大学物理 稳恒电流磁场
- 格式:ppt
- 大小:856.50 KB
- 文档页数:20
第九章稳恒电流的磁场稳恒电流:导体中电流不随时间变化(也叫直流电)。
§9-1基本磁现象安培假说人们对磁现象的研究是很早的,而且开始时是与电现象分开研究的。
发现电、磁现象之间存在着相互联系的事实,首先应归功于丹麦物理学家奥斯特。
他在实验中发现,通有电流的导线(也叫载流导线)附近的磁针,会受力而偏转。
1820年7月21日,他在题为《电流对磁针作用的实验》小册子里,宣布了这个发现。
这个事实表明电流对磁铁有作用力,电流和磁铁一样,也产生磁现象。
1820年8月,奥斯特又发表了第二篇论文,他指出:放在马蹄形磁铁两极间的载流导线也会受力而运动。
这个实验说明了磁铁对运动的电荷有作用力。
1820年9月,法国人安培报告了通有电流的直导线间有相互作用的发现,并在1820年底从数字上给出了两平行导线相互作用力公式。
这说明了二者的作用是通过它们产生的磁现象进行的。
综上可知,电流是一切磁现象的根源。
为了说明物质的磁性,1822年安培提出了有关物质磁性的本性的假说,他认为一切磁现象的根源是电流,即电荷的运动,任何物体的分子中都存在着回路电流,成为分子电流。
分子电流相当于基元磁铁,由此产生磁效应。
安培假说与现代物质的电结构理论是符合的,分子中的电子除绕原子核运动外,电子本身还有自旋运动,分子中电子的这些运动相当于回路电流,即分子电流。
磁场的应用十分广泛。
如:电子射线、回旋加速器、质谱仪、真空开关等都利用了磁场。
§9-2 磁场磁感应强度磁力线磁通量一、磁场1、磁场:运动电荷或电流周围也有一种场,称为磁场。
2、磁场的主要表现(1)力的表现:磁场对运动电荷或载流导体有作用力。
(2)功的表现:磁场对载流导体能做功。
3、实验表明:磁场与电场一样,既有强弱,又有方向。
二、磁感应强度为了描述磁场的性质,如同在描述电场性质时引进电场 强度时一样,也引进一个描述磁场性质的物理量。
下面从磁场对运动电荷的作用力角度来定义磁感应强度。
稳恒电流的磁场解读第五章稳恒电流的磁场一稳恒电流的磁场教学内容1.磁的基本现象(1)磁铁的性质(2)磁电联系(3)磁场(4)磁性起源2.磁感应强度(1)磁感应强度矢量(2)磁感应线3•毕奥一萨伐尔定律(1)毕奥一萨伐尔定律(2)磁感应强度叠加原理(3)毕奥一萨伐尔定律的应用4.磁场的高斯定理(1)磁通量(2)磁场的高斯定理5•安培环路定理(1)安培环路定理(2)安培环路定理应用6.磁场对运动电荷的作用(1)洛仑兹力(2)带电粒子在磁场中的运动(3)回旋加速器(4)汤姆逊实验质谱仪(5)霍尔效应7.磁场对载流导线的作用(1)安培力公式(2)均匀磁场对平面载流线圈的作用(3)平行无限长直导线间的相互作用说明与要求:1.本章主要研究电流激发磁场和磁场对电流及运动电荷的作用两部分内容。
2.本章重点是2、3、5节,难点是磁感应强度的概念及安培环路定理的物理意义及应用。
3.本章研究问题的方法与第一章类似,故在教学中应加强它们的比较。
、稳恒电流的磁场教学目标1.基本磁现象1.磁铁的性质知识:2.磁电联系3.磁场4.磁性起源1.磁铁的性质2.磁现象与电现象的联系理解:节次内容目标层次1 •磁场2 •物质磁性的起源2 •磁感应强度磁感应线1.B的定义2.B线3 •毕奥一萨伐尔定律1 .毕一萨定律2. B的叠加原理3 •毕一萨定律的应用知识:1 • B线的定义2.B线的特点3.B的单位理解:1 . B的定义及意义2. B的定义与E的定义的区别及原因知识:1 •电流元2.矢量矢积的表示及方向确疋3.0的数值及单位理解:1.毕一萨定律的数学表示式 2•毕一萨定律 得到的方法 3•毕一萨定律 中各量的意义 4 . B 的叠加原 理的含义 综合应用: 根据毕一萨定 律和磁场叠加 原理,通过求积 或求和的方法, 计算电流产生 的磁场1 .磁通量 知识:2 •磁场的高斯1. B的单位定理 2. B是代数量理解: 1 . B 的定义及 意义2. 磁场的高斯 定理的内容及4.磁通量磁场 的高斯定理意义3 •磁场高斯定理与电场高斯定理的区别5.安培环路定1.安培环路定简单应用:根据B的定义和B 线的性质,证明磁场高斯定理综合应用:根据B的定义和B 的叠加原理,计算 B 知识:理理 1 .培环路定理2.稳恒磁场的中I正负号的性质确定3 •应用安培环2.安培环路定路定理求B 理求B的条件理解:1.安培环路定理的内容及意义2.安培环路定理中B和1的意义3.I与B的对称性分布分析4 .稳恒磁场与静电场的区别简单应用:根据毕萨定律和磁场叠加原理,证明安培环路定理综合应用:根据安培环路定理计算B6.磁场对运动1.洛仑兹力电荷的作用2.带电粒子在磁场中的运动3.回旋加速器4 •汤姆逊实验5.质谱仪知识:1 •汤姆逊实验内容2.质谱仪原理3.回旋加速器的作用4.霍尔效应的内6.霍尔效应容理解: 1 •洛仑兹力公式数学式2.回旋加速器的原理3.霍尔电压的正负与载流子正负的关系4.霍尔效应的主要应用5.洛仑兹力不做功简单应用:1•根据洛仑兹力公式判定运动电荷在磁场中所受洛仑兹力的方向,并计算其大小2•根据洛仑兹力解释霍尔效 应知识: 1. 磁矩的概念 2. 电流同向和 反向时,两电流 间作用力的特 占八\、理解:1. 安培力公式 的数学式及意 义2 •安培力与洛仑兹力的关系3. 电流强度的 单位一一安培 的定义 简单应用: 1.由洛仑兹力 推导安培力 2•由安培力公 式确定磁力方 向 综合应用: 1 •根据安培力 公式和磁力叠 加原理,计算B 对I 的作用7.磁场对载流 导线的作用1 •安培力 2.磁力叠加原 理3 •均匀磁场对 平面载流线圈的作用4.平行无限长载流直导线间的相互作用2.根据磁力公式和力矩的定义计算载流线圈所受到的磁力矩三稳恒电流的磁场重难点分析重点:磁感应强度的概念,以及毕奥一萨伐尔定律和安培环路定理的应用。
大学物理 恒定电流稳恒磁场知识点总结1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度dQ I dt =, dIj e dS= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dqj dS dt=-⎰⎰ , ( j tρ∂∇=-∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: UI R=, j E σ=, ,焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功AK dl q ε+-==⎰ , K dl ε=⎰5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin FB q v θ=,式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:sB dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=34L Idl rB r μπ⨯=⎰7.磁场的高斯定理和安培环路定理磁场的高斯定理: 0SB dS =⎰⎰、 ( 0B ∇= ) (表明磁场是无源场)安培环路定理:0i LiB dl I μ=∑⎰、LSB dl j dS =⎰⎰⎰ 、(0B j μ∇⨯=)(安培环路定理表明磁场是有旋场)8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩m IS =)9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力f qv B =⨯带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,运动半径为mv R qB⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==霍尔效应 : 12HIBV V K h-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq=10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理mM τ∑=∆ 、 LL M dl I =∑⎰,内、n i M e =⨯, 0BH M μ=- 、m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i LiH dl I =∑⎰、LSH dl j dS =⎰⎰⎰。
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。