【考点】简单图形的三视图18.下列算式正确的是()A.-1-1=0B.2-2÷(-)=0C.|5-2|=-(5-2)D.【答案】D【解析】A、原式=-1+(-1)=-2;B、原式=2-(-6)=2+6=8;C、原式=3;D、计算正确.【考点】有理数的计算19.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:___________;用含t的代数式表示点P和点C的距离:PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有__________处相遇,相遇时t=_______________秒。
初一数学初中数学综合库试题答案及解析1.掷一枚普通的正方体骰子,事件:①点朝上;②朝上的点数是两位数;③偶数点朝上;④朝上的点数小于7.将以上事件按发生的可能性从大到小排序:.(只填序号)【答案】【解析】略2.现规定一种新型的运算“*”:,如,则等于()A.8B.6C.-8D.-6【答案】C.【解析】根据题目中的规定可得,故答案选C.【考点】有理数的运算.3.如图,直线a∥b,直线c分别与a,b相交,若∠1=60°,则∠2= °.【答案】120.【解析】∵∠1=60°,∴∠1的对顶角也是60度,∵a∥b,∴∠2与∠1的对顶角互补,∴∠2=120º.【考点】平行线的性质.4.如图,AB=10cm,AC=6cm,且D是AC的中点,则BD= cm【答案】7.【解析】,可得AD的长,根据线段的和差,可得BD的长.已知D是AC的中点,AC=6cm,根据线段中点的性质可得AD=AC=×6=3cm.所以BD=AB﹣AD=10﹣3=7cm,【考点】线段中点的性质.5.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.【答案】B【解析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;【考点】二元一次方程的解6.下列各数2,π,,﹣,中,无理数的个数是()个.A.1B.2C.3D.4【答案】B【解析】无理数有:π,﹣共2个.故选B.【考点】无理数.7.下列图形中,∠1与∠2是对顶角的是()【答案】D.【解析】A、∠1与∠2不是对顶角,故本选项错误;B、∠1与∠2不是对顶角,故本选项错误;C、∠1与∠2不是对顶角,故本选项错误;D、∠1与∠2是对顶角,故本选项正确;故选D.【考点】对顶角、邻补角.8.的算术平方根是.【答案】3.【解析】=9,根据算数平方根的定义可得9的算术平方根是3.【考点】算数平方根的定义.9.从数轴上表示﹣1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是.【解析】-1+6-5=0,故最后到达的终点所表示的数是0.【考点】1.数轴;2.有理数的加减法.10.在、、、这四个数中,最大的数比最小的数要大()A.25B.20C.19D.12【答案】B【解析】因为=-1,=1,=-4,=16,所以最大的数16比最小的数-4要大16-(-4)=16+4=20,故选:B.【考点】有理数的大小比较.11.如果有理数满足∣-2∣+(1-b)2=0试求+…+的值。
初一数学初中数学综合库试题答案及解析1.(1) -4的相反数是▲,(2) 36的平方根是▲.(3)当x ▲时,根式有意义;(4)当x ▲时,分式的值为零.【答案】4,,【解析】略2.已知方程3x+1=2x+2与方程3x+5a=8有相同的解,,求a的值.【答案】x = 1,a = 1。
【解析】略3.计算:-2+5的结果是()A.-7B.-3C.3D.7【答案】 C【解析】略4.(6分)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为:1+2+3+…+n=图1图2图3图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1, 2,3,4…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数−40,−39,−38,…,求图4中所有圆圈中各数的和.【答案】(1)67;(2)(-40)+(-39)+(-38)+…+(-1)+0+1+…+36+37= -117.【解析】略5. 1. 下列说法不正确的是()A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于位似比D.位似图形中每组对应点所在的直线必相互平行【答案】D【解析】略6.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是________【答案】(3,2)【解析】略7.线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标【答案】(1,2)【解析】略8.已知:如图,线段AB=10cm,点O是线段AB的中点,线段BC=3cm,则线段OC= cm【答案】2【解析】略9. 9的算术平方根是()A.±3B.3C.﹣3D.【答案】B.【解析】一个正数的正的平方根是这个数的算术平方根,根据算术平方根的定义可得9的算术平方根是3,故答案选B.【考点】算术平方根的定义.10.将一张完好无缺的报纸对折n次后,数了一下共有128层,则n=_____________。
初一数学初中数学综合库试题1.单项式的系数和次数分别是()A.-π,5B.-1,6C.-3π,6D.-3,7【答案】C【解析】略2.如图,(1)若∠B=∠1,那么根据________,可得AD∥BC;(2)若∠D=∠1,那么根据________,可得AB∥CD.【答案】(1)同位角相等,两直线平行;(2)内错角相等,两直线平行【解析】由题图可知,∠B和∠1是直线AD、BC被AB所截形成的同位角,由∠B=∠1,可得AD∥BC,根据:同位角相等,两直线平行;∠D和∠1是直线AB、CD被AD所截形成的内错角,由∠D=∠1,可得AB∥CD,根据:内错角相等,两直线平行.3.﹣2的绝对值是().A.2B.﹣2C.0D.【答案】A.【解析】因为正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,所以-2的绝对值是2,故选A.【考点】绝对值意义.4.的相反数是()A.B.C.D.【答案】D【解析】因为数a的相反数是-a,所以的相反数是2,故选:D.【考点】相反数5.若-3x3m y3与2xy3n是同类项,则(m-n)2的值是_________.【答案】.【解析】试题解析:∵-3x3m y3与2xy3n是同类项,∴3m=1,3n=3,解得:m=,n=1,∴(m-n)2=(-1)2=.【考点】同类项.6.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.梦C.中D.国【答案】D.【解析】试题解析:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选D.【考点】正方体相对两个面上的文字.7.(2015秋•甘谷县期末)当x=﹣2时,代数式﹣x+1的值是()A.﹣1B.﹣3C.1D.3【答案】D【解析】根据x=﹣2,直接代入可以解决问题.解:∵x=﹣2∴原式=﹣x+1=﹣(﹣2)+1=3.故选D.【考点】代数式求值.8.(2015秋•沧州期末)下列各图中,能正确表示数轴的是()A.B.C.D.【答案】A【解析】根据数轴的三要素:原点、正方向、单位长度,即可解答.解:由数轴的三要素:原点、正方向、单位长度,可知A正确;故选:A.【考点】数轴.9.(2015秋•石柱县期末)如图,∠AOC和∠DOB都是直角,如果∠DOC=28°,那么∠AOB= .【答案】152°【解析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.解:∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC,=90°+90°﹣28°,=152°.故答案为:152°【考点】角的计算.10.四川5•12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间?这批灾民有多少人?【答案】这次为灾民安置了5个房间,灾民有23人.或者这次为灾民安置了6个房间,灾民有28人.【解析】设这次为灾民安置的有x个房间,那么就有(3x+8)人,根据如果每个房间住5人,则有一个房间不足5人,可列出不等式组求解.解:设这次为灾民安置的有x个房间.,解得4<x<6.5.所以房间有5个或6个.当房间5个时,就有3×5+8=23(人);当房间有6个时,就有3×6+8=26(人).答:这次为灾民安置了5个房间,灾民有23人.或者这次为灾民安置了6个房间,灾民有28人.11.如图,矩形ABCD被分割成六个正方形,其中最小正方形的面积等于4,则矩形ABCD的周长为,面积为.【答案】96;572【解析】根据最小正方形的面积求出边长,设左下角正方形的边长为x,表示出其他正方形的边长,根据AD=BC列出方程,求出方程的解得到矩形的长与宽,求出周长与面积即可.解:由最小正方形的面积为4,得到边长为2,设左下角正方形的边长为x,根据题意得:x+x﹣2+x﹣2=x+2+x+4,解得:x=10,∴AD=3x﹣4=26,AB=x+x+2=2x+2=22,则矩形ABCD的周长为2×(26+22)=96;面积为26×22=572.故答案为:96;572.12.把下列各数分别填入相应的集合里.,,0,,,…,,,(1)正数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}【答案】答案见解析【解析】(1)、正数包括正整数和正分数;(2)、整数包括正整数、零和负整数;(3)、分数包括正分数和负分数;(4)、无理数是指无限不循环小数.试题解析:(1)、正数集合:{ ,,,…}(2)、整数集合:{ , 0 …}(3)、分数集合:{ ,,,…}(4)、无理数集合:{ …,π…}【考点】有理数的分类13.--2(1-x+)+1【答案】x-【解析】首先根据去括号的法则将括号去掉,然后进行合并同类项计算,得出答案.试题解析:原式=-x+-2+2x-x-1+1=x-【考点】合并同类项14.“地球停电一小时”活动的某地区烛光晚餐中,设座位有 x 排,每排坐 30 人,则有 8 人无座位;每排坐 31 人,则空 26 个座位.则下列方程正确的是()A.30x﹣8=31x﹣26B.30x + 8=31x+26C.30x + 8=31x﹣26D.30x﹣8=31x+26【答案】C【解析】设座位有x排,根据总人数是一定的,列出一元一次方程30x+8=31x-26.故选:C.15.角度换算:45.6°=___________°___________'。
•如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧),已知点坐标为(,)。
(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点,如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,
的面积最大?并求出此时点的坐标和的最大面积.
如图,在平面直角坐标系中,直线L:y=-2x-8分别与x轴、y轴相交于A、B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P。
(1)连结PA,若PA=PB,试判断⊙P与X轴的位置关系,并说明理由;
(2)当K为何值时,以⊙P与直线L的两个交点和圆心P为顶点的三角形是正三角形?
•如图,抛物线的顶点为A (2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.
•如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:① CB=CE;② D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
•已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x 轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
•已知如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC.
(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=-x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.
•如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q。
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断⊿BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,
并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱
形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由。
如图,已知抛物线:的顶点为,与轴相交于两点(点在点的左边),点的横坐标是.
(1)求点坐标及的值;
(2)如图1,抛物线与抛物线关于轴对称,将抛物线向左平移,平移后的抛物线记为,的顶点为,当点关于点成中心对称时,求的解析式;
(3)如图2,点是轴负半轴上一动点,将抛物线绕点旋转后得到抛物线.抛物线的
顶点为,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点的坐标.
•如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点
的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上.(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
•如图,抛物线y=-x2+bx+c交x轴于A、B两点,交y轴于点C,且抛物线的对称轴为直线x =1,设∠ABC=α,且cosα=.
(1)求这条抛物线的函数关系式;
(2)动点P从点A出发,沿A→B→C方向,向点C运动;动点Q从点B出发,沿射线BC方向运动.若P、Q两点同时出发,运动速度均为1个单位长度/秒,当点P到达点C时,整个运动随之结束,设运动时间为t秒.
①试求△APQ的面积S与t之间的函数关系式,并指出自变量t的取值范围;
②在运动过程中,是否存在这样的t的值,使得△APQ是以AP为一腰的等腰三角形?若存在,请求出所有
符合条件的t的值;若不存在,请说明理由.。