画线段图巧解数学问题
- 格式:doc
- 大小:46.91 KB
- 文档页数:14
巧用线段图法解决生活中的数学题概述:小学阶段的我们在解决问题时常常会因为自己的思维能力水平不够,不能快速理解题目意境,从中获取所用信息,这时如果用线段图的手段来分析理解题目,效果会事半功倍,它能让我们高效地获取重要信息并理清题目的数量关系,更好的理解题意,从而提高我们解题效率。
一、读懂题意,巧用线段图分析随着经济的发展,我们的生活水平越来越高,某些生活经验的欠缺,在解决读题时就会受阻,这时文字叙述比较抽象、数量关系比较复杂,适当的用线段图的方法分析题意,方可厘清题目中包含的数量关系。
例:小美和小王同学共植树18棵,小王植树的棵树比小美的2倍少3棵,小美和小王同学各植树多少棵?现阶段我们对于具有倍数关系的问题存在着一定的困难,因此解决这类问题可以根据题意进行分析,分别画出小美、小王数量的线段图(如图所示),再根据线段图列式计算。
通过线段图可以清晰得出各个数量关系:如果小王植树的棵树再加上3棵,那么就是小美植树棵数的2倍;小王的棵树增加3棵,即:18+3=21(棵),正好是小美植树棵数的(1+2)倍,使用这种解决问题的方法,不但可以促进我们的具体形象思维向抽象逻辑思维过渡,而且还能促进我们发散思维的发展,培养了自己的创新意识,为全面发展数学素养打下牢固的基础。
二、构建等量关系,巧用线段图分析目前我们习惯性的从题目中看出已知的一些等量关系,例如“已知被减数、减数、差的和是540那么被减数是多少?”,列出数量关系式“被减数=减数+差”,然而对于题目未知数的问题,我们往往举步艰难,迟迟不肯下笔。
例如“已知被减数、减数、差的和是540,减数比差多50,那么被减数、减数、差各是多少?”。
通过分析题目可知,题目中有两个关键词:和是540,多50。
有两个等量关系式:“被减数=减数+差;减数-差=50”。
题目要求的是被减数、减数、差各是多少?这道题文字不多,但没有理解题意就很难写出等量关系式直接写出算式,若此时巧用线段图(如图所示)解决问题,问题就能迎刃而解了。
画线段图巧解和倍应用题
三年级下册数学奥赛起跑线上有这样的一道题:“学校图书室有
故事书和文艺书一共2400本,故事书的本数是文艺书的3倍。
两种书各有多少本?”
爸爸领我读完题后,我想了好久都没想出解题的办法。
爸爸见我面带难色,就说:“你还记得上次我们学过的线段图吗?你不防画图来试一试。
”
深受启发的我连忙拿出笔,一边读题一边画图,根据题意可知:故事书本数是文艺书的3倍,如果用一个1厘米工的线段来表示文艺书的本数,那么故事书就应当是三个1厘米的长度。
如图:
文艺书:Array故事书:
看到线段图,我一下子茅塞顿开,文艺书和故事书合起来就是四个1厘米的线段,一共是2400本,那么一个1厘米线段就是2400÷4=600(本)。
由些可见,文艺书本数就是600本,故事书的本数就是600×3=1800(本)。
当我把自己的解题思路讲给爸爸听时,爸爸向我投来赞许的目
光,我高兴的想:线段图真是我解题的好帮手。
利用线段图巧解应用题一、利用线段图剖析题目意思对于小学生来说,应用题之所以难解的一个重要原因是他们对于文字的理解与剖析能力有限,这往往导致他们在审题的时候就陷入语言“迷宫”,在解题的时候又掉入语言“陷阱”,于是,降低了解题的准确率与效率。
针对这种情况,教师可以引导学生将题目内容以线段图的形式表现出来。
在很多时候,线段图画出来了,题目的意思也就一目了然了,能够帮助学生节省审题和解题的时间,提高审题和解题的效率。
例如,学习苏教版一年级下册《100以内的加法和减法(一)》这部分内容的时候,有如下一道应用题:小灰兔的菜地里种了100棵萝卜,他上午拔了40棵,下午全部拔完了。
请问他下午比上午多拔了多少棵?事实上,这个题目的列式和计算过程非常简单。
就是100-40=60(棵);60-40=20(棵),简单的两步,就求出了结果。
但是,对于小学一年级的学生来说,要理解题意却不是一件容易的事情,这对于他们的文字理解能力和数学分析能力都提出了较高的要求。
面对这种复杂的题目,教师可以引导学生将文字叙述转化为线段图,从而直观而清晰的呈现题目内容。
比如,这道题就有两种线段图的绘制方法,下面我们进行具体说明:方法一:学生可以画一条长线段,表示100,然后,在长线段中截取一小部分,表示40,那么,剩余的部分很明显就代表小灰兔下午所拔的萝卜数量——60;方法二:学生可以画上下三条平行的线段,第一条线段表示100,第二条线段表示40,那么,两条线段相减之后,剩下的第三条线段就表示60。
无论学生采取哪种方法,都能够将复杂的题目内容以简单而直观的方式呈现出来,这对于文字理解能力较弱的小学生,尤其是低年级的小学生来说,能够为他们的审题与解题提供很大的帮助。
二、利用线段图建立数量关系无论是哪种类型的数学题,找到数量关系,都是解题的关键。
然而,与其他类型的题目相比,应用题的数量关系通常比较隐蔽,学生难以一眼发现数与数之间的联系。
此时,教师可以引导学生利用线段图,来发现或建立数量关系,从而找到解题的突破口,顺利完成解题任务。
苏教版四年级数学下册用画线段图或图表的策略解决问题(含答案)一、看线段图列式,不计算。
1.【答案】(35-6)÷22.【解析】从图上可以看出,一共有35个球,绿球是红球的4倍,求红球的数量,总和÷(几倍+1)=较小的数,所以列式为:35÷(4+1)【答案】3.【解析】从图上可以看出,爸爸48岁,是小明年龄的3倍,求小明的年龄,较大的数÷几倍=较小的数,所以列式为:48÷3【答案】48÷3二、根据线段图编应用题,并列方程解答。
【解析】根据题意,济南到泰安的路程为71千米,济南到青岛的路程是济南到泰安路程的6倍少33千米,求济南到青岛的路程多长?可用71乘以6的积再减去33即可得到济南到青岛的路程【答案】济南到泰安的路程为71千米,济南到青岛的路程是济南到泰安路程的6倍少33千米,求济南到泰安的路程多长?71×6-33=426-33答:济南到青岛的路程有393千米;【解析】根据题意,杨树有46棵,柳树棵数是杨树的3倍少10棵,求柳树有多少棵?可用46乘以3的积再减去10进行计算即可。
【答案】杨树的有46棵,柳树棵数是杨树的3倍少10棵,求柳树有多少棵?46×3-10=138-10=128(棵)答:柳树有128棵.此题主要考查的是如何从线段图中获取信息,然后再根据倍数之间的关系进行解答即可。
(3)【解析】根据图示,可知故事书的本数是科技书的3倍还多12本,求科技书多少本?据此编应用题并解答。
由题意可知:100本相当于科技书的(3+1)倍还多12本,可以用一共的本书100本减去12本,然后除以(3+1)【答案】故事书的本数是科技书的3倍还多12本,求科技书多少本?(100-12)÷(3+1)=88÷4=22(本)答:科技书有22本。
三、应用题1.果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?【解析】此题可以已知桃树和杏树的差和倍数关系,我们可以用两个数的差÷(几倍-1)=较小的数求出杏树的棵树,然后计算桃树的棵树。
例1:两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?
思路点拨:本题是和差问题的基本题型,借助线段图来分析如下:
把第二筐多的10千克减掉,看成两个第一筐的重量来计算。
列式:第一筐:(150-10)÷2=70(千克)
第二筐:70+10=80(千克)
例2:草地上有黑兔、白兔、灰兔共27只,黑兔比白兔多2只,灰兔比白免少2只.黑兔、白兔、灰兔各有多少只?
思路点拨:此题属于和差问题拓展,一样的,画图分析:
黑兔比白兔多2只,灰兔比白免少2只,把黑兔比白兔多的,补到灰兔比白免少的部分,这样黑兔、白兔、灰兔共27只也可以看成是3倍白兔这么多,因此可以先求出白兔的只数.
列式:白兔:27÷3=9(只)
黑兔:9+2=11(只)
灰兔:9-2=7(只)。
学画线段图巧解数学问题
盱眙仇集中心小学三年级三班徐文迪前些天,爸爸给我出一这样一道数学题,题目是这样的:一件皮衣的价钱是一件羽绒服的5倍,又知一件皮衣比一件羽绒服贵960元。
问:一件皮衣和一件羽绒服各是多少元?
当时我看了这道题觉得好难,无从下手。
爸爸见我想了好长时间也没有头绪就说:“你们老师最近不是教你们画线段图了吗,你能用线段图表示出题目中的皮衣和羽绒服吗?”我说“试试吧。
”于是我就在草稿纸上画出下面的线段图来。
皮衣的价钱
皮衣比羽绒服贵960元
羽绒服的价钱
接着爸爸问我“皮衣的价钱是几份呀?羽绒服的价钱又是几份呀?”我说:“皮衣的价钱是一份,羽绒服的价钱是五份。
”爸爸接着又问我:“哪皮衣比羽绒服贵的960元是几份呀”。
此时我豁然开朗,兴奋地对爸爸说:“我知道了,皮衣比羽绒服贵的960元是四份,相当于是皮衣价钱的4倍。
用960元除以4算出来等于280元就可一件皮衣的价钱。
羽绒服的价钱只要用280元乘以5或用280元加上960元就行了。
”爸爸听了连连点头称赞。
我也开心极了!通过做这道题目,我懂得了原来画线段图可以把复杂的题目变得非常简单。
教学·现场小学数学解决问题策略的教学实践———以“画线段图”为例文|叶菲小学数学教学课堂上,“画线段图”是一种常见的问题解决策略,强调用动手实践的方式将抽象问题具象化,让学生在解决问题的过程中产生“豁然开朗”之感,久而久之提升数学综合素养,为未来学习与发展提供坚实的保障。
一、线段长度的比较人教版二年级数学上册“长度单位”章节课堂教学实录如下。
教师:同学们,在之前的课上我们已经学习了长度单位,老师有一个问题想问大家。
现在我手中有两条丝带,一条长度是6厘米,另一条长度是9厘米,谁能告诉我这两条丝带哪个更长?学生1:我知道!9厘米的那条更长!教师:答得很好,那么你能告诉老师,你是怎么得出这个答案的吗?学生1:因为9比6大!教师:说得非常正确!这就是我们今天要学习的内容———线段长度的比较。
教师:比较两条线段的长短时,我们首先要确保两条线段的长度单位相同,如刚才老师所提问题中,两个比较对象的长度单位都是“厘米”,所以可以直接通过数字大小来判断长短。
教师:(展示不一样长度单位的两组数据:8毫米和1厘米)对于不同长度单位的比较,我们又该用怎样的对比方法呢?学生2:我觉得可以换算单位,如将1厘米换算为10毫米,再进行比较。
学生3:我觉得可以直接画出线段图,就能直接比较长短。
教师:那么接下来请同学们试着画出线段图吧。
(学生拿出工具开始画线段图。
)教师巡视,了解学生实践情况,并予以针对性指导。
教师:看了大家画的线段图,我觉得大家做得非常好!其实比较线段长度并不难,只要了解单位换算的规律并能动手操作,就可以用最直观的方式完成比较。
二、线段长度的加减人教版二年级数学下册“混合运算”章节的课堂教学实录如下。
教师:丁丁家中一共有30盒酸奶,由于周日要去春游,丁丁拿走了12盒,周一早晨爸爸、妈妈、丁丁又各自喝了1盒,同学们,你们知道丁丁家里还有多少盒酸奶吗?学生1:我觉得可以列出一个计算式,用总数按顺序减去被带走和喝掉的酸奶数量,最后结果肯定正确。
2014-01课堂内外分数应用题的教学是小学数学教学中的一个难点。
学生对稍有难度的应用题就找不准对应率,对难度较大的应用题则更无从下手。
但借助线段图学生就能容易理解有关数量与单位“1”的对应关系,故在教学中,应重视画线段图教学。
下面就我解分数应用题的一些探索介绍如下:一、画线段图,找准量率对应关系,提高解题速度例:某工厂10月份用水480吨,比原计划节约了19,10月份原计划用水多少吨?分析:“10月份用水比原计划节约了19”,可以把原计划用水吨数看作单位“1”,先画表示“原计划用水”的线段,才能画出比它少19的“实际用水”的线段。
?吨480吨1-19比原计划节约19原计划用水:实际用水:从图上可以明显看出,480吨相当于原计划用水的(1-19),求原计划用水吨数,列式为:480÷(1-19)由上题可以看出,借助线段图能巧妙地寻找分数应用题中的对应关系,使解题的症结化解,对分析应用题的重点、难点起到了“提领而顿,百毛皆顺”的作用。
在教学中除了引导学生画线段图,从图中找量率列算式外,还必须通过练习,引导学生比较分析分率的加、减与题目的叙述的关系,使学生悟出:提高、增长、重、多、超、盈利、上升、收入等含有“多”的意思,一般“1+?”;节约、减少、下降、轻、短、支出、降低、亏损等含有“少”的意思,一般都用“1-?”找分率的规律,进而提高学生解题列式的速度。
另外还要注意,有些题目的具体数量,用线段表示不容易确定线段的长短的比例,我们就要采用先画分率,再画具体数量的方法来画线段。
如:张静打一份稿件,第一天打了50页,第二天打了40页,还剩58没有打,这份稿件共有多少页?画线段图时50页和40页,不容易画准它们的长度,就要先画还剩的58,再在其余的(1-58)里面画50页和40页就方便多了。
11-58(50+40)页还剩58共有?页二、画线段图,优化解题思路,简化解题步骤,提高解题效率例:某工程队修一条高速公路,前5个月修了20千米,正好修了全长的14,照这样计算,剩下的公路还需几个月?(请用最简单的方法解答)按一般分析计算,往往先求出每月修的距离,然后再用剩下的距离除以每月修的距离,这样分析复杂而且容易出错。
1. 甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?2. 小明和小强共有图书120本,小强的图书本数是小明的2倍,他们两人各有图书多少本?3. 三、四年级共有学生165人,三年级学生人数比四年级学生人数的2倍还少6人,三、四年级各有学生多少人?4. 副食店共有白糖和红糖234千克,白糖的千克数正好是红糖的2倍,副食店有红白糖各多少千克?5. 小明和小强年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红和妈妈各多少岁?1. 生产队养公鸡、母鸡共404只,其中公鸡是母鸡的3倍,各养了多少只鸡?2. 三年级学生参加文艺小组和科技小组的共有108人,参加文艺小组的人数是参加科技小组人数的2倍,参加两个小组的各有多少人?3. 师徒俩共加工零件42件,师傅加工数是徒弟的5倍,师徒各加工多少件?4.师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个;师、徒各生产多少个?5. 三、四年级共有学生165人,三年级学生人数比四年级学生人数的2倍还少6人,三、四年级各有学生多少人?1.. 机床厂有男女职工2400人,男职工是女职工的3倍,男、女职工各是多少人?2.. 食堂购进大米和面粉共1200千克,已知购进的大米的千克数是面粉千克数的2倍,购进大米和面粉各多少千克?3.甲、乙两班共采集树种240千克,甲班采集树种量是乙班的3倍,两个班各采集树种多少千克?4. 甲、乙两个数之和为72,甲数除乙数商是2,甲、乙两个数各是多少?5. 两数之和等于462,其中一个数的最后一位数字是0,如果把0去掉,就与第二个数相同。
这两个数中较大的一个数是多少?1. 两个数之和是616,其中一个数的最后一位数字是0,如果把0去掉,就与另一个数相同,两个数各是多少?2. 十元一张和五元一张人民币共135张,十元张数是五元张数的4倍,两种人民币各是多少张?各是多少元?3. 一个长方形的周长是48厘米,长是宽的2倍,这个长方形的长和宽各是多少厘米?4.小明买大单和小单线共25本,其中大单线的本数比小单线的本数的2倍多4本,两种本各多少本?5.师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个;师、徒各生产多少个?。
淘气和笑笑在书店里想买同一本课外书淘气和笑笑在书店里想买同一本课外书,,淘气带的钱差15元,笑笑带的钱差12元,而两人的钱凑起来正好比这本课外书的价格多3元,这本课外书多少元这本课外书多少元??
题中有3个已知信息,说明这3个已知信息与所求的问题有关。
那如何找出3个已知信息与问题之间的关系呢?我们可以借助线段图来帮助我们找关系,然后解决问题。
小朋友,如果我们像图1这样画线段图,线段图无法帮助我们找出“课外书的价格”与“淘气、笑笑差的钱”以及“两人的钱合起来多3元”这3个信息之间的关系。
那就需要我们改变画图的方
严超
(四川省成都市武顺街小学
)
44
脑风暴
头课外书的价格
笑笑带的钱
淘气带的钱
差15元
差12元
图1法,进行适当的调整。
2本课外书的价格
笑笑带的钱
淘气带的钱 差15元 差12元
多3元1本课外书的价格图2
他们两人都要买同一本课外书,也就是一共要买2本课外书。
两人带的钱合起来比一本课外书的价格多3元,也就是他们两人差的钱合起来比一本课外书的价格少3元(如图2)。
因此一本课外书的价格就是15+12+3=30(元)。
45
46。
1. 公园里杨树和柳树共有120棵,其中杨树比柳树多30棵,柳树和杨树各有多少棵?(先画出线段图,再解答)
(120-30)÷2=45(棵)
45+30=75(棵)
答:柳树有45棵,杨树有75棵。
2. 王晓东和何明买同样的笔记本,王晓东买了5本,何明买了3本,他们两人一共花了40元。
王晓东和何明各用去多少元?(先画出线段图,再解答)
40÷(5+3)=5(元)
5×5=25(元) 5×3=15(元)
答:王晓东用去25元,何明用去15元。
3. 一块长方形试验田,如果长增加8米,或宽增加6米,面积都比原来增加了96平方米,原来这块试验田的面积是多少平方米?(先画出示意图,再解答)
(96÷8)×(96÷6)=192(平方米)
答:原来这块试验田的面积是192平方米。
4. 甲仓库存粮是乙仓库的5倍。
如果从甲仓库运12吨去乙仓库,两个仓库的存粮数就一样多。
原来甲、乙两个仓库各存粮多少吨?(先画出线段图,再解答)
(12+12)÷(5-1)=6(吨)
6×5=30(吨)
答:原来甲仓库存粮30吨,乙仓库存粮6吨。
5. 有3条绳子,共长95 m,第一条比第二条长7 m,第二条比第三条长8 m,3条绳子各长多少米?(先画出线段图,再解答)
(95-8-7-8)÷3=24(m)
24+8=32(m)
32+7=39(m)
答:第一条绳子长39 m,第二条绳子长32 m,第三条绳子长24 m。
小学奥数解题技巧——线段图解题(含有练习题)线段图解题主要内容:1、线段图解题的方法和技巧;2、常见的可以用线段图来表示的数量关系;3、用线段图解题。
重难点:1、常见的可以用线段图来表示的数量关系;2、较复杂的线段图问题。
意义:利用线段图解决应用题是数学中常见的一种解题方法。
相比于传统的文字分析方法,线段图可以直观清晰地将题中的复杂数量关系展现在我们的眼前,对于理解题意和解决问题有十分重要的作用。
一、线段图解题方法和技巧:什么是线段?那就是一条直线上的两个点和它们之间的部分就叫做线段,线段的长度是有限的,所以我们常用来表示有限的量,帮助我们分析题目中隐藏的数量关系,达到轻松解题的目的。
1、用线段的长短来表示量的大小,并对应的标上数据;2、根据题意,有的可能只需要一条线段,有的可能需要多条线段;3、画多条线段时,要一端对齐,方便比较大小;4、画多条线段时,一般先画最小的量。
5、虚实结合。
“比……多”时,多的部分画实线;“比……少”时,少的部分画虚线,且立即标上数据;二、常见的可以用线段图来表示的数量关系1、和的关系:用一条较长线段来表示“和”,将组成“和”的各分量依次标在该线段上。
当出现多种数量关系时,和关系还可以用大括号来表示。
例如:甲的文具数量为5个,乙的文具数量为2个,那么甲乙的和是多少?甲的5个乙的2个7个文具2、差的干系:从小到大顺次画出各个量,并坚持一端对齐后,另一端多出的部分线段即可表示量与量之间的差。
例如:数学考试后XXX的得分为100分,XXX的得分为95分,那么XXX比1 -XXX少几分?XXX的得分:XXX的得分:XXX比XXX多的5分3、倍的关系:先画出最小的量,再画跟它成倍数关系的量,是它的几倍就画几段线段。
可将最小的量看作1份,则其它的量是它的几倍,就是几份。
例如:甲的年龄为5岁,乙的年龄为甲的3倍,那么乙的年龄为几岁?甲的年龄:甲的3倍,即甲的线段长度的3倍乙的年岁:注意:在同一个问题中,一条线段只能代表一个数量(若两个数量相等,则可用等长的线段来表示),与这个数量有大小或倍数关系的其它数量应该在这条线段的长度上分别延长(或缩短或等长延长)来表示。
学解决数学问题既是小学数学教学中的重点, 也是教学中的难点,有不少的数学问题, 文字叙述比较抽象, 数量关系比较复杂, 而小学生的思维又处于具体形象思维向抽象逻辑思维的过渡阶段, 因此,他们对于一些抽象问题理解起来困难较大。
如果教师一味的从字面去分析题意, 用语言来表述数量关系, 即便是老师讲得口干舌燥, 学生也难以理解掌握。
即便是学生理解了, 也只是局限于会做某个题了。
如何帮助学生理解数学问题中抽象的数量关系,提高他们解决数学问题的能力,不言而喻,大家都会想到借助线段图,以线段图作为学生理解抽象数量关系的一个拐杖,而往往由于咱们的学生理解能力有限的问题,他们通常不善于借助线段图来分析数量关系,主要是由于他们对这种表示方法的“陌生感”所造成的。
为了让线段图成为学生学习应用题的一种工具,我们有必要考虑线段图的提前渗透问题。
关于线段图没有定义, 词典中也没有解释。
在新教材里,线段定义为直线上两点间的部分叫做线段,特点是有两个端点、有限长。
但关于线段图却没有定义,词典中也没有解释。
但我们可以这样理解:线段图是有几条线段组合在一起,用来表示具体问题中的数量关系,帮助学生理解题意,解答问题的一种平面图形,它的特点就是从抽象的文字到直观的图形的再创造、再演示过程。
明了线段图的特点之后,我们就要思考它在具体教学中有何价值。
一、线段图在解决问题中的重要作用。
新课程以来,线段图虽然在小学数学课堂教学中的使用逐渐减弱,但是在以解决问题为载体的数学教学中仍然具有重要的作用。
1 、有利于把抽象的概念形象化。
有的数学问题综合性强,要解决一个数学问题往往要涉及多个数学概念的应用。
由于某些概念比较抽象,加上自身遗忘等原因,学生对这些概念的认识变得比较模糊,不能准确地理解题目中的重要概念,弄清已知条件的意思,进而阻碍了问题的解答,这时教师就可以借助线段图把已知条件形象地展现出来帮助学生理解题意。
如在“和倍问题”中有这样一题:“一套衣服共456 元,上衣的价钱是裤子的2倍多6 元。
这套衣服的上衣和裤子各多少钱?”,学生在二年级时通过摆实物认识过“倍”的意义,但是这个概念比较抽象,且有“多6 元”的干扰,大多数孩子头脑里对“上衣和裤子价格的相互关系”不能直接获得清晰的理解,这时教师可以引导学生画出线段图,实现概念到图形、“几倍”到“几份”的转化,通过这样的“半抽象化”过程,学生很容易就理解“把裤子的价钱看成1 份,上衣的价钱就是这样的 2 份还多6 元”这样的关系,为进一步分析数量关系奠定基础。
2 、有利于把隐藏的数量关系显性化。
有的数学问题已知条件多,而且条件之间、条件与问题之间的联系不明显,需要经过比较复杂的推理才能弄清其中的数量关系,学生的思维活动在这个阶段最容易受到阻碍。
如果有效利用直观图形手段辅助教学,往往可以使隐藏的数量关系显性化,顺利分析出解答思路。
在上例中,教师在画出线段图以后通过“仔细观察图形,你发现了什么?”这样的问题引导学生观察和思考,学生很快就发现:一套服装的价钱包括3 份钱数和6 元两部分,只要从总钱数里减去 6 元就得到3 份钱数是多少,然后就可以求出 1 份钱数是多少,即裤子的价钱,数量关系变得清晰明了。
相反,如果没有线段图的铺垫,学生在求裤子的价格时就容易写成456 ÷ 2 -6=222 (元)或456 ÷ 3 -6=146 (元)……这样的错误形式。
3 、有利于找出数量间的对应关系。
有的应用题, 数量关系比较复杂, 学生难以理清, 借助线段图可以准确的找出数量间的对应关系, 很容易解出要求的问题。
在实际的教学中,我们也尝试过这样的教育,并且取得了一定的效果。
在二年级学习比较两个数大小的数学问题时,“比()多()”、“比()少()”的数学问题的教学是个难点,难在学生一看“比()多()”不加分析就判断用加法计算,反之则用减法计算。
而线段的正确使用能避免学生出现这种错误判断,引导学生作图分析可以一目了然,学生对于题意的理解就十分到位,(此处是否可以谈谈具体怎么操作的)如一个数比另一个数多(少)几的问题。
主要有四类问题。
(此处可否帮我添加一些谈谈是如何引导学生通过线段图理解数量关系)( 1 )求多多少?201 班有科幻书46 本,204 班有74 本,202 比201 多多少本?画线段图:( 2 )求少多少?鸡有45 只,鸭有63 只,鸡比鸭少多少只?画线段图:( 3 )求大数?学校体育室有足球37 个,篮球比足球多13 个,篮球多少个?画线段图:( 4 )求小数食堂苹果有80 个,梨比苹果少35 个,梨有多少个?画线段图:四种类型的比多少问题,通过画图,学生可以很直观理解谁多、谁少的问题,不用线段图,让学生理解谁多时总是搞错。
再如倍数关系应用题的教学:图书馆有科技书150 本,故事书是它的3 倍,故事书有多少本?4 、有利于找到解决问题的路径。
在解决某些比较复杂的行程问题的时,利用线段图这个手段不但能使学生准确的理解题意,还有助于确定解决问题思路的入口,寻找解决的路径。
如在“相遇问题”的教学中,有这样的问题:“甲乙两人都要在游泳池里游一个来回,两人分别从游泳池的左岸和右岸同时出发,相向而行,第一次相遇处距离左岸20 米,第二次相遇处距离右岸10 米。
游泳池左右两岸相距多少米?”,解答时仅从题意很难分析出需要的数量关系。
如果用线段图画出两人游泳的路线,展示出两次相遇的地点,并标出已知条件,就能让学生形象地发现“当第一次相遇时两人共行了一个全程,其中甲行了20 米”,教师引导学生思考:“当第二次相遇时两人一共行了几个全程?其中甲该行多少米?”,学生可以推理出“两人共行3 个全程,甲应行3 个20 米,即60 米”这个结论,最后的问题在此基础上就迎刃而解了。
用线段图帮助理解、分析题意是“数形结合”思想在数学教学中的具体应用,用好线段图可以帮助我们提高教学质量。
二、培养学生画线段图的能力。
1 、从中低年级培养, 从简单题入手, 是培养学生画图能力的基础。
有人认为用线段图帮助解题是高年级的事, 是比较难的题才使用的方法, 中低年级和比较简单的应用题不需要画画线段图。
这种认识是不适当的。
小学生的思维比较简单,直观思维强于逻辑思维。
低段数学教材,很多以图片的形式呈现。
直观、简洁、易懂。
随着年龄的增长,数学问题也越来越复杂。
要让学生愉快的学会复杂关系的应用题, 促进学生思维的发展,化抽象的语言到具体、形象、直观图形; 化难为易, 判断准确; 化繁为简, 发展学生思维; 化知识为能力; 使学生解答应用题不再困难, 所以教师对于线段示意图应该低段开始渗透,逐步逐步的培养学生画线段图的能力,经历线段图的再创造过程,使得学生形成技能。
然而,随着物体个数的增加,或者随着问题情境的变换,总会出现不能用点或圆等直观图形来直接表示对应物体的数量,此时,必然就需要一种新的表示方式替代原有的方法,这就是线段图。
可是,如何让学生经历线段图产生的过程呢?一个老师曾进行过如下的尝试:“ 一捆绳子长50 米,第一次用去10 米,第二次用去8 米。
这捆绳子短了多少米?” 对于二年级学生来讲,如果不画图,学生很难理解短了多少米其实就相当于用去多少米。
可50 米长的线段怎么画?有学生认为拿出50 米长的线进行实地演示,但很快被其他学生否定;有学生则认为可以随便用一个长方形纸条表示50米,再分别“ 剪去”10 米和8 米。
这样似乎也达到了分析问题数量关系的效果,可如此“ 随便” 又会使学习失去必要的严谨性。
在肯定思考与否定方法中,我给学生亮出了自己的一点建议:既然50 米很长,无法将它真实地画出,我们能否想个办法让它有规律地“ 缩短” 一下,在自己的本子上也能画出来呢?学生毕竟很聪明,他们很快对50 米进行了“ 缩小” ,大多数学生选择的是以1 厘米代表10 米的“ 比例尺” 画出 5 厘米长的线段,进而在我的指导下逐步完成线段图,并借助线段图理解了数量关系,并列式解决了问题。
对于低年级学生而言,让他们体会线段图产生的必要性与合理性,不是一件容易的事,必须经历从“图”到“线段图”的抽象过程。
有的学生也错误的认为, 这么容易的题, 我不画图就能理解题意, 把题做对, 何苦去自找麻烦。
教师要讲清, 如果从小基础打不牢固, 到高年级遇到比较难的应用题, 需要画线段图辅助解题的时候, 就会画不出来或画不正确, 解题的能力就会的大大降低, 就会影响思维的发展。
所以, 线段图的培养一定要从中低年级培养, 从简单题入手, 从小养成画图解题的意识和良好的画图技能技巧, 打下坚实的基础, 到高年级才能如鱼得水, 应用自如。
2 、教师的指导、示范、点拨是培养学生画图能力的关键。
线段图作为解决问题的策略,其直观性与实用性已无可厚非。
但对于低年级学生而言,让他们体会线段图产生的必要性与合理性,并成为一种内在的心理需求,却不是一件容易的事,必须经历从“ 图” 到“ 线段图” 的抽象过程。
在一年级,学生刚接触“ 鱼缸里有10 条红金鱼,8 条黑金鱼,红金鱼比黑金鱼多几条?” 这样的问题时,首先想到的解题策略就是用10 个同样的图形表示红金鱼的条数,8 个其他颜色的相同图形表示黑金鱼的条数,进而根据一一对应的关系发现多出的条数并列出算式。
由于一年级教材中只需要学生掌握20 以内的加减法,因此,像这样的“ 图” 学生一直可以沿用到无法再根据题中的数量“ 直接” 画出为止。
可以说,像这样通过把实物转化为相同个数的图形来分析问题,寻找解题方法,是这一年龄段学生解决问题最青睐的方法。
所以在画线段图这一过程中教师的指导、示范就尤为重要:(1) 教师可以指导学生跟教师一步一步来画, 找数量关系。
也可以教师示范画出以后, 让学生仿照重画一遍, 即使是把老师画的图照抄一边, 也是有收获的。
(2) 学生可边画边讲, 或互相讲解。
教师对有困难的学生一定要给以耐心的指导。
(3) 学生掌握了一定的技能后, 教师可以放手让学生自己去画, 教师给以适时的点拨, 要注意让学生讲清这样画图的道理, 可自己讲, 也可分组合作讲。
教师一定要让学生体会用图解题的直观, 形象, 体会简洁、方便、易理解的特点, 提高应用的自觉性、主动性。
3 、理解题意, 找准对应上的数量关系是培养学生用图解题的重点。
线段图不是盲目的画, 随心所欲的乱画。
教师要指导学生画图重点做到以下几点:(1) 认真读题, 全面理解题意, 所画的图要与题目中的条件相符合。
(2) 图中线段的长短要和数值的大小基本一致, 不要长的线段标出小的数据而短的线段标出大的数据。
图要画的美观、大方、结构合理, 具有艺术性。
(3) 要按照题目的叙述顺序, 在图上标明条件。
对于双线段并列图和多线段并列图一定要分清先画和后画的顺序, 要找准数量间的对应关系, 明确所求的问题。