(物理)物理稳恒电流练习题20含解析
- 格式:doc
- 大小:637.00 KB
- 文档页数:15
高考物理专题训练:恒定电流(基础卷)一、 (本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1.关于电流,下列说法中正确的是( )A.电路中的电流越大,表示通过导体横截面的电荷量越多B.在相同时间内,通过导体横截面的电荷量越多,导体中的电流就越大C.导体的通电时间越长,导体中的电流越大D.导体中通过一定的电荷量所用的时间越短,电子速度越大,电流就越大【答案】B【解析】由电流的定义式I=可知,单位时间内通过导体横截面的电荷量越多,电流越大,B正确。
2.粗细均匀的金属环上的A、B、C、D四点把其周长分成四等份,如图所示,当A、B点接入电路中时,圆环消耗的电功率为P。
则当A、D点接入电路中时,圆环消耗的电功率为(电源内阻不计) ( )A.34PB.43PC.3P D.4P【答案】B【解析】设圆环每段电阻为r,电源电动势为E,则接AB时,P=,当接AD时,R总=r,P'=P,选项B正确。
3.如图所示为某收音机内一部分电路元件的电路图,各个电阻的阻值都是2 Ω,A、C间接一只内阻忽略不计的电流表,若将该部分与收音机的其他电路剥离出来,并在B、C两点间加6 V的恒定电压,则电流表的示数是( ) A.3 A B.2 A C.1 A D.0【答案】C【解析】等效电路如图所示,由串、并联电路的特点可知I ==2 A ,所以I A =1 A ,选项C 正确。
4.某个由导电介质制成的电阻截面如图所示。
导电介质的电阻率为ρ、半球壳层形状 (图中阴影部分)内、外半径分别为a 和b 。
半径为a 、电阻不计的球形电极被嵌入导电介质的球心作为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极。
设该电阻的阻值为R 。
下面给出R 的四个表达式中只有一个是合理的,你可能不会求解R ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。
高中物理稳恒电流试题经典及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆ 由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯ 【解析】 【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++; 电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm=联立解得46.2510/q C kg m-=⨯3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g .(1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】【分析】【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52gr v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R R εω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-= 从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mg E q= 杆转动的电动势21112BL εω=两板间电场强度11E d ε=联立解得12mgd qBL ω= 如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-= 杆转动的电动势22212BL εω=两板间电场强度22E d ε=联立解得227mgd qBL ω= 综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgd qBL qBL ω≤≤.4.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A;(2)0.096 N,方向沿导轨水平向左【解析】【分析】【详解】(1)由闭合电路欧姆定律可得:I=64.50.5EAR r=++=1.2A(2)安培力的大小为:F=BIL=0.04×1.2×2N=0.096N安培力方向为沿导轨水平向左5.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLs qIt R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.如图所示电路中,R 1=6 Ω,R 2=12 Ω,R 3=3 Ω,C =30 μF ,当开关S 断开,电路稳定时,电源总功率为4 W ,当开关S 闭合,电路稳定时,电源总功率为8 W ,求:(1)电源的电动势E 和内电阻r ;(2)在S 断开和闭合时,电容器所带的电荷量各是多少?【答案】(1)8V ,1Ω (2)1.8×10﹣4C ,0 C【解析】【详解】(1)S 断开时有:E=I 1(R 2+R 3)+I 1r…①P 1=EI 1…②S 闭合时有:E=I 2(R 3+1212R R R R +)+I 2r…③ P 2=EI 2…④由①②③④可得:E=8V ;I 1=0.5A ;r=1Ω;I 2=1A(3)S 断开时有:U=I 1R 2得:Q 1=CU=30×10-6×0.5×12C=1.8×10-4CS 闭合,电容器两端的电势差为零,则有:Q 2=08.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则速度为:v 2=at =6 m/s感应电动势为:E 2=BLv 2=12 V根据闭合电路欧姆定律:224MNPQE I A R R ==+ 安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比, 安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.9.为了检查双线电缆CE 、FD 中的一根导线由于绝缘皮损坏而通地的某处,可以使用如图所示电路。
2020年02月09日肥东一中的高中物理组卷一.选择题(共8小题)1.在如图所示的电路中,电源的电动势为E,内阻为r,平行板电容器C的两金属板水平放置,R1为定值电阻,L为小灯泡,P为滑动变阻器R的滑动触头,G为灵敏电流表,A为理想电流表。
开关S闭合后,C的两板间恰好有一质量为m、电荷量为q的油滴处于静止状态。
在P向下移动的过程中,下列说法正确的是()A.油滴带正电,油滴向下运动B.G中有b到a的电流C.小灯泡L变暗,电流表A示数变大D.电源的输出功率一定变大2.在如图的电路中,R1是定值电阻,R2是光敏电阻,电源的内阻不能忽略。
闭合开关S,当照射光敏电阻上的光照强度增大时,下列说法中正确的是()A.通过R2的电流减小B.电源的路端电压减小C.电容器C所带的电荷量增加D.电源的电功率不变3.如图所示,电源电动势为E,内阻为r,R1、R2为定值电阻,L为小灯泡,R3为光敏电阻,当照射光强度增大时,下列说法正确的是()A.电压表的示数减小B.灯泡L变暗C.R1电流变化量比R3电流变化量小D.R1电压变化量比R2电压变化量大4.在如图所示的电路中,R1、R2、R3和R4皆为定值电阻,R5为可变电阻,电源的电动势为E,内阻为r,设电流表A1的读数为I1,电流表A2的读数为I2,电压表V1的示数为U1,电压表V2的读数为U2,当R5的滑动触点向a端移动过程中,电流表A1的读数变化量大小为△I1,电流表A2的读数变化量大小△I2,电压表V1的读数变化量大小为△U1,电压表V2的读数变化量大小为△U2,则()A.I1变大,△U1<△U2,不变B.I1变大、△U1>△U2,不变C.I1变小,I2变小,变小D.U1变小,U2变小,变大5.如图所示的电路,闭合开关S后,三盏灯均能发光,电源电动势E恒定且内阻r不可忽略。
现将变阻器R的滑片稍向上滑动一些,关于三盏灯亮度变化的情况及电容器带电量判断正确的是()A.a灯变亮,b灯和c灯变暗,电容器C所带电荷量增多B.a灯和c灯变亮,b灯变暗,电容器C所带电荷量减少C.a灯和c灯变暗,b灯变亮,电容器C所带电荷量减少D.a灯和b灯变暗,c灯变亮,电容器C所带电荷量增多6.如图所示,电源电动势E=10V,内阻r=0.2Ω,标有“8V 16W”的灯泡L恰好正常发光,电动机线圈电阻R0=0.15Ω,则电源的输出功率为()A.16W B.440W C.80W D.400W7.如图所示,直线a为某电源的U﹣I图线,曲线B为某小灯泡D1的U﹣I图线的一部分,用该电源和小灯泡D1组成闭合电路时,灯泡D1恰好能正常发光,则下列说法中正确的是()A.此电源的内阻为1.5ΩB.灯泡D1的额定电压为3V,功率为6WC.把灯泡D1换成“3V,20W”的灯泡D2,电源的输出功率将变小D.由于小灯泡B的U﹣I图线是一条曲线,所以灯泡发光过程,欧姆定律不适用8.如图所示,直线a为某电源的路端电压随电流的变化图线,曲线b为小灯泡R两端的电压随电流强度的变化图线,用该电源和该小灯泡R组成的闭合电路,电源的输出功率和电源的内电阻分别是()A.0.6W,5ΩB.0.6 W,ΩC.0.8 W,5ΩD.0.8W,Ω二.多选题(共4小题)9.如图甲所示电路中的小灯泡通电后其两端电压U随所通过的电流I变化的图线如图乙所示,P为图线上一点,PN为图线的切线,PM为U轴的垂线,PQ为I轴的垂线,下列说法中正确的是()A.随着所通电流的增大,小灯泡的电阻增大B.对应P点,小灯泡的电阻为C.若在电路甲中灯泡L两端的电压为U1,则电阻R两端的电压为I1RD.对应P点,小灯泡的功率为图中矩形PQOM所围的面积10.如图所示,曲线①、②分别是直流电路中内、外电路消耗的电功率随电流变化的图线,由该图可知,下列说法中正确的是()A.电源的电动势为12 VB.电源的内电阻为3ΩC.电源被短路时,流过内电阻的电流为6AD.电源的输出功率最大为9W11.如图所示,定值电阻R1=2Ω,可变电阻R2阻值范围为0~7Ω,蓄电池的电动势为E=12V、内阻为r=6Ω,则以下说法中正确的是()A.R1获得最大功率为4.5WB.R2获得最大功率6WC.R2获得最大功率4.48WD.电源的效率最大值为50%12.一台直流电动机的电阻为R,额定电压为U,额定电流为I,当其正常工作时,下述正确的是()A.电动机所消耗的电功率I2RB.t秒内所产生的电热为UItC.t秒内所产生的电热为I2RtD.t秒内输出的机械能为(U﹣IR)It三.计算题(共5小题)13.如图1所示的电路.滑动变阻器最大阻值为R0=58Ω,电源路端电压U随外电阻R变化的规律如图2所示,图中U=12V的直线为图线的渐近线,试求:(1)电源电动势E和内阻r;(2)A、B空载(没接用电器)时输出电压的范围.14.如图所示,电源电动势E=8V,内阻r=10Ω,R1=20Ω,R2=30Ω,电容器两极板间距d=0.1m。
高考物理电磁学知识点之稳恒电流知识点训练(2)一、选择题1.智能手机耗电量大,移动充电宝应运而生,它是能直接给移动设备充电的储能装置。
充电宝的转化率是指电源放电总量占电源容量的比值,一般在0.60−0.70之间(包括移动电源和被充电池的线路板、接头和连线的损耗)。
如图为某一款移动充电宝,其参数见下表,下列说法正确的是()容量20000mAh兼容性所有智能手机边充边放否保护电路是输入DC:5V 2A MAX输出DC:5V 0.1A−2.5A尺寸56×82×22mm转换率0.60产品名称索扬SY10−200重量约430gA.给充电宝充电时将电能转化为内能B.该充电宝最多能储存能量为3.6×105JC.该充电宝电量从零到完全充满电的时间约为2hD.该充电宝给电量为零、容量为3000mAh的手机充电,理论上能充满6次2.某些肿瘤可以用“质子疗法”进行治疗。
在这种疗法中,为了能让质子进入癌细胞,首先要实现质子的高速运动,该过程需要一种被称作“粒子加速器”的装置来实现。
质子先被加速到较高的速度,然后轰击肿瘤并杀死癌细胞。
如图所示,来自质子源的质子(初速度为零),经加速电压为U的加速器加速后,形成细柱形的质子流。
已知细柱形的质子流横截面积为S,其等效电流为I;质子的质量为m,其电量为e.那么这束质子流内单位体积的质子数n是A2 I U eS mBI m eS eUC2I eU eS mD .2Im eS eU3.图中小灯泡的规格都相同,两个电路中的电池也相同。
实验发现多个并联的小灯泡的亮度明显比单独一个小灯泡暗。
对这一现象的分析正确的是( )A .灯泡两端电压不变,由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗B .电源电动势不变,外电路电压变大,但由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗C .电源电动势不变,外电路电压变小,因此灯泡亮度变暗D .并联导致电源电动势变小,因此灯泡亮度变暗4.如图所示,电路中A 灯与B 灯的电阻相同,电源的内阻不可忽略,则当滑动变阻器R 的滑动片P 向上滑动时,两灯亮度的变化情况是( )A .A 灯变亮,B 灯变亮B .A 灯变暗,B 灯变亮C .A 灯变暗,B 灯变暗D .A 灯变亮,B 灯变暗5.如图所示,直线A 为电源的路端电压与总电流关系的伏安图线,直线B 为电阻R 两端电压与通过该电阻 流关系的伏安图线,用该电源和该电阻组成闭合电路,电源的输出功率和效率分别是( )A .2W ,66.7%B .2W ,33.3%C .4W ,33.3%D .4W ,66.7%6.如图所示,电源电动势E =30V ,内阻r =1Ω,直流电动机线圈电阻R M =1Ω,定值电阻R =9Ω。
第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。
高二物理恒定电流练习题(含答案) 高二物理恒定电流1.当变阻器R的阻值增加时,R两端的电压将减小,通过R的电流强度将减小。
2.若滑动变阻器的滑动端P向下滑动时,L2变亮,L1、L3、L4不变。
3.当滑动触头P向b端滑动时,A灯变暗,B灯变亮,R1消耗的功率变小。
4.原来断开的开关K闭合时,电路中Ua降低,Ub升高。
5.滑动变阻器的滑片P由b端逐渐向a端移动过程中,A2示数先增大后减小,A1示数先减小后增大。
6.电上所带电量为4μC。
7.可变电阻R4的取值为40Ω。
8.要使液滴上升,可使R2减小。
9.在这个电路中,有一个水平放置的平行板电C,带电液滴静止在其中。
四个电键都是闭合的。
如果只打开一个电键,液滴会怎样运动?选项包括:A。
只打开K1,液滴仍然保持静止;B。
只打开K2,液滴会加速向上运动;C。
只打开K3,液滴仍然保持静止;D。
只打开K4,液滴会加速向下运动。
10.在这个电路中,开关K最初是闭合的。
当电阻R1和R2的滑片处于图中所示位置时,带电尘埃P悬浮在平行板电中,保持静止状态。
要使尘埃加速向下运动,应该采取哪些措施?选项包括:A。
将R1的滑片向上移动;B。
将R2的滑片向上移动;C。
将R2的滑片向下移动;D。
断开开关K。
11.在这个电路中,电源的电动势是恒定的。
如何使灯泡变暗?选项包括:A。
增大R1;B。
减小R1;C。
增大R2;D。
减小R2.13.这个电路中,直线OAC表示某个直流电源的总功率P总随电流I变化的图像,抛物线OBC表示同一个电源内部的热功率Pr随电流I变化的图像。
如果A和B对应的横坐标是2A,那么线段AB表示的功率和I=2A对应的外电阻是什么?选项包括:A。
2W,0.5Ω;B。
4W,2Ω;C。
2W,1Ω;D。
6W,2Ω。
14.在这个电路中,电阻R=3Ω。
当开关K断开时,电源内电路消耗功率与输出功率之比为1:3;当K闭合时,电源内电路消耗功率与输出功率相等。
那么当K断开和闭合时,电灯L上消耗功率的比例是多少?选项包括:A。
高二物理恒定电流一.选择题1.在如图所示的电路中,当变阻器R的阻值增加时( )A.R两端的电压将增大B.R两端的电压将减小C.通过R的电流强度将不变D.通过R的电流强度将减小2.在如图所示的电路中,若滑动变阻器的滑动端P向下滑动时,则L1、L2、L3、L4四灯的发光情况将是( ) A.L1变亮B.L2变亮C.L3变暗D.L4变暗3.如图所示电路中,电源电动势为E,,内电阻为r,A、B为两个相同的灯泡,R1为定值电阻,R0为滑动变阻器,当滑动触头P向b端滑动时,则( )A.A灯变暗,B灯变暗B.A灯变暗,B灯变亮C.R1消耗的功率变大D.R1消耗的功率变小4.如图所示的电路中,O点接地,当原来断开的开关K闭合时,电路中A、B两点的电势变化情况是( )A.都降低B.都升高C.U A升高,U B降低D.U A降低,U B升高5.如图所示的电路中,A、B两端间电压U恒定,干路中的定值电阻的阻值为R0,支路中的定值电阻的阻值为R2,滑动变阻器不接入电路时,两固定端a、b间的电阻为R1。
R0小于R1,R0和R2都不等于零。
那么,按图示电路,滑动变阻器的滑片P由b端逐渐向a端移动过程中,电流表A1、A2的示数变化情况是( ) A.A2的示数一直不断增大B.A1的示数一直不断减小C.A2示数先增大后减小D.A1示数先减小后增大6.如图所示电路,电源电动势e = 6V,内阻不计。
R1 = 4Ω,R2 = 2Ω,R3 = 7Ω,电容器的电容C = 1mF,那么电容器上所带电量为( )A.2×10-6CB.6×10-6CC.0D.4×10-6C7.在如图所示的电路中,R1 = 10Ω,R2 = 20Ω,R3 = 8Ω,电容器的电容C = 10mF,电源电动势e = 12V,内阻不计。
要使电容器上板带正电,电量Q = 2×10-5C,则可变电阻R4的取值为( )A.8ΩB.16ΩC.32ΩD.40Ω8.水平放置的平行板电容器C如图方式连入电路。
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B r.(2)当20A I =,0.05m a =,求B r .解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B r.解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB Rμ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B ρ.解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I I B R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B ρ的大小为xaa I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +r,y -处的细长条在P 点产生的磁感应强度为d B -r,二者叠加为沿Oy 方向的d B r .所以P 点的磁感应强度B ρ沿Oy 方向,B ρ的大小aB θ=⎰0a=⎰0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B ρ.解 在14圆周的圆弧ºab上,单位长度弧长的线圈匝数为 224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NII l R θππ== 此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r IR NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20-6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d S Φ=B S ⋅⎰⎰r r 0d 2b a I l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il b aμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰rr Ñ可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰r r Ñ 可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰r r Ñ可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰r r Ñ可得0422IrB aμπ=.20-8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20-4,可知,0y >区域B r 沿Ox 负方向,0y <区域B r沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰r rÑ外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22L B l B l rlJ μ⋅==⎰r rÑ内内 所以0B rJ μ=内.可表示为0B yJi μ=-r r内(d y d -<<).20-9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理 0d 2LB l rB NI πμ⋅==⎰r r Ñ所以02NIB rμπ=. 通过螺绕环截面的磁通量为1200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰r r20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B ρ.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-.电流分布可视为由电流密度为J r、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -r、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==-- 其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =r. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=r r r r,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20-11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v ρ与Bρ成o89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯速率为 726510(m v .===⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯oo半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯o o20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E r 和B r的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E r中的受力为eE -r ,方向竖直向上;在磁场B r 中的受力为ev B -⨯rr ,方向竖直向下;且满足eE evB =所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I ,沿z 轴方向加匀强磁场B ρ,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20-14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20-15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==. 求:(1)ABCDE 导线中,AB 、¼BCD 、DE 各段所受1I 产生的磁场的作用力的大小和方向,(2)长直导线在圆心O 处元段d l 上所受2I 的磁场力的大小和方向.解 (1)设直线电流1I 产生的磁感应强度为1B r.求AB 段受1I 的作用力时,令y ξ=-,则01212d d 2R a AB R I F I l B I k μξπξ+=⨯=⋅⎰⎰r r r r012ln 2I I R a k aμπ+=⋅rDE 段受到1I 的作用力为01012212d d ()ln 22R a DE R I I I R a F I l B I y k k y aμμππ++=⨯=⋅-=-⋅⎰⎰r r r r r求¼BCD 段受1I 的作用力时,取电流元2d I l 如图,d d l R θ=.由于Oz 方向的分力会相互抵消(参见图),只需计算Oy 方向的分量,则¼21202cos d BCD F B I R j πθθ=-⋅⋅⎰r r 201202cos d 2cos I I R j R πμθθπθ=-⋅⎰r 0122I I j μ=-r(2)半圆形导线电流2I 在圆心O 点处产生的磁场0224I B i Rμ=r r,所以0121212d d d d 4I I l F I l B I B l j j Rμ=⨯=⋅=r r r r r20-16.有一匝数为10匝,长为0.25m ,宽为0.10m 的矩形线圈,放在31.010T B -=⨯的匀强磁场中,通以15A 的电流,求它所受的最大力矩.解 线圈在匀强磁场中所受的最大力偶矩为m T NIBS =31015101002501...-=⨯⨯⨯⨯⨯337510(N m).-=⨯⋅(第二十章题解结束)。
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
第五章 稳恒电流本章提要1.电流强度· 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。
如果在t ∆时间内通过导体某一截面的电量为q ∆,则通过该截面的电流I 为qI t∆=∆ · 如果电流随时间变化,电流I 的定义式为tqt q I t d d lim 0=∆∆=→∆2.电流密度· 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。
根据电流密度的定义,导体中某一点面元d S 的电流密度为d d Ij S ⊥=· 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即d j S S=⋅⎰⎰I3.欧姆定律· 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式RU U I 21-=其中R 为导体的电阻,21U U -为导体两端的电势差· 欧姆定律的微分形式为E j σ=其中ρσ1=为电导率4.电阻· 当导体中存在恒定电流时,导体对电流有一定的电阻。
导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。
当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为Sl R ρ= 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率5.电动势· 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。
qA 非=ε· 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为l E lk ⎰⋅=d ε6.电源电动势和路端电压· 若电源正负极板的电势分别为U +和U -,电源内阻为r ,电路中电流为I ,则电源电动势为()U U Ir +-ε=--· 路端电压为Ir U U -=--+ε7.接触电动势· 因电子的扩散而在导体接触面上形成的等效电动势。
高二物理恒定电流试题1.一质量为m、电荷量为q的带电粒子在磁感应强度为B的匀强磁场中做圆周运动,其效果相当于一环形电流,则此环形电流为多大()A.B.C.D.【答案】A【解析】粒子在磁场中匀速圆周运动,有;粒子运动的周期为,等效电流为,选项A正确。
【考点】带电粒子在磁场中的圆周运动;电流强度。
2.某闭合电路中,当有2C电量流过干电池,电池消耗了6J的化学能,则当有6C电量流过干电池,电池提供的电能为()A.12J B.18J C.20J D.无法确定【答案】 B【解析】试题分析: 电源是把其他形式的能转化为电能的装置,由电动势的定义式E=可知:干电池电动势E=3V当有6C电量流过干电池,非静电力做功为W=qE=6×3J=18J,所以B正确。
【考点】电源的电动势和内阻.3.下列关于电流的说法中,正确的是()A.电流有方向所以电流强度是矢量B.大小不随时间变化的电流叫恒定电流C.方向不随时间变化的电流叫恒定电流D.大小方向都不随时间变化的电流叫恒定电流【答案】D【解析】电流虽然有方向但是电流强度是标量;大小和方向都不随时间变化的电流叫恒定电流;选项D正确。
【考点】电流强度及恒定电流的概念.4.关于电动势,下列说法不正确的是()A.电动势是表征电源把其他形式的能转化为电能的本领强弱的物理量B.电动势的大小与外电路的结构有关C.电动势在数值上等于电源未接入电路时两极间的电势差D.电动势等于闭合电路各部分的电势降落之和【答案】B【解析】电动势反映的是非静电力做功把其它形式的能量转化为电能的本领强弱,所以A正确;电动势是电源本身的特性,与外电路无关,所以B错误;在电源未接入电路时,电源两极间的电势差即等于其电动势,所以C正确;接入电路时,满足,即电动势等于内外电路的电压之和,也就是等于电路各部分的电势降落之和,所以D正确;【考点】电动势5.关于电动势,下列说法中正确的是:A.电动势就是电源两极间的电压B.电动势表征电源把其他形式的能转化为电能的本领大小C.电动势越大,说明非静电力在电源内部把单位电荷量的正电荷从负极向正极移送做功越多D.电动势越大,说明非静电力在电源内部把正电荷从负极向正极移送的电荷量越多【答案】BC【解析】根据闭合电路欧姆定律E=U+Ir,得知,当I=0时,U=E,即电源没有接入外电路时两极间的电压等于电源电动势.故A错误; 电动势表征电源把其他形式的能转化为电能的本领大小,电动势越大,电源将其他形式的能转化为电能的本领越大.故B正确;电动势越大说明非静电力在电源内部把单位电荷量的正电荷在电源内从负极移到正极时非静电力做的功越多,所以C正确D错误。
第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。
解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。
解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。
)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。
R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。
已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。
解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。
高考物理《恒定电流》真题练习含答案1.[2024·新课标卷](多选)电动汽车制动时可利用车轮转动将其动能转换成电能储存起来.车轮转动时带动磁极绕固定的线圈旋转,在线圈中产生电流.磁极匀速转动的某瞬间,磁场方向恰与线圈平面垂直,如图所示.将两磁极间的磁场视为匀强磁场,则磁极再转过90°时,线圈中()A.电流最小B.电流最大C.电流方向由P指向QD.电流方向由Q指向P答案:BD解析:磁极顺时针匀速转动相当于线圈逆时针匀速转动,线圈从中性面位置开始转动,磁极转过90°时即线圈逆时针转过90°时,穿过线圈的磁通量为0,磁通量的变化率最大,线圈中电流最大,A错误,B正确;磁极转过90°时相当于题图示中PQ向下切割磁感线,由右手定则可知线圈中电流方向由Q指向P,C错误,D正确.2.[2023·江苏卷]小明通过实验探究电压表内阻对测量结果的影响.所用器材有:干电池(电动势约1.5 V,内阻不计)2节;两量程电压表(量程0~3 V,内阻约3 kΩ;量程0~15 V,内阻约15 kΩ)1个;滑动变阻器(最大阻值50 Ω)1个;定值电阻(阻值50 Ω)21个;开关1个及导线若干.实验电路如图1所示.(1)电压表量程应选用________(选填“3 V”或“15 V”).(2)图2为该实验的实物电路(右侧未拍全).先将滑动变阻器的滑片置于如图所示的位置,然后用导线将电池盒上接线柱A与滑动变阻器的接线柱________(选填“B”“C”或“D”)连接,再闭合开关,开始实验.(3)将滑动变阻器滑片移动到合适位置后保持不变,依次测量电路中O与1,2,…,21之间的电压.某次测量时,电压表指针位置如图3所示,其示数为________ V.根据测量数据作出电压U与被测电阻值R的关系图线,如图4中实线所示.(4)在图1所示的电路中,若电源电动势为E,电压表视为理想电压表,滑动变阻器接入的阻值为R1,定值电阻的总阻值为R2,当被测电阻为R时,其两端的电压U=________(用E、R1、R2、R表示),据此作出UR理论图线如图4中虚线所示.小明发现被测电阻较小或较大时,电压的实测值与理论值相差较小.(5)分析可知,当R较小时,U的实测值与理论值相差较小,是因为电压表的分流小,电压表内阻对测量结果影响较小.小明认为,当R较大时,U的实测值与理论值相差较小,也是因为相同的原因.你是否同意他的观点?请简要说明理由________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________.答案:(1)3 V(2)D(3)1.50(4)ERR1+R2(5)不同意,理由见解析解析:(1)所用电源为两节干电池,电动势为3 V,则所用电表量程为3 V;(2)闭合开关之前,滑动变阻器阻值应该调到最大,则由图可知,电池盒上的接线柱A 应该与滑动变阻器的接线柱D连接;(3)电压表最小刻度为0.1 V,则读数为1.50 V;(4)由闭合电路欧姆定律可得I=ER1+R2当被测电阻阻值为R时电压表读数U=IR=ERR1+R2(5)不同意;当R较大时,则电压表内阻不能忽略,则电路中的电流I=ER1+(R2-R)+RR V R+R V则电压表读数为U=ER1+(R2-R)+RR VR+R V·RR VR+R V=E(R1+R2-R)(R+R V)RR V+1当R较大时,R=R2时R最大,此时U=ER1(R2+R V)R2R V +1=ER1R V+R1R2+1因R V≫R1,则电压表读数接近于U=ER1 R2+1=ER2R1+R23.[2022·全国甲卷]某同学要测量微安表内阻,可利用的实验器材有:电源E(电动势1.5V,内阻很小),电流表(量程10 mA,内阻约10 Ω),微安表(量程100 μA,内阻R g待测,约1 kΩ),滑动变阻器R(最大阻值10 Ω),定值电阻R0(阻值10 Ω),开关S,导线若干.(1)将图中所示的器材符号连线,画出实验电路原理图;(2)某次测量中,微安表的示数为90.0 μA,电流表的示数为9.00 mA,由此计算出微安表内阻R g=________ Ω.答案:(1)如图所示(2)990解析:流过电阻R 0的电流I 0=I -I g =9 mA -0.09 mA =8.91 mA ,由欧姆定律可知,R g=I 0R 0I g =8.91×100.09Ω=990 Ω. 4.[2024·浙江1月,节选]在“观察电容器的充、放电现象”实验中,把电阻箱R(0~9 999 Ω)、一节干电池、微安表(量程0~300 μA ,零刻度在中间位置)、电容器C(2 200 μF 、16 V )、单刀双掷开关组装成如图1所示的实验电路.(1)把开关S 接1,微安表指针迅速向右偏转后示数逐渐减小到零;然后把开关S 接2,微安表指针偏转情况是________.A .迅速向右偏转后示数逐渐减小B .向右偏转示数逐渐增大C .迅速向左偏转后示数逐渐减小D .向左偏转示数逐渐增大(2)再把电压表并联在电容器两端,同时观察电容器充电时电流和电压变化情况.把开关S 接1,微安表指针迅速向右偏转后示数逐渐减小到160 μA 时保持不变;电压表示数由零逐渐增大,指针偏转到如图2所示位置时保持不变,则电压表示数为________V ,电压表的阻值为________kΩ(计算结果保留两位有效数字).答案:(1)C (2)0.50 3.1解析:(1)把开关S 接1,电容器充电,电流从右向左流过微安表,微安表指针迅速向右偏转后示数逐渐减小到零;把开关S 接2,电容器放电,电流从左向右流过微安表,则微安表指针迅速向左偏转后示数逐渐减小.(2)由题意可知电压表应选用0~3 V 量程,由图2可知此时分度值为0.1 V ,需要估读到0.01 V ,则读数为0.50 V .当微安表示数稳定时,电容器中不再有电流通过,此时干电池、电阻箱、微安表和电压表构成回路,根据闭合电路欧姆定律有R +R V =E I = 1.5160×10-6 Ω=9.375 kΩ 根据串联电路规律有R R V =U R U V =1.5-0.50.5=2 联立可得R V≈3.1 kΩ5.[2021·广东卷]某小组研究热敏电阻阻值随温度的变化规律.根据实验需要已选用了规格和量程合适的器材.(1)先用多用电表预判热敏电阻阻值随温度的变化趋势.选择适当倍率的欧姆挡,将两表笔________,调节欧姆调零旋钮,使指针指向右边“0 Ω”处.测量时观察到热敏电阻温度越高,相同倍率下多用电表指针向右偏转角度越大,由此可判断热敏电阻阻值随温度的升高而________.(2)再按下图连接好电路进行测量.①闭合开关S前,将滑动变阻器R1的滑片滑到________端(填“a”或“b”).将温控室的温度设置为T,电阻箱R0调为某一阻值R01.闭合开关S,调节滑动变阻器R1,使电压表和电流表的指针偏转到某一位置.记录此时电压表和电流表的示数、T和R01.断开开关S.再将电压表与热敏电阻C端间的导线改接到D端,闭合开关S.反复调节R0和R1,使电压表和电流表的示数与上述记录的示数相同.记录此时电阻箱的阻值R02.断开开关S.②实验中记录的阻值R01________R02(填“大于”“小于”或“等于”),此时热敏电阻阻值R T=________.(3)改变温控室的温度,测量不同温度时的热敏电阻阻值,可以得到热敏电阻阻值随温度的变化规律.答案:(1)短接减小(2)①b②大于R01-R02解析:(1)使用多用电表的欧姆挡前应先欧姆调零,即将两表笔短接.温度越高,相同倍率下多用电表的指针向右偏转的角度越大,则电阻阻值越小,故热敏电阻的阻值随温度的升高而减小.(2)①闭合开关前,为了保护电路,应该将滑动变阻器的滑片移到b端.②将电压表与热敏电阻C端间的导线改接到D,调节滑动变阻器和电阻箱,使电压表和电流表的示数与改接前一致,则R01=R02+R T,所以R01>R02,R T=R01-R02.。
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a 。
(1)设导线所载电流为I ,求P 点的B .(2)当20A I =,0.05m a =,求B .解 (1)根据毕—萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长"直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B .解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB R μ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B.解 (a )根据毕—萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c)根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I IB R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20—4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B的大小为xa a I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +,y -处的细长条在P 点产生的磁感应强度为d B -,二者叠加为沿Oy 方向的d B .所以P 点的磁感应强度B 沿Oy 方向,B的大小0220d 2cos 2a I B x y μθπ=+⎰0222202d 22a I y x a x y x yμπ=⋅⋅++⎰ 0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20—5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B.解 在14圆周的圆弧ab 上,单位长度弧长的线圈匝数为224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NI I l R θππ==此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r I R NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20—6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d SΦ=B S ⋅⎰⎰0d 2baI l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il baμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰可得0422IrB aμπ=.20—8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20—4,可知,0y >区域B 沿Ox 负方向,0y <区域B 沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22LB l B l rlJ μ⋅==⎰内内所以0B rJ μ=内.可表示为0B yJi μ=-内(d y d -<<).20—9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理0d 2LB l rB NI πμ⋅==⎰所以02NIB rμπ=. 通过螺绕环截面的磁通量为12200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-. 电流分布可视为由电流密度为J 、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==--其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20—11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v与B成o 89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯ 速率为 31973122210161026510(m s)91110k E .v .m .--⨯⨯⨯⨯===⨯⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E 和B 的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E 中的受力为eE -,方向竖直向上;在磁场B 中的受力为ev B -⨯,方向竖直向下;且满足eE evB = 所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I,沿z 轴方向加匀强磁场B,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20—14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20—15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==。
(物理)物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.如图所示的电路中,电源电动势E=10V,内阻r=0.5Ω,电动机的电阻R0=1.0Ω,电阻R1=1.5Ω.电动机正常工作时,电压表的示数U1=3.0V,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率;【答案】(1)20W (2)12W 8W.【解析】【分析】(1)通过电阻两端的电压求出电路中的电流I,电源的总功率为P=EI,即可求得;(2)由U内=Ir可求得电源内阻分得电压,电动机两端的电压为U=E-U1-U内,电动机消耗的功率为P电=UI;电动机将电能转化为机械能的功率为P机=P电-I2R0.【详解】(1)电动机正常工作时,总电流为:I=1URI=3.01.5A=2 A,电源释放的电功率为:P=EI =10×2 W=20 W;(2)电动机两端的电压为: U= E﹣Ir﹣U1则U=(10﹣2×0.5﹣3.0)V=6 V;电动机消耗的电功率为: P电=UI=6×2 W=12 W;电动机消耗的热功率为: P热=I2R0 =22×1.0 W=4 W;电动机将电能转化为机械能的功率,据能量守恒为:P机=P电﹣P热P机=(12﹣4)W=8 W;【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.2.如图所示,已知电源电动势E=20V,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L和内阻R D=1Ω的小型直流电动机D都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A(2)7V(3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
高考物理部分电路欧姆定律题20套(带答案)及解析一、高考物理精讲专题部分电路欧姆定律1.恒定电流电路内各处电荷的分布是稳定的,任何位置的电荷都不可能越来越多或越来越少,此时导内的电场的分布和静电场的性质是一样的,电路内的电荷、电场的分布都不随时间改变,电流恒定.(1)a. 写出图中经△t 时间通过0、1、2,3的电量0q ∆、1q ∆、2q ∆、3q ∆满足的关系,并推导并联电路中干路电流0I 和各支路电流1I 、2I 、3I 之间的关系;b. 研究将一定量电荷△q 通过如图不同支路时电场力做功1W ∆、2W ∆、3W ∆的关系并说明理由;由此进一步推导并联电路中各支路两端电压U 1、U 2、U 3之间的关系;c. 推导图中并联电路等效电阻R 和各支路电阻R 1、R 2、R 3的关系.(2)定义电流密度j 的大小为通过导体横截面电流强度I 与导体横截面S 的比值,设导体的电阻率为ρ,导体内的电场强度为E ,请推导电流密度j 的大小和电场强度E 的大小之间满足的关系式.【答案】(1)a.0123q q q q ∆=∆+∆+∆,0123 I I I I =++ b.123W W W ∆=∆=∆,123U U U == c. 1231111R R R R =++ (2)j E l ρ= 【解析】 【详解】(l )a. 0123q q q q ∆=∆+∆+∆03120123q q q qI I I I t t t t∆∆∆∆====∆∆∆∆ ∴0123 I I I I =++即并联电路总电流等于各支路电流之和。
b. 123W W W ∆=∆=∆理由:在静电场和恒定电场中,电场力做功和路径无关,只和初末位置有关. 可以引进电势能、电势、电势差(电压)的概念.11W U q ∆=∆,22W U q ∆=∆,33W U q∆=∆ ∴123U U U ==即并联电路各支路两端电压相等。
c. 由欧姆定律以及a 、b 可知:1231111R RR R =++ (2)I j S =,U I R=,U EL =,L R S ρ= ∴j E lρ=2.如图中所示B 为电源,电动势E=27V ,内阻不计。
高考物理最新电磁学知识点之稳恒电流综合练习(2)一、选择题1.电子产品制作车间里常常使用电烙铁焊接电阻器和电容器等零件,技术工人常将电烙铁和一个灯泡串联使用,灯泡还和一只开关并联,然后再接到市电上(如图所示),下列说法正确的是( )A .开关接通时比开关断开时消耗的总电功率大B .开关接通时,灯泡熄灭,只有电烙铁通电,可使消耗的电功率减小C .开关断开时,灯泡发光,电烙铁也通电,消耗的总功率增大,但电烙铁发热较少D .开关断开时,灯泡发光,可供在焊接时照明使用,消耗的总功率不变2.某些肿瘤可以用“质子疗法”进行治疗。
在这种疗法中,为了能让质子进入癌细胞,首先要实现质子的高速运动,该过程需要一种被称作“粒子加速器”的装置来实现。
质子先被加速到较高的速度,然后轰击肿瘤并杀死癌细胞。
如图所示,来自质子源的质子(初速度为零),经加速电压为U 的加速器加速后,形成细柱形的质子流。
已知细柱形的质子流横截面积为S ,其等效电流为I ;质子的质量为m ,其电量为e .那么这束质子流内单位体积的质子数n 是A .2I U eS mB .I m eS eU C .2I eU eS m D .2Im eS eU3.如图所示,双量程电压表由表头G 和两个电阻串联而成。
已知该表头的内阻,满偏电流,下列说法正确的是A.表头G的满偏电压为500VB.使用a、b两个端点时,其量程比使用a、c两个端点时大C.使用a、b两个端点时,其量程为0~10V,则R1为9.5kΩD.使用a、c两个端点时,其量程为0~100V,则为95kΩ4.在如图所示的电路中,闭合开关S后,a、b、c三盏灯均能发光,电源电动势为E,内阻为r。
现将变阻器R的滑片稍向下滑动一些,则()A.b灯和c灯变暗,a灯变亮B.a灯和c灯变亮,b灯变暗C.a灯和c灯变暗,b灯变亮D.a灯和b灯变暗,c灯变亮5.如图是某品牌手机电池的铭牌,根据你所学的物理知识进行判断,下列说法正确的是A.“3000mAh”表示该电池储存的电能最多10800JB.“11.55Wh”表示该电池储存的电能最多为41580JC.一个标注为“3V,4000F”的超级电容器容纳的电荷量肯定比该电池能释放的电荷量多D.用匹配的充电器给电池充电,若把电池从电量为10%充电到40%花了30分钟,则充电器消耗的平均电功率为6.93W6.硅光电池是一种太阳能电池,具有低碳环保的优点。
(物理)物理稳恒电流练习题20含解析一、稳恒电流专项训练1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l= 【解析】 【分析】细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得:122v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,EI R=③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、22223mgRv B l = 【点睛】能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
如图所示:一段横截面积为S 、长为l 的金属电阻丝,单位体积内有n 个自由电子,每一个电子电量为e 。
该电阻丝通有恒定电流时,两端的电势差为U ,假设自由电子定向移动的速率均为v 。
(1)求导线中的电流I ;(2)有人说“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”。
这种说法是否正确,通过计算说明。
(3)为了更好地描述某个小区域的电流分布情况,物理学家引入了电流密度这一物理量,定义其大小为单位时间内通过单位面积的电量。
若已知该导线中的电流密度为j ,导线的电阻率为ρ,试证明:Uj lρ=。
【答案】(1)I neSv =;(2)正确,说明见解析;(3)证明见解析 【解析】 【详解】(1)电流的定义式QI t=,在t 时间内,流过横截面的电荷量Q nSvte = 因此I neSv = (2)这种说法正确。
在电路中,导线中电流做功为:W UIt = 在导线中,恒定电场的场强UE l=,导体中全部自由电荷为q nSle =, 导线中的恒定电场对自由电荷力做的功:U UW qEvt q vt nSel vt nSevUt l l==== 又因为I neSv =,则W UIt =故“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”是正确的。
(3)由欧姆定律:U IR =由电阻定律:lR Sρ= 则l U I S ρ=,则有:U Il Sρ=电流密度的定义:Q Ij St S== 故Uj lρ=3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯4.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
5.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g . (1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】 【分析】 【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+解得v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R Rεω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-=从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mgE q=杆转动的电动势21112BL εω= 两板间电场强度11E dε=联立解得12mgdqBL ω=如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-=杆转动的电动势22212BL εω= 两板间电场强度22E dε=联立解得227mgdqBL ω=综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgdqBL qBL ω≤≤.6.能量守恒是自然界基本规律,能量转化通过做功实现。
研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。
现将一电容器、电源和某定值电阻按照如图所示电路进行连接。
已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。
现将开关S 闭合,一段时间后,电路达到稳定状态。
求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。
【答案】2012CE 【解析】 【详解】根据电容定义,有C=QU,其中Q 为电容器储存的电荷量,得:Q=CU 根据题意,电容器储存能量:E C =12CU 2 利用电动势为E 0的电源给电容器充电,电容器两极间电压最终为E 0, 所以电容器最终储存的能量为:E 充=2012CE , 则电容器最终储存的电荷量为:Q=CE 0,整个过程中消耗消耗能量为:E 放=W 电源=E 0It=E 0Q=C 20E 根据能量守恒得:E 损=E 放-E 充=C 20E -2012CE =2012CE7.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V 回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A 由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R =0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.8.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。