已知圆上任意三点求圆心坐标及半径程序
- 格式:doc
- 大小:31.00 KB
- 文档页数:1
4.1.2 圆的一般方程教学目标1.正确理解圆的一般式方程及其特点,会求圆的一般方程;2.熟练圆的一般式方程与标准方程的互化;3.初步掌握求动点的轨迹方程的思想方法。
教学重难点重点:根据圆的一般方程,熟练地求出圆心和半径。
难点:能根据某些具体条件,运用待定系数法确定圆的方程。
复习回顾:圆的标准方程是什么?思考:若把圆的标准方程(x -a )2+(y -b )2=r 2展开后,会得出怎样的形式?探究一、圆的一般方程思考:方程x 2+y 2+Dx +Ey +F =0在什么条件下表示圆?一、圆的一般方程二元二次方程x 2+y 2+Dx +Ey +F =0,当D 2+E 2-4F >0时,该方程叫做圆的一般方程。
圆心为_⎝⎛⎭⎫-D 2,-E 2_,半径长为__D 2+E 2-4F 2__. 圆的一般方程的特点:(1)x 2,y 2项的系数相等且不为零; (2)没有xy 项; (3)D 2+E 2-4F >0.思考:给出二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0,若该方程表示圆的方程,可否根据圆的一般方程确定成立的条件?二、圆的一般方程与标准方程的关系(1)标准方程易于看出圆心与半径,一般方程突出了方程形式上的特点.(2)a =2D -,b =2E-,r =D 2+E 2-4F 2.问题:圆是否还可以用其他形式的方程来表示呢?探究二、圆的参数方程思考:如图,设⊙O 的圆心在原点,半径是r ,与x 轴正半轴的交点为P 0,在圆上任取一点P ,若将OP 0按逆时针方向旋转到OP 位置所形成的角∠P0OP =θ,求P 点的坐标.3.圆的参数方程(1)圆心在原点,半径为r 的圆的参数方程是:⎩⎨⎧==θθsin cos r y r x (θ是参数)(2)圆心在(a ,b ),半径为r 的圆的参数方程是:⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数)典例讲解题型一、圆的一般方程的概念例1.圆x 2+y 2-2x +4y =0的圆心坐标为( )A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2) 例2.方程x 2+y 2+4mx -2y +5m =0表示圆的条件是( )A.14<m <1B.m >1C.m <14D.m <14或m >1 例3.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆.(1)求实数m 的取值范围. (2)求该圆半径r 的取值范围; (3)求圆心的轨迹方程.题型二、求圆的方程例4.根据下列条件求圆的方程:(1)过三点A (1,12),B (7,10),C (-9,2);(2)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上;(3)求与x 轴相切,圆心在直线03=-y x 上,且截直线0=-y x 的弦长为72的圆的方程.题型三、圆的参数方程 例5.已知圆O 的参数方程是⎩⎨⎧==θθsin 5cos 5y x (0≤θ<2π),如果圆上点P 所对应的参数θ=5π3,则点P 的坐标是________.例6.若直线y =x ﹣b 与曲线2cos ,sin x y θθ=+⎧⎨=⎩(θ∈[0,2π])有两个不同的公共点,则实数b 的取值范围为( )A.(2B.[2C.(,2(22,)-∞++∞D.(2例7.已知实数x ,y 满足x 2+y 2+2x ﹣23y =0.(1)求x 2+y 2的最大值; (2)求x +y 的最小值.题型三、与圆相关的轨迹问题例8.已知:一个圆的直径的两端点是A (x 1,y 1)、B (x 2,y 2),证明:圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.例9.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,求线段AB 的中点M的轨迹方程.变式:如图,已知点A (-1,0),与点B (1,0),C 是圆x 2+y 2=1上的动点,连结BC 并延长至D ,使|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.探究!到两定点的距离之比为定值的点的轨迹到两定点F 1、F 2的距离之比为定值λ(λ>0)的点的轨迹是圆.例10.已知一曲线是与两定点O (0,0)、A (3,0)距离的比为12的点的轨迹,求这个曲线的方程.题型四、与圆相关的最值问题(数形结合,巧解“与圆有关的最值问题”)例11.已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求yx 的最大值与最小值;(2)求y -x 的最大值与最小值;(3)求x 2+y 2的最大值和最小值.变式:实数x ,y 满足x 2+y 2+2x -4y +1=0,求下列各式的最大值和最小值:(1)4-x y;(2)2x +y .课堂小结1.本节课的主要内容是圆的一般方程,其表达式为⎪⎩⎪⎨⎧>-+=++++0402222F E D F Ey Dx y x 2.圆的一般方程与圆的标准方程的联系一般方程配方得标准方程,标准方程(圆心,半径)展开得一般方程。
圆的标准方程与坐标系之间的关系是什么一、关键信息1、圆的标准方程的定义和形式2、坐标系的类型(如直角坐标系、极坐标系等)3、圆在不同坐标系中的表现形式4、标准方程与坐标系之间的转换方法5、利用坐标系求解圆的相关参数(如圆心坐标、半径等)二、圆的标准方程概述11 圆的标准方程一般形式为:$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$为圆心坐标,$r$为圆的半径。
111 该方程直观地表达了圆上任意一点$(x, y)$到圆心$(a, b)$的距离等于半径$r$。
三、坐标系的种类及特点21 直角坐标系,也称为笛卡尔坐标系,是由两条相互垂直的数轴组成,分别为$x$轴和$y$轴。
211 在直角坐标系中,点的位置由其在$x$轴和$y$轴上的坐标确定。
22 极坐标系,是用极径和极角来确定点的位置。
221 极径表示点到极点的距离,极角表示极径与极轴的夹角。
四、圆在直角坐标系中的方程31 当圆心在原点$(0, 0)$时,圆的标准方程为$x^2 + y^2 = r^2$。
311 通过给定圆上一点的坐标,可以利用方程求出半径。
32 若圆心在$(a, b)$,则方程为$(x a)^2 +(y b)^2 = r^2$。
321 可以通过展开方程,得到关于$x$和$y$的二次方程形式。
五、圆在极坐标系中的方程41 以极点为圆心,半径为$r$的圆的极坐标方程为$\rho = r$。
411 对于一般位置的圆心,其极坐标方程较为复杂,需要通过坐标转换来推导。
六、标准方程与坐标系之间的转换51 从直角坐标系中的标准方程转换到极坐标系。
511 设直角坐标系中的点$(x, y)$对应的极坐标为$(\rho, \theta)$,则有$x =\rho \cos\theta$,$y =\rho \sin\theta$。
512 将其代入圆的标准方程,可得到极坐标方程。
52 从极坐标系方程转换到直角坐标系方程。
521 利用$\rho \cos\theta = x$,$\rho \sin\theta = y$进行代换和化简。
2.3圆的方程2.3.1圆的标准方程学习目标核心素养1.会用定义推导圆的标准方程并掌握圆的标准方程的特征.(重点)2.能根据所给条件求圆的标准方程.(重点)3.掌握点与圆的位置关系.(重点) 4.圆的标准方程的求解.(难点)1.通过圆的标准方程及其特征的学习,培养数学抽象的核心素养.2.借助圆的标准方程的求解与应用,提升数学运算的核心素养.1.圆的标准方程(1)以C(a,b)为圆心,r(r>0)为半径的圆的标准方程为(x-a)2+(y-b)2=r2.(2)以原点为圆心,r为半径的圆的标准方程为x2+y2=r2.2.点与圆的位置关系设点P到圆心的距离为d,圆的半径为r,则点与圆的位置关系对应如下:位置关系点在圆外点在圆上点在圆内d与r的大小关系d>r d=r d<r0000-b)2=r2,那么P在圆C内和圆C外又满足怎样的关系?[提示]若点P在圆C内,则有(x0-a)2+(y0-b)2<r2.若点P在圆C外,则有(x0-a)2+(y0-b)2>r2.1.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)()A.是圆心B.在圆上C.在圆内D.在圆外C[圆心M(2,3),半径r=2,∵|PM|=(3-2)2+(2-3)2=2<r,∴点P 在圆内.]2.点P(m,5)与圆x2+y2=16的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定A[圆心为(0,0),半径r=4,P到圆心的距离d=m2+25>4,所以P在圆外.]3.圆(x-2)2+(y+3)2=2的圆心和半径分别是()A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3), 2D[由圆的标准方程可得圆心坐标为(2,-3),半径为 2.]4.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.(x+2)2+y2=4[圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.]直接法求圆的标准方程A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1(2)已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的标准方程是()A.(x-2)2+(y+3)2=13 B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52 D.(x+2)2+(y-3)2=52[思路探究](1)设出圆心坐标,利用两点间的距离公式求圆心坐标,再写出圆的标准方程.(2)根据中点坐标公式求出直径两端点坐标,进而求出圆的半径,再写出圆的标准方程.(1)A(2)A[(1)设圆心坐标为(0,b),则由题意知(0-1)2+(b-2)2=1,解得b=2.故圆的方程为x2+(y-2)2=1.(2)设此直径两端点分别为(a,0),(0,b),由于圆心坐标为(2,-3),所以a =4,b=-6,所以圆的半径r=(4-2)2+(0+3)2=13,从而所求圆的方程是(x-2)2+(y+3)2=13.]1.确定圆的标准方程只需确定圆心坐标和半径,因此用直接法求圆的标准方程时,一般先从确定圆的两个要素入手,即首先求出圆心坐标和半径,然后直接写出圆的标准方程.2.确定圆心和半径时,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如“弦的中垂线必过圆心”“过切点与切线垂直的直线必过圆心”等.提醒:当圆与坐标轴相切时要特别注意圆心的坐标与圆的半径的关系.1.以点A(-5,4)为圆心,且与x轴相切的圆的方程是()A.(x+5)2+(y-4)2=25B.(x-5)2+(y+4)2=16C.(x+5)2+(y-4)2=16D.(x-5)2+(y+4)2=25C[因该圆与x轴相切,则圆的半径r等于圆心纵坐标的绝对值,所以圆的方程为(x+5)2+(y-4)2=16.]待定系数法求圆的标准方程B(-2,-5)的圆的标准方程.[思路探究]解答本题可以先根据所给条件确定圆心和半径,再写方程,也可以设出方程用待定系数法求解,也可以利用几何性质求出圆心和半径.[解]法一:设点C为圆心,∵点C在直线:x-2y-3=0上,∴可设点C的坐标为(2a+3,a).又∵该圆经过A,B两点,∴|CA|=|CB|.∴(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2, 解得a =-2.∴圆心坐标为C (-1,-2),半径r =10. 故所求圆的标准方程为(x +1)2+(y +2)2=10. 法二:设所求圆的标准方程为 (x -a )2+(y -b )2=r 2,由条件知⎩⎨⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10.故所求圆的标准方程为 (x +1)2+(y +2)2=10.法三:线段AB 的中点为(0,-4),k AB =-3-(-5)2-(-2)=12,所以弦AB 的垂直平分线的斜率k =-2, 所以线段AB 的垂直平分线的方程为: y +4=-2x , 即y =-2x -4.故圆心是直线y =-2x -4与直线x -2y -3=0的交点,由⎩⎨⎧y =-2x -4,x -2y -3=0,得⎩⎨⎧x =-1,y =-2. 即圆心为(-1,-2),圆的半径为 r =(-1-2)2+(-2+3)2=10,所以所求圆的标准方程为(x +1)2+(y +2)2=10.1.待定系数法求圆的标准方程的一般步骤设方程((x -a )2+(y -b )2=r 2)→列方程组(由已知条件,建立关于a 、b 、r 的方程组)→解方程组(解方程组,求出a 、b 、r )→得方程(将a 、b 、r 代入所设方程,得所求圆的标准方程).2.充分利用圆的几何性质,可使问题计算简单.2.求圆心在x 轴上,且过点A (5,2)和B (3,-2)的圆的标准方程. [解] 法一:设圆的方程为 (x -a )2+(y -b )2=r 2(r >0).则⎩⎨⎧b =0,(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,解得⎩⎨⎧a =4,b =0,r = 5.所以所求圆的方程为(x -4)2+y 2=5. 法二:因为圆过A (5,2),B (3,-2)两点, 所以圆心一定在线段AB 的中垂线上. AB 中垂线的方程为y =-12(x -4), 令y =0,得x =4.即圆心坐标为C (4,0), 所以r =|CA |=(5-4)2+(2-0)2= 5. 所以所求圆的方程为(x -4)2+y 2=5.与圆有关的最值问题1.若P (x ,y )为圆C (x +1)2+y 2=14上任意一点,请求出P (x ,y )到原点的距离的最大值和最小值.[提示] 原点到圆心C (-1,0)的距离d =1,圆的半径为12,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.2.若P (x ,y )是圆C (x -3)2+y 2=4上任意一点,请求出P (x ,y )到直线x -y +1=0的距离的最大值和最小值.[提示] P (x ,y )是圆C 上的任意一点,而圆C 的半径为2,圆心C (3,0),圆心C 到直线x -y +1=0的距离d =|3-0+1|12+(-1)2=22,所以点P 到直线x -y +1=0的距离的最大值为22+2,最小值为22-2.【例3】 已知实数x ,y 满足方程(x -2)2+y 2=3.求yx 的最大值和最小值. [思路探究] yx 的几何意义是圆上的点与原点构成直线的斜率,根据直线与圆相切求得.[解] 原方程表示以点(2,0)为圆心,以3为半径的圆,设yx =k ,即y =kx , 当直线y =kx 与圆相切时,斜率k 取最大值和最小值,此时|2k -0|k 2+1=3,解得k =±3.故yx 的最大值为3,最小值为- 3.1.在本例条件下,求y -x 的最大值和最小值. [解] 设y -x =b , 即y =x +b ,当y =x +b 与圆相切时,纵截距b 取得最大值和最小值,此时|2-0+b |2=3, 即b =-2±6.故y -x 的最大值为-2+6, 最小值为-2- 6.2.在本例条件下,求x 2+y 2的最大值和最小值.[解] x 2+y 2表示圆上的点与原点距离的平方,由平面几何知识知,它在原点与圆心所在直线与圆的两个交点处取得最大值和最小值,又圆心到原点的距离为2,故(x 2+y 2)max =(2+3)2=7+43,(x 2+y 2)min =(2-3)2=7-4 3.与圆有关的最值问题,常见的有以下几种类型:1.形如u=y-bx-a形式的最值问题,可转化为过点(x,y)和(a,b)的动直线斜率的最值问题.2.形如l=ax+by形式的最值问题,可转化为动直线y=-ab x+lb截距的最值问题.3.形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题.1.本节课的重点是会用定义推导圆的标准方程并掌握圆的标准方程的特征,能根据所给条件求圆的标准方程,掌握点与圆的位置关系.难点是根据所给条件求圆的标准方程.2.本节课要重点掌握的规律方法(1)直接法求圆的标准方程,(2)待定系数法求圆的标准方程,(3)求与圆有关的最值的方法.3.本节课的易错点是求圆的标准方程中易漏解.1.判断(正确的打“√”,错误的打“×”)(1)圆心位置和圆的半径确定,圆就唯一确定.()(2)方程(x-a)2+(y-b)2=m2一定表示圆.()(3)圆(x+2)2+(y+3)2=9的圆心坐标是(2,3),半径是9.()[答案](1)√(2)×(3)×[提示](1)正确.确定圆的几何要素就是圆心和半径.(2)错误.当m =0时,不表示圆.(3)错误.圆(x +2)2+(y +3)2=9的圆心为(-2,-3),半径为3. 2.圆(x -3)2+(y +2)2=13的周长是( ) A .13π B .213π C .2πD .23πB [因为圆的半径为13,所以圆的周长为213π.]3.点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .-1<a <15D .-15<a <1D [因为(2a ,a -1)在圆x 2+(y -1)2=5的内部,所以4a 2+(a -2)2<5,解得-15<a <1.]4.已知圆M 的圆心坐标为(3,4),且A (-1,1),B (1,0),C (-2,3)三点一个在圆M 内,一个在圆M 上,一个在圆M 外,求圆M 的方程.[解] ∵|MA |=(-1-3)2+(1-4)2=5, |MB |=(1-3)2+(0-4)2=25, |MC |=(-2-3)2+(3-4)2=26, ∴|MB |<|MA |<|MC |,∴点B 在圆M 内,点A 在圆M 上,点C 在圆M 外, ∴圆的半径r =|MA |=5,∴圆M 的方程为(x -3)2+(y -4)2=25.课时分层作业(十九) 圆的标准方程(建议用时:60分钟)[合格基础练]一、选择题1.圆心为(1,-2),半径为3的圆的方程是( ) A .(x +1)2+(y -2)2=9 B .(x -1)2+(y +2)2=3D.(x-1)2+(y+2)2=9D[由圆的标准方程得(x-1)2+(y+2)2=9.]2.若圆(x-a)2+(y-b)2=r2过原点,则()A.a2+b2=0B.a2+b2=r2C.a2+b2+r2=0D.a=0,b=0B[由题意得(0-a)2+(0-b)2=r2,即a2+b2=r2.]3.与圆(x-3)2+(y+2)2=4关于直线x=-1对称的圆的方程为()A.(x+5)2+(y+2)2=4B.(x-3)2+(y+2)2=4C.(x-5)2+(y+2)2=4D.(x-3)2+y2=4A[已知圆的圆心(3,-2)关于直线x=-1的对称点为(-5,-2),∴所求圆的方程为(x+5)2+(y+2)2=4.]4.圆心为C(-1,2),且一条直径的两个端点落在两坐标轴上的圆的方程是()A.(x-1)2+(y+2)2=5B.(x-1)2+(y+2)2=20C.(x+1)2+(y-2)2=5D.(x+1)2+(y-2)2=20C[因为直径的两个端点在两坐标轴上,所以该圆一定过原点,所以半径r =(-1-0)2+(2-0)2=5,又圆心为C(-1,2),故圆的方程为(x+1)2+(y-2)2=5,故选C.]5.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,5为半径的圆的方程为()A.(x-1)2+(y+2)2=5B.(x+1)2+(y+2)2=5C.(x+1)2+(y-2)2=5C [直线方程变为(x +1)a -x -y +1=0.由⎩⎨⎧ x +1=0,-x -y +1=0,得⎩⎨⎧x =-1,y =2,∴C (-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5.]二、填空题6.已知A (-1,4),B (5,-4),则以AB 为直径的圆的标准方程是________. (x -2)2+y 2=25 [由题意知圆心坐标为⎝ ⎛⎭⎪⎫-1+52,4-42,即(2,0),半径为12(-1-5)2+(4+4)2=5,故所求圆的标准方程为(x -2)2+y 2=25.]7.若点P (5a +1,12a )在圆(x -1)2+y 2=1的外部,则a 的取值范围为________.a >113或a <-113 [∵P 在圆外,∴(5a +1-1)2+(12a )2>1,169a 2>1,a 2>1169,∴|a |>113,即a >113或a <-113.]8.圆(x -1)2+(y -1)2=1上的点到直线x -y =2的距离的最大值是________.1+2 [圆(x -1)2+(y -1)2=1的圆心为(1,1),圆心到直线x -y =2的距离为|1-1-2|1+1=2,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2.]三、解答题9.求过点A (1,2)和B (1,10)且与直线x -2y -1=0相切的圆的方程. [解] 圆心在线段AB 的垂直平分线y =6上,设圆心为(a,6),半径为r ,则圆的方程为(x -a )2+(y -6)2=r 2.将点(1,10)代入得(1-a )2+(10-6)2=r 2, ① 而r =|a -13|5,代入①,得(a -1)2+16=(a -13)25,解得a =3,r =25或a =-7,r =4 5.故所求圆的方程为(x -3)2+(y -6)2=20或(x +7)2+(y -6)2=80.10.已知某圆圆心在x轴上,半径长为5,且截y轴所得线段长为8,求该圆的标准方程.[解]法一:如图所示,由题设|AC|=r=5,|AB|=8,∴|AO|=4.在Rt△AOC中,|OC|=|AC|2-|AO|2=52-42=3.设点C坐标为(a,0),则|OC|=|a|=3,∴a=±3.∴所求圆的方程为(x+3)2+y2=25或(x-3)2+y2=25.法二:由题意设所求圆的方程为(x-a)2+y2=25.∵圆截y轴线段长为8,∴圆过点A(0,4).代入方程得a2+16=25,∴a=±3.∴所求圆的方程为(x+3)2+y2=25或(x-3)2+y2=25.[等级过关练]1.若直线x+y-3=0始终平分圆(x-a)2+(y-b)2=2的周长,则a+b等于()A.3B.2C.5D.1A[由题可知,圆心(a,b)在直线x+y-3=0上,所以a+b-3=0,即a +b=3,故选A.]2.已知两点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△P AB 面积的最大值与最小值分别是()A.2,12(4-5)B.12(4+5),12(4-5)C .5,4-5D .12(5+2),12(5-2)B [点A (-1,0),B (0,2)所在的直线方程为2x -y +2=0,圆(x -1)2+y 2=1的圆心到直线的距离为|2-0+2|22+(-1)2=455,又|AB |=5,所以△P AB 面积的最大值为12×5×⎝ ⎛⎭⎪⎫455+1=12(4+5),最小值为12×5×⎝ ⎛⎭⎪⎫455-1=12(4-5),选B.]3.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且与直线x +2y =0相切,则圆C 的方程是________.(x +5)2+y 2=5 [如图所示,设圆心C (a,0),则圆心C 到直线x +2y =0的距离为|a +2×0|12+22=5,解得a =-5,a =5(舍去),∴圆心是(-5,0).故圆的方程是(x +5)2+y 2=5.]4.已知圆O 的方程为(x -3)2+(y -4)2=25,则点M (2,3)到圆上的点的距离的最大值为________.5+2 [由题意,知点M 在圆O 内,MO 的延长线与圆O 的交点到点M (2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2.]5.如图,矩形ABCD 的两条对角线相交于点M (2,0),AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在AD 边所在的直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.[解] (1)因为AB 边所在直线的方程为x -3y -6=0,且AD 与AB 垂直,所以直线AD 的斜率为-3.又因为点T (-1,1)在直线AD 上,所以AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由⎩⎨⎧x -3y -6=0,3x +y +2=0,解得点A 的坐标为(0,-2). 因为矩形ABCD 两条对角线的交点为M (2,0).所以M 为矩形ABCD 外接圆的圆心.又|AM |=(2-0)2+(0+2)2=22,从而矩形ABCD 外接圆的方程为(x -2)2+y 2=8.。
第3讲 圆的方程[考纲解读]1.掌握确定圆的几何要素,圆的标准方程与一般方程,能根据不同的条件,采取标准式或一般式求圆的方程.(重点)2.掌握点与圆的位置关系,能求解与圆有关的轨迹方程.(难点)[考向预测] 从近三年高考情况来看,本讲为高考中的热点.预测2021年将会考查:①求圆的方程;②根据圆的方程求最值;③与圆有关的轨迹问题.试题以客观题的形式呈现,难度不会太大,以中档题型呈现.1.圆的定义及方程 定义 平面内与□01定点的距离等于□02定长的点的集合(轨迹)标准方程□03(x -a )2+(y -b )2=r 2(r >0) 圆心:□04(a ,b ),半径:□05r 一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:□06⎝ ⎛⎭⎪⎫-D 2,-E 2,半径:□0712D 2+E 2-4F 平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: 设d 为点M (x 0,y 0)与圆心(a ,b )的距离(1)d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在□01圆外; (2)d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在□02圆上; (3)d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在□03圆内.1.概念辨析(1)确定圆的几何要素是圆心与半径.( )(2)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12-3a 2-4a +4的圆.( )(3)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( )(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()答案(1)√(2)×(3)√(4)√2.小题热身(1)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2答案 D解析由已知,得所求圆的圆心坐标为(1,1),半径r=12+12=2,所以此圆的方程是(x-1)2+(y-1)2=2.(2)若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是()A.(-∞,-2)∪(2,+∞)B.(-∞,-22)∪(22,+∞)C.(-∞,-3)∪(3,+∞)D.(-∞,-23)∪(23,+∞)答案 B解析若方程x2+y2+mx-2y+3=0表示圆,则m应满足m2+(-2)2-4×3>0,解得m<-22或m>2 2.(3)若原点在圆(x-2m)2+(y-m)2=5的内部,则实数m的取值范围是________.答案(-1,1)解析因为原点在圆(x-2m)2+(y-m)2=5的内部,所以(0-2m)2+(0-m)2<5.解得-1<m<1.(4)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为________.答案x2+(y-2)2=1解析由题意,可设所求圆的方程为x2+(y-b)2=1,因为此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.题型一 求圆的方程1.经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程为________.答案 (x -4)2+(y +3)2=25解析 解法一:(待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧a 2+b 2=r 2,(1-a )2+(1-b )2=r 2,2a +3b +1=0,解得⎩⎪⎨⎪⎧a =4,b =-3,r =5.所以圆的标准方程是(x -4)2+(y +3)2=25.解法二:(直接法)由题意,知OP 是圆的弦,其垂直平分线为x +y -1=0.因为弦的垂直平分线过圆心,所以由⎩⎪⎨⎪⎧2x +3y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =4,y =-3,即圆心坐标为(4,-3),半径为r =42+(-3)2=5,所以圆的标准方程是(x -4)2+(y +3)2=25.2.一圆经过P (-2,4),Q (3,-1)两点,并且在x 轴上截得的弦长等于6,求此圆的方程.解 设圆的方程为x 2+y 2+Dx +Ey +F =0,将P ,Q 两点的坐标分别代入,得⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10. ②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6有D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.见举例说明1解法二.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.见举例说明1解法一.②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.见举例说明2.1.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4 答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎨⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.2.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.答案 x 2+y 2-2x =0解析 解法一:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,又因为圆经过三点(0,0),(1,1),(2,0),所以⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,22+02+2D +0E +F =0,解得D =-2,E =0,F =0, 所以圆的方程为x 2+y 2-2x =0.解法二:记O (0,0),A (1,1),B (2,0),线段OB 的垂直平分线方程为x =1,线段OA 的垂直平分线方程为y -12=-⎝ ⎛⎭⎪⎫x -12,即x +y -1=0.解方程⎩⎪⎨⎪⎧x =1,x +y -1=0,得圆心坐标为(1,0).所以半径r =1,圆的方程为(x -1)2+y 2=1.解法三:在平面直角坐标系中,画出圆上的三点,另证这三个点构成直角三角形,显然圆心坐标为(1,0),半径为1,所以圆的标准方程为(x -1)2+y 2=1.题型二 与圆有关的最值问题角度1 建立函数关系求最值1.(2019·厦门模拟)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB→的最大值为________.答案 12解析 ∵P A →=(2-x ,-y ),PB →=(-2-x ,-y ),P (x ,y )在圆上,∴P A →·PB→=x 2-4+y 2=6y -8-4=6y -12,∵2≤y ≤4,∴P A →·PB →≤12.角度2 借助几何性质求最值2.(2019·湖南师大附中模拟)已知点A (-2,0),B (0,1),若点C 是圆x 2-2ax +y 2+a 2-1=0上的动点,△ABC 面积的最小值为3-2,则a 的值为________.答案 1或-5解析 由题意,知圆的标准方程为(x -a )2+y 2=1,则圆心为(a,0),半径r =1,又A (-2,0),B (0,2)可得直线AB 的方程为x -2+y2=1,即x -y +2=0.所以圆心到直线AB 的距离d =|a +2|2,则圆上的点到直线AB 的最短距离为d -r =|a +2|2-1,又|AB |=4+4=22,所以△ABC 面积的最小值为12|AB |·(d -r )=2⎝ ⎛⎭⎪⎫|a +2|2-1=3-2,解得a =1或-5.求解与圆有关的最值问题的两大规律(1)建立函数关系式求最值.如举例说明1.根据题目条件列出关于所求目标式子的函数关系式;然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.(2)借助几何性质求最值.如举例说明2.1.圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22 D .2+2 2答案 A解析 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d=|1-1-2|2=2,故圆上的点到直线x-y=2距离的最大值为d+1=2+1,故选A.2.(2019·兰州模拟)若直线ax+by+1=0(a>0,b>0)把圆(x+4)2+(y+1)2=16分成面积相等的两部分,则12a+2b的最小值为()A.10 B.8C.5 D.4答案 B解析由已知,得圆心C(-4,-1)在直线ax+by+1=0上,所以-4a-b+1=0,即4a+b=1,又因为a>0,b>0,所以12a +2b=⎝⎛⎭⎪⎫12a+2b(4a+b)=b2a+8ab+4≥2b2a·8ab+4=8,当且仅当b2a=8ab时,等号成立,此时b=4a,结合4a+b=1,知a=18,b=12.所以当a=18,b=12时,12a+2b取得最小值8.题型三与圆有关的轨迹问题1.已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求直角顶点C的轨迹方程.解解法一:设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,所以k AC·k BC=-1,又k AC=yx+1,k BC=yx-3,所以yx+1·yx-3=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).解法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).2.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上,所以(x +3)2+(y -4)2=4. 所以点P的轨迹是以(-3,4)为圆心,2为半径的圆⎝ ⎛⎭⎪⎫因为O ,M ,P 三点不共线,所以应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.1.掌握“三方法”2.明确“五步骤”(2019·潍坊调研)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.组 基础关1.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( )A .原点在圆上B .原点在圆外C .原点在圆内D .不确定答案 B解析 将圆的一般方程化成标准方程为(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即(0+a )2+(0+1)2>2a ,所以原点在圆外.2.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) A .x 2+(y -2)2=5 B .(x -2)2+y 2=5 C .x 2+(y +2)2=5 D .(x -1)2+y 2=5答案 B解析 因为所求圆的圆心与圆(x +2)2+y 2=5的圆心(-2,0)关于原点(0,0)对称,所以所求圆的圆心为(2,0),半径为5,故所求圆的方程为(x -2)2+y 2=5.故选B.3.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.4.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43 B .-34 C. 3 D .2答案 A解析 圆的方程可化为(x -1)2+(y -4)2=4,则圆心坐标为(1,4),圆心到直线ax +y -1=0的距离为|a +4-1|a 2+1=1,解得a =-43.故选A.5.(2019·合肥二模)已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( )A .(x -3)2+(y +4)2=100B .(x +3)2+(y -4)2=100C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25 答案 C解析 由圆C 的圆心坐标C (6,8),得OC 的中点坐标为E (3,4),半径|OE |=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.6.(2020·黄冈市高三元月调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,则k 的值为( )A .-1B .1C .±1D .0答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1.则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不符合题意,∴k =-1.故选A.7.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1答案 A解析 设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.故选A.8.(2019·太原二模)若圆x 2+y 2+2x -2y +F =0的半径为1,则F =________. 答案 1解析 由圆x 2+y 2+2x -2y +F =0得(x +1)2+(y -1)2=2-F ,由半径r =2-F =1,解得F =1.9.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以当k =0时圆C 的面积最大,此时圆的方程为x 2+(y +1)2=1,圆心坐标为(0,-1).10.已知实数x ,y 满足(x +2)2+(y -3)2=1,则|3x +4y -26|的最小值为________.答案 15解析 解法一:|3x +4y -26|最小值的几何意义是圆心到直线3x +4y -26=0的距离减去半径后的5倍,|3x +4y -26|min =5⎝ ⎛⎭⎪⎪⎫|3a +4b -26|32+42-r ,(a ,b )是圆心坐标,r 是圆的半径.圆的圆心坐标为(-2,3),半径是1,所以圆心到直线的距离为|3×(-2)+4×3-26|5=4,所以|3x +4y -26|的最小值为5×(4-1)=15.解法二:令x +2=cos θ,y -3=sin θ,则x =cos θ-2,y =sin θ+3,|3x +4y -26|=|3cos θ-6+4sin θ+12-26|=|5sin(θ+φ)-20|,其中tan φ=34,所以其最小值为|5-20|=15.组 能力关1.方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆 D .两个半圆答案 D解析 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心,1为半径的上半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心,1为半径的下半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆.选D.2.(2019·南昌二模)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A.10-1 B .22-1 C .2 2 D.10答案 A解析 设点A 关于直线x +y =3的对称点为A ′(a ,b ),则AA ′的中点为⎝ ⎛⎭⎪⎫a +22,b 2,k AA ′=b a -2, 故⎩⎨⎧b a -2·(-1)=-1,a +22+b2=3,解得⎩⎪⎨⎪⎧a =3,b =1,则从点A 到军营的最短总路程,即为点A ′到军营的距离,则“将军饮马”的最短总路程为32+12-1=10-1.3.(2019·贵阳模拟)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.答案 ⎝ ⎛⎭⎪⎫x -322+(y -2)2=54解析 设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A →⊥PC →.又因为P A →=(2-x,3-y ),PC →=(1-x,1-y ).所以(2-x )·(1-x )+(3-y )·(1-y )=0.所以点P 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+(y -2)2=54.4.(2020·柳州摸底)在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C .(1)求圆C 的方程;(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程.解 (1)设圆C 的方程为x 2+y 2+Dx +Ey +F =0.由f (x )=x 2-x -6得,其图象与两坐标轴的交点为(0,-6),(-2,0),(3,0),将交点坐标代入圆的方程得⎩⎪⎨⎪⎧36-6E +F =0,4-2D +F =0,9+3D +F =0,解得⎩⎪⎨⎪⎧D =-1,E =5,F =-6,所以圆的方程为x 2+y 2-x +5y -6=0.(2)由(1)知,圆心坐标为⎝ ⎛⎭⎪⎫12,-52,若直线经过原点,则直线l 的方程为5x +y =0;若直线不过原点,设直线l 的方程为x +y =a ,则a =12-52=-2,即直线l 的方程为x +y +2=0.综上,直线l 的方程为5x +y =0或x +y +2=0.5.已知圆O :x 2+y 2=1,点A (-1,0),点B (1,0).点P 是圆O 上异于A ,B 的动点.(1)证明:k AP ·k BP 是定值;(2)过点P 作x 轴的垂线,垂足为Q ,点M 满足2PQ →=-PM →,求点M 的轨迹方程C ;(3)证明:k AM ·k BM 是定值.解 (1)证明:由已知,直线AP ,BP 的斜率存在,AB 是圆O 的直径,所以AP ⊥BP ,所以k AP ·k BP =-1是定值.(2)设P (m ,n ),M (x ,y ),则Q (m,0), 则PQ→=(0,-n ),PM →=(x -m ,y -n ), 因为2PQ→=-PM →, 所以2(0,-n )=-(x -m ,y -n ), 得⎩⎪⎨⎪⎧0=-x +m ,-2n =-y +n ,即⎩⎨⎧m =x ,n =13y ,①因为点P 在圆O 上,所以m 2+n 2=1, ② 将①代入②,得x 2+y 29=1,又点P 异于A ,B ,所以x ≠±1,即点M 的轨迹方程C 为x 2+y 29=1(x ≠±1).(3)证明:由已知,直线AM ,BM 的斜率存在, k AM =y x +1,k BM =yx -1,由(2)知,x2-1=-y29,所以k AM·k BM=yx+1·yx-1=y2x2-1=-9,即k AM·k BM是定值.。
高二数学教案圆的方程9篇圆的方程 1§7.6 圆的方程(第二课时)㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。
2.待定系数法之应用。
㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。
-2ax-2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?①;② 1③ 0;④ -2x+4y+4=0⑤ -2x+4y+5=0; ⑥ -2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得 -2ax-2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得 : ( ) ②将方程②与圆的标准方程对照.⑴当>0时, 方程②表示圆心在 (- ),半径为的圆.⑵当 =0时,方程①只表示一个点(- ).⑶当<0时, 方程①无实数解,因此它不表示任何图形.结论: 当>0时, 方程①表示一个圆, 方程①叫做圆的一般方程.圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴和的系数相同,不等于0;⑵没有xy这样的二次项.以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标.⑴ -6x=0; ⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。
分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。
[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。
分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。
反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。
圆的方程一、圆的标准方程确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。
(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式写出点Mr = ①化简可得:222()()x a y b r -+-= ②自己证明为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程例(1):写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。
二、探究:点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内例(2):ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.三、特殊位置的圆的标准方程设法(无需记,关键能理解)条件 方程形式 圆心在原点 ()2220x y rr +=≠过原点 ()()()2222220x a y b a b ab -+-=++≠圆心在x 轴上 ()()2220x a y rr -+=≠ 圆心在y 轴上 ()()2220x y b rr +-=≠ 圆心在x 轴上且过原点 ()()2220x a y aa -+=≠ 圆心在y 轴上且过原点 ()()2220x y b bb +-=≠与x 轴相切 ()()()2220x a y b bb -+-=≠ 与y 轴相切 ()()()2220x a y b a a -+-=≠与两坐标轴都相切 ()()()2220x a y b aa b -+-==≠四、圆的一般方程(x -a)2+(y -b)2=r 2,圆心(a ,b),半径r .把圆的标准方程展开,并整理:x 2+y 2-2ax -2by +a 2+b 2-r 2=0.取222,2,2r b a F b E a D -+=-=-=得022=++++F Ey Dx y x ①这个方程是圆的方程.反过来给出一个形如x 2+y 2+Dx +Ey +F=0的方程,它表示的曲线一定是圆吗?把x 2+y 2+Dx +Ey +F=0配方得44)2()2(2222F E D E y D x -+=+++ ② 这个方程是不是表示圆?(1)当D 2+E 2-4F >0时,方程②表示(1)当0422>-+F E D 时,表示以(-2D ,-2E)为圆心,F E D 42122-+为半径的圆; (2)当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D ,-2E);(3)当0422<-+F E D 时,方程没有实数解,因而它不表示任何图形综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程()2214x y ++=五、圆的一般方程的特点:(1)①x 2和y 2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
圆的标准方程【教学目标】(1)掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题。
(2)通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力。
(3)通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育。
【教学重难点】教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程。
教学难点:运用圆的标准方程解决一些简单的实际问题。
【教学过程】一、情景导入、展示目标前面,大家学习了圆的概念,哪一位同学来回答?1.具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆)。
2.图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小。
二、检查预习、交流展示求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明。
其中步骤(1)(3)(4)必不可少。
三、合作探究、精讲精练探究一:如何建立圆的标准方程呢?1.建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法。
教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导。
因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y)。
三点共圆公式全文共四篇示例,供读者参考第一篇示例:三点共圆公式是圆锥曲线中的一个重要知识点,它是指通过三个点可以确定一个圆的方程。
在几何学中,圆是一个平面内的所有点到圆心的距离都相等的集合。
而三点共圆公式则是利用三个点的坐标来确定一个唯一的圆。
三点共圆公式的应用范围非常广泛,可以用于解决许多几何问题。
在实际生活中,我们经常会遇到需要确定圆的情况,比如建筑设计、地理测量、数学竞赛等。
在这些领域中,三点共圆公式都是必不可少的工具。
三点共圆公式的推导过程并不复杂,下面我们来具体介绍一下。
假设我们有三个点A(x1, y1),B(x2, y2),C(x3, y3)。
要找到一个圆经过这三个点,首先我们可以求出三条边的中垂线,中垂线交点就是圆心的坐标。
然后再求出圆心到任意一个点的距离,这个距离就是圆的半径。
首先我们可以通过两点求中点和中点的斜率来求出中垂线的方程。
设点A到点B的中点为D,中点到A的斜率为k1,中点到B的斜率为k2。
k1 = (y2 - y1) / (x2 - x1)k2 = -1/k1则中垂线的斜率为k2,中垂线的方程为:(xd, yd)为中垂线的交点坐标。
将点C坐标代入上式,可以求出中垂线的方程。
同理,可以求出另外两条中垂线的方程。
求出三条中垂线的交点,即为圆心的坐标。
接着,我们可以求出圆心到任意一个点的距离,这个距离即为圆的半径。
假设圆心坐标为(Ox, Oy),则圆的半径R满足:R = sqrt((x3 - Ox)^2 + (y3 - Oy)^2)将圆心坐标代入上述三式中,可以得到三个方程。
解这三个方程,就可以求出圆心的坐标和半径。
三点共圆公式的推导过程比较复杂,但实际运用时可以通过计算机程序或者在线工具快速求解。
对于一些几何问题,使用三点共圆公式可以方便快捷地找到圆的方程,解决问题。
三点共圆公式是一个实用的数学工具,可以广泛应用于几何学的各个领域。
掌握了这个公式,我们可以更好地理解圆的性质,解决实际问题,拓展数学知识的应用。
2019年高考数学(文)考点一遍过(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程. (2)能用圆的方程解决一些简单的问题.一、圆的方程圆的标准方程圆的一般方程定义 在平面内,到定点的距离等于定长的点的集合叫圆,确定一个圆最基本的要素是圆心和半径方程 222()()(0)x a y b r r -+-=>22220(40)x y Dx Ey F D E F ++++=+->圆心 (,)a b (,)22D E -- 半径r22142D E F +- 区别与联系(1)圆的标准方程明确地表现出圆的几何要素,即圆心坐标和半径长;(2)圆的一般方程的代数结构明显,圆心坐标和半径长需要通过代数运算才能得出;(3)二者可以互化:将圆的标准方程展开可得一般方程,将圆的一般方程配方可得标准方程注:当D 2+E 2-4F = 0时,方程x 2+y 2+Dx +Ey +F = 0表示一个点(,)22D E--;当D 2+E 2-4F <0时,方程x 2+y 2+Dx +Ey +F = 0没有意义,不表示任何图形. 二、点与圆的位置关系标准方程的形式一般方程的形式点(x 0,y 0)在圆上 22200()()x a y b r -+-= 2200000x y Dx Ey F ++++=点(x 0,y 0)在圆外 22200()()x a y b r -+-> 2200000x y Dx Ey F ++++> 点(x 0,y 0)在圆内22200()()x a y b r -+-<2200000x y Dx Ey F ++++<三、必记结论 (1)圆的三个性质①圆心在过切点且垂直于切线的直线上; ②圆心在任一弦的中垂线上;③两圆相切时,切点与两圆心三点共线. (2)两个圆系方程具有某些共同性质的圆的集合称为圆系,它们的方程叫圆系方程.①同心圆系方程:2220()()()x a y b r r =->+-,其中a ,b 为定值,r 是参数; ②半径相等的圆系方程:2220()()()x a y b r r -->+=,其中r 为定值,a ,b 为参数.考向一 求圆的方程1.求圆的方程必须具备三个独立的条件.从圆的标准方程来看,关键在于求出圆心坐标和半径,从圆的一般方程来讲,能知道圆上的三个点即可求出圆的方程,因此,待定系数法是求圆的方程常用的方法.2.用几何法求圆的方程,要充分运用圆的几何性质,如“圆心在圆的任一条弦的垂直平分线上”,“半径、弦心距、弦长的一半构成直角三角形”.典例1 圆心在y 轴上,半径为1,且过点()1,3的圆的方程是 A .()2221x y +-= B .()2221x y ++= C .()2231x y +-=D .()2231x y ++=【答案】C故选C.【名师点睛】本题考查圆的方程,考查学生的计算能力,属于基础题.设出圆心坐标,利用半径为1,且过点()1,3,即可求得结论.1.已知圆()()22:684C x y -++=,O 为坐标原点,则以OC 为直径的圆的方程为 A .()()2234100x y -++= B .()()2234100x y ++-= C .()()223425x y -+-=D .()()223425x y ++-=考向二 与圆有关的对称问题1.圆的轴对称性:圆关于直径所在的直线对称. 2.圆关于点对称:(1)求已知圆关于某点对称的圆,只需确定所求圆的圆心位置; (2)两圆关于点对称,则此点为两圆圆心连线的中点. 3.圆关于直线对称:(1)求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置; (2)两圆关于直线对称,则此直线为两圆圆心连线的垂直平分线.典例2 (1)已知圆C 1:(x +1)2+(y -1)2 =1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为 A .22(())221x y +-+= B .22(())221x y -++= C .22(())221x y +++=D .22(())221x y --+=(2)若圆(x +1)2+(y -3)2=9上相异两点P ,Q 关于直线kx +2y -4=0对称,则k 的值为_________. 【答案】(1)B ;(2)2.(2)已知圆(x +1)2+(y -3)2=9的圆心为(-1,3),由题设知,直线kx +2y -4=0过圆心,则k ×(-1)+2×3-4=0,解得k =2.2.圆22210x y ax y +-++=关于直线1x y -=对称的圆的方程为221x y +=,则实数a 的值为 A .0 B .1 C .±2D .2考向三 与圆有关的轨迹问题1.求轨迹方程的步骤如下:建系,设点:建立适当的坐标系,设曲线上任一点坐标,()M x y . 写集合:写出满足复合条件P 的点M 的集合(){}|M P M . 列式:用坐标表示()P M ,列出方程(),0f x y =. 化简:化方程(),0f x y =为最简形式.证明:证明以化简后的方程的解为坐标的点都是曲线上的点. 2.求与圆有关的轨迹方程的方法典例3 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求直线l 的方程及POM △的面积.【答案】(1)M 的方程为(x -1)2+(y -3)2=2;(2)l 的方程为y =-13x +83,POM △的面积为165.【解析】(1)圆C 的方程为x 2+(y -4)2=16,圆心为(0,4),半径r =4.设M (x ,y ),则(),(42,2)CM x y MP x y ---u u u u r u u u r=,=.由题设可知0CM MP ⋅=u u u u r u u u r,即:()(4)220)(x x y y ---+=,即(x -1)2+(y -3)2=2,由于点P 在圆C 的内部,所以点M 的轨迹方程为(x -1)2+(y -3)2=2.3.已知点()2,2P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于,A B 两点,线段AB 的中点为M ,O为坐标原点.(1)求M 的轨迹方程;(2)当OP OM =时,求l 的方程及POM △的面积.考向四 与圆有关的最值问题对于圆中的最值问题,一般是根据条件列出关于所求目标的式子——函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法等,应用不等式的性质求出最值.特别地,要利用圆的几何性质,根据式子的几何意义求解,这正是数形结合思想的应用.典例4 与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=【答案】C【解析】圆22220x y x y ++-=的圆心为()1,1-,半径为2,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求的圆心在此直线上,又圆心()1,1-到直线40x y --=的距离为322=,则所求圆的半径为2,设所求圆心为(),a b ,且圆心在直线40x y --=的左上方,则422a b --=,且0a b +=,解得1,1a b ==-(3,3a b ==-不符合,舍去),故所求圆的方程为()()22112x y -++=,故选C. 【名师点睛】本题主要考查直线与圆的位置关系,考查了数形结合的思想,计算能力,属于中档题. 典例5 已知点(),x y 在圆22()(23)1x y -=++上.(1)求x y +的最大值和最小值; (2)求yx的最大值和最小值. 【答案】(1)x y +的最大值为21-,最小值为21--;(2)y x 的最大值为2323-+,最小值为2323--.(2)y x 可视为点(),x y 与原点连线的斜率,yx的最大值和最小值就是过原点的直线与该圆有公共点的斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y kx =,由直线与圆相切得圆心到直线的距离等于半径,即2|23|11k k +=+,解得2323k =-+或2323k =--. ∴yx的最大值为2323-+,最小值为2323--.【名师点睛】1.与圆的几何性质有关的最值(1)记O 为圆心,圆外一点A 到圆上距离最小为||AO r -,最大为||AO r +; (2)过圆内一点的弦最长为圆的直径,最短为以该点为中点的弦;(3)记圆心到直线的距离为d ,直线与圆相离,则圆上点到直线的最大距离为d r +,最小距离为d r -; (4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆. 2.与圆的代数结构有关的最值 (1)形y bx aμ-=-形式的最值问题,可转化为动直线斜率的最值问题; (2)形如t ax by =+形式的最值问题,可转化为动直线截距的最值问题;(3)形如22()()x a y b +--形式的最值问题,可转化为动点到定点的距离的平方的最值问题.4.已知方程224240x y x y ++--=,则22x y +的最大值是 A .14-65 B .14+65 C .9D .141.若方程22448430x y x y +-+-=表示圆,则其圆心为 A .11,2⎛⎫--⎪⎝⎭B .11,2⎛⎫⎪⎝⎭C .11,2⎛⎫- ⎪⎝⎭D .11,2⎛⎫-⎪⎝⎭2.若直线0x y a ++=是圆2220x y x +-=的一条对称轴,则a 的值为 A .1 B .1- C .2D .2-3.对于a ∈R ,直线()1210a x y a -++-=恒过定点P ,则以P 为圆心,2为半径的圆的方程是 A .224210x y x y +-++= B .224230x y x y +-++= C .224210x y x y ++-+=D .224230x y x y ++-+=4.若过点()2,0有两条直线与圆222210x y x y m +-+++=相切,则实数m 的取值范围是 A .(),1-∞- B .()1,-+∞ C .()1,0-D .()1,1-5.已知A (-4,-5)、B (6,-1),则以线段AB 为直径的圆的方程 A .(x +1)2+(y -3)2=29 B .(x -1)2+(y +3)2=29 C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=116 6.圆上的点到直线的距离最大值是 A .B .C .D .7.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线2213y x -=3C 的方程为A .()2211x y +-=B .(2233x y +=C .2231x y ⎛+= ⎝⎭D .()2224x y +-=8.若直线10l ax by ++=:经过圆M :224210x y x y ++++=的圆心,则()222(2)a b -+-的最小值为 A 5 B .5 C .25D .109.已知圆C :()()22341x y -+-=与圆M 关于x 轴对称,Q 为圆M 上的动点,当Q 到直线2y x =+的距离最小时,Q 点的横坐标为A .22-B .22±C .232-D .232±10.过点()1,1P 的直线将圆形区域22{()4|,}x y x y +≤分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y +-=B .10y -=C .0x y -=D .340x y +-=11.已知点()1,,Q m -,P 是圆C :()()22244x a y a -+-+=上任意一点,若线段PQ 的中点M 的轨迹方程为()2211x y +-=,则m 的值为 A .1 B .2 C .3D .412.已知圆22:2330C x y x y +--+=,点()0,(0)A m m >,A B 、两点关于x 轴对称.若圆C 上存在点M ,使得0AM BM ⋅=u u u u r u u u u r,则当m 取得最大值时,点M 的坐标是A .332,22⎛ ⎝⎭B .32322⎛⎫⎪ ⎪⎝⎭C .3332⎛⎝⎭D .3332⎫⎪⎪⎝⎭13.在平面直角坐标系中,三点()0,0O ,()2,4A ,()6,2B ,则三角形OAB 的外接圆方程是__________. 14.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.15.已知x ,y 满足2x -4x -4+2y =0, 则22x y +的最大值为________.16.已知圆C 的圆心坐标为()00,C x x ,且过定点()6,4P .(1)写出圆C 的方程;(2)当0x 为何值时,圆C 的面积最小,并求出此时圆C 的标准方程.17.在平面直角坐标系xOy 中,已知点()1,2A ,()0,0O .(1)在x 轴的正半轴上求一点M ,使得以OM 为直径的圆过A 点,并求该圆的方程; (2)在(1)的条件下,点P 在线段OM 内,且AP 平分OAM ∠,试求P 点的坐标.18.已知圆过点()1,2A -,()1,4B -.求:(1)周长最小的圆的方程;(2)圆心在直线240x y --=上的圆的方程.19.已知圆()22:25C x y ++=,直线:120l mx y m -++=,m ∈R .(1)求证:对m ∈R ,直线l 与圆C 总有两个不同的交点,A B ; (2)求弦AB 的中点M 的轨迹方程,并说明其轨迹是什么曲线.1.(2018天津文)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.1.【答案】C【解析】由题意可知,()()0,0,6,8O C -,则圆心坐标为()3,4-()226810+-=,变式拓展据此可得圆的方程为()()22210342x y ⎛⎫-++= ⎪⎝⎭,即()()223425x y -+-=. 本题选择C 选项. 2.【答案】D【名师点睛】本题主要考查两圆关于直线对称的性质,解答本题的关键是利用了两圆关于某直线对称时,两圆圆心的连线和对称轴垂直,斜率之积等于1-,属于基础题. 3.【答案】(1)()()22132x y -+-=;(2)165. 【解析】(1)圆C 的方程可化为()22416x y +-=, 所以圆心为()0,4C ,半径为4,设(),M x y ,则()(),4,2,2CM x y MP x y =-=--u u u u r u u u r,由题意知0CM MP ⋅=u u u u r u u u r ,故()()()2420x x y y -+--=,即()()22132x y -+-=,由于点P 在圆C 的内部,所以M 的轨迹方程是()()22132x y -+-=.【思路点拨】(1)由圆C 的方程求出圆心坐标和半径,设出M 坐标,由CM u u u u r 与MP u u u r数量积等于0列式得M 的轨迹方程;(2)设M 的轨迹的圆心为N ,由OP OM =得到ON PM ⊥.求出ON 所在直线的斜率,由直线方程的点斜式得到PM 所在直线方程,由点到直线的距离公式求出O 到l 的距离,再由弦心距、圆的半径及弦长间的关系求出PM 的长度,代入三角形面积公式得答案. 【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系(),0F x y =; (2)待定系数法:已知所求曲线的类型,求曲线方程;(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; (4)代入(相关点)法:动点(),P x y 依赖于另一动点()00,Q x y 的变化而运动,常利用代入法求动点(),P x y 的轨迹方程. 4.【答案】B【解析】由224240x y x y ++--=,得圆的标准方程为()()22219x y ++-=,表示以()2,1B -为圆心,3为半径的圆,如图所示,连接OB ,并延长交圆于点A ,此时22x y +取得最大值,又()2221335OA OB r =+=-++=+,所以()22351465OA =+=+,即22x y +的最大值为1465+,故选B.【名师点睛】本题主要考查了圆的标准方程,以及两点间的距离公式的应用,其中解答中利用数形结合思想,借助圆的特征,找出适当的点A ,把22x y +的最大值转化为原点与A 的距离的平方是解答的关键,着重考查了数形结合思想和推理、计算能力.1.【答案】D【解析】圆的一般方程为:223204x y x y +-+-=,据此可得,其圆心坐标为:21,22-⎛⎫-- ⎪⎝⎭,即11,2⎛⎫- ⎪⎝⎭.本题选择D 选项. 2.【答案】B【名师点睛】本题主要考查圆的一般方程化为标准方程,以及由标准方程求圆心坐标,意在考查学生对圆的基本性质的掌握情况,属于简单题.由题意可知直线通过圆的圆心,求出圆心坐标代入直线方程,即可得到a 的值. 3.【答案】A【解析】由条件知()1210a x y a -++-=,可以整理为()120,x y x a +-+-=故直线()1210a x y a -++-=过定点P ()2,1-,所求圆的方程为()()22214x y -++=,化为一般方程为224210x y x y +-++=.故选A .4.【答案】D【解析】圆的方程化为标准式为()()22111x y m -++=-,因为过点()2,0有两条直线与圆()()22111x y m -++=-相切,所以点()2,0在圆外.考点冲关所以()()221021011m m->⎧⎪⎨-++>-⎪⎩,解不等式组得11m -<<,故选D. 【名师点睛】本题考查了点与圆的位置关系及其简单应用,属于基础题.由于有两条直线与圆相切,所以可知点在圆外;由点与圆的位置关系及圆的判断条件,可得m 的取值范围. 5.【答案】B6.【答案】D【解析】因为圆心(1,1)C 到直线的距离是,又圆222210x y x y +--+=的半径,所以圆上的点到直线的距离最大值是,故选D .7.【答案】A【解析】设圆C 的方程为()222()0x y a aa +-=>,圆心坐标为()0,a ,∵双曲线2213y x -=的渐近线方程为3y x =3 ∴22232a a ⎛⎫+= ⎪⎝⎭⎝⎭,∴a =1,∴圆C 的方程为x 2+(y −1)2=1.故选A . 【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式. 8.【答案】B【解析】由圆的方程知圆心为()2,1--,所以21a b +=,()222(2)a b -+-的几何意义为直线21a b +=上的动点(),a b 与定点()2,2的距离的平方,故过点()2,2向直线21a b +=作垂线段,其长的平方最小,最小值为2242155d ⎛⎫+-== ⎪⎝⎭,故选B.9.【答案】C【解析】圆M 的方程为:()()22341x y -++=,过M (3,−4)且与直线2y x =+垂直的直线方程为1y x =--,代入()()22341x y -++=,得232x =±,故当Q 到直线2y x =+的距离最小时,Q 的坐标为23.2x =-10.【答案】A【解析】两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点()1,1P 的直径所在直线的斜率为1,所以所求直线的斜率为1-,即方程为20x y +-=. 11.【答案】D12.【答案】C【解析】由题得圆的方程为()(22131,x y -+-=()0,,B m -设(),,M x y 由于0AM BM ⋅=u u u u r u u u u r,所以()()222222,,0,0,,x y m x y m x y m m x y -⋅+=∴+-=∴=+由于22x y +表示圆C 上的点到原点距离的平方,所以连接OC ,并延长和圆C 相交,交点即为M ,此时2m 最大,m 也最大.33123,60,3sin30,3sin60 3.22M M OM MOx x y =+=∠=∴=⨯=︒=︒⨯︒=故选C.13.【答案】22620x y x y +--=【名师点睛】本题主要考查圆的方程和性质,属于中档题.求圆的方程常见思路与方法有: ①直接设出动点坐标(),x y ,根据题意列出关于,x y 的方程即可; ②根据几何意义直接找到圆心坐标和半径,写出方程;③待定系数法,可以根据题意设出圆的标准方程或一般式方程,再根据所给条件求出参数即可. 14.【答案】 [-1,1]【解析】由已知圆心(0,0),半径r =1,M 位于直线y =1上,过M 作圆的切线,切点为C ,D (如图).则∠OMN ≤12∠CMD ,∴∠CMD ≥90°.当∠CMD =90°时,则OCM △为等腰直角三角形,故OC =CM =1. ∴所求x 0的取值范围是-1≤x 0≤1. 15.【答案】1282+【解析】由题意,曲线22440x x y --+=,即为()2228x y -+=, 所以曲线表示一个圆心在()2,0,半径为2222x y +表示圆上的点到原点之间距离的平方,且原点到圆心的距离为2, 所以原点到圆上的点的最大距离为222+,所以22x y +的最大值为(222102+=+【名师点睛】本题主要考查了圆的标准方程及其特征的应用,其中把22x y +转化为原点到圆上的点之间的距离是解答的关键,着重考查了推理与运算能力.16.【答案】(1) ()()2220000=22052x x y x x x -+--+;(2)05x =,()()22552x y -+-=.【解析】(1) ()()()()2222200000064=22052x x y x x x x x -+-=-+--+;(2)()()()22222000006422052252r x x x x x =-+-=-+=-+,所以05x =时,r 最小,为2,所以min 2,S =π此时圆的标准方程为()()22552x y -+-=. 17.【答案】(1)M ()5,0,2250x y x +-=;(2)5,03⎛⎫ ⎪⎝⎭.(2)设P 的坐标为(),0a ,依题可得,直线OA 的方程为:20x y -=, 直线AM 的方程为:250x y +-=. 因为AP 平分OAM ∠,所以P 点到直线OA 和AM 的距离相等.2222252112a a -=++,得25a a =-,解得5a =-或53a =. 05a <<Q ,53a ∴=, P ∴的坐标为5,03⎛⎫⎪⎝⎭.【名师点睛】该题考查的是有关解析几何初步的知识,涉及的知识点有:在圆中,直径所对的圆周角为直角;向量垂直,数量积等于零;以某条线段为直径的圆的方程;角平分线的性质.根据题的条件,得到相应的等量关系式,求得结果.18.【答案】(1)x 2+(y -1)2=10;(2)(x -3)2+(y -2)2=20.(2) 解法1:直线AB 的斜率为k =-3,则线段AB 的垂直平分线的方程是y -1=13x .即x -3y +3=0. 由圆心在直线240x y --=上得两直线交点为圆心即圆心坐标是C (3,2). r =|AC |=()()22132220-+--=.∴所求圆的方程为(x -3)2+(y -2)2=20. 解法2:待定系数法设圆的方程为:(x -a )2+(y -b )2=r 2.则.∴所求圆的方程为:(x -3)2+(y -2)2=20.19.【答案】(1)见解析;(2)M 的轨迹方程是()2211224x y ⎛⎫++-= ⎪⎝⎭,它是一个以12,2⎛⎫- ⎪⎝⎭为圆心, 12为半径的圆.【解析】(1)圆()22:25C x y ++=的圆心为()2,0C -,5所以圆心C 到直线:120l mx y m -++=的距离222121||||511m mmm-++=<++.所以直线l 与圆C 相交,即直线l 与圆C 总有两个不同的交点;或:直线:120l mx y m -++=的方程可化为()()210m x y ++-=,无论m 怎么变化,直线l 过定点()2,1-. 由于()2222115-++=<,所以点()2,1-是圆C 内一点, 故直线l 与圆C 总有两个不同的交点.(2)设中点为(),M x y ,因为直线:120l mx y m -++=恒过定点()2,1-, 当直线l 的斜率存在时, 12AB y k x -=+,又2MC yk x =+, 1AB MC k k ⋅=-, 所以1122y y x x -⋅=-++,化简得()()22112224x y x ⎛⎫++-=≠- ⎪⎝⎭.当直线l 的斜率不存在时,中点()2,0M -也满足上述方程.所以M 的轨迹方程是()2211224x y ⎛⎫++-= ⎪⎝⎭,它是一个以12,2⎛⎫- ⎪⎝⎭为圆心,12为半径的圆.1.【答案】2220x y x +-=【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.直通高考。